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Australian National University 

ABSTRACT. This talk summarises a variety of results concerning evolution equations for 
convex hypersurfaces: Simple proofs are sketched for some of the main results; a few open 
problems are described, along with some of the clues which suggest what the answers might 
be; and several applications to geometric problems are given. 

1. INTRODUCTION. 

The mean curvature flow is a well-known example of a parabolic evolution equation 

for hypersurfaces. The considerable attention which this equation has received in recent 

years is due in large measure to the elegant results proved for the case of convex hyper

surfaces in the papers of Huisken (Hul], Gage [Gal-2] and Gage & Hamilton [GH]. In 

these results, one considers an initial convex hypersurface M0 , given by an embedding 

r.p0 : Mn -+ R n+l, where Mn is some smooth compact manifold. The idea is to make 

this map evolve, producing a family of embeddings r.p: Mn X [0, T)-+ Rn+l, describing a 

family of hypersurfaces { Mt = 'Pt ( j\1)}. The evolution equation for the mean curvature 

flow is the following: 

(1) 
a at r.p(z, t) = -H(x, t)v(x, t) 

r.p(z, 0) = r.po(z) 

where H is the mean curvature, and v is the outward unit normal. 
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The main 'result describing the solutions of this equation (compiled from [Hul] for 

the case n ?:: 2 and [ G H] for n = 1) is the following: 

Theorem L Let cp 0 be a smooth, strictly convex immersion. Ifn = 1, assume iurther 

that cp0 is an embedding. Then thC're exists a unique, smootl1 solution cp to equation 

(1) on a finite maximal time interval [0, T). cp converges uniformly to a single point pin 
I 

R"+ 1 as t approacl1es T, and tl1e rescaled so.lutions given tp; = V(l\11)-n-n (cp 1 - p) 

converge in c= to an diffeomorphism 'Y'oo : -~1" -t S" c R"+1 as t approaches T. Here 

V(.Mt) is tl1e enclosed volume of the l1ypersurface 1\11 = cp1(1\1). 

Rerna.rks. The requirement of cmbcdcledness for n = 1 cannot be avoided, as there arc 

well-known examples where cusp-like singularities develop for immersed convex curves. 

In higher dimensions, there arc no non~embedded convex immersions, so we can 

combine the conditions in a natural 1vny: Let D be an arbitrary bounded, convex region 

in R n+l, and let .H0 be the boundary of D. Then there exists a smooth solution cp : 

,~1" X (0, T), unique up to smooth diffcomorphisms of lt1n, such that <p 1(1\1n) converges 

to 111o in the Minkowski distance as t approaches zero, and <pt converges to a point, 

becoming round as in the theorem, ,as t approaches T. The existence, uniqueness, 

and regularity of a solution with such boundary data follows from interior estimates 
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proved by Ecker and Huisken [EH]. These, together with the strong parabolic maximum 

principle, show that the solution immediately becomes strictly convex and smooth, so 

that we can apply the theorem as stated above. 

0 . . 

\ 

· This result serves as a model of perfection for many of the later results in the field. 

Results of similar generality have been obtained some other situations - most notably 

the result of Grayson [Gr], which removes the assumption of convexity in the case n = 1 

of the above theorem, and the results of Urbas [U2] and Gerhardt [Ge] concerning 

"expansion flows" of star-shaped hypersuraces. However, in general circumstances no 

such nice result holds. 

In this paper I will discuss a family of evolution equations with a form similar to the 

mean curvature flow, concentrating on the case of convex hypersurfaces. I will show that 

the good results for the mean curvature flow are very robust, and can be extended to a 

wide range of evolution equations satisfying a few structural conditions. Good results 

can be obtained not only for hypersurfaces in Euclidean space, but also in very general 

Riemannian spaces, if the evolution equation is chosen carefully. These results lead to 

some satisfying applications to geometric problems. 

The overall picture of the behaviour of these geometric parabolic equations is still 

not clear, however- even for the convex case. In particular, little is known about flows 

where the speed of the hypersurfaces is given as a function of curvature which is not 

homogeneous of degree one. I will describe some partial results which give an indication 

of what to expect, and also some more complete results for special cases. 

The general form of the equations I will consider is as follows: As before, we consider a 
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convex embedding r.p 0 : 111 11 --+ R"+ 1 , and try to evolve this under an evolution equation 

of the following form: 

(2) 
{) 
ot 'P(z, t) = -F(z, t)z;(z, t); 

r.p(z, 0) = r.po(z). 

This time F is to be given as a function F(W) of the Weingarten map W : T lvf 11 --+ T l\1". 

W describes the curvature of r.p(M), and may be identified with the derivative of the 

Gauss map v: Mn --+ sn. The main further conditions we require on F are just those 

which ensure that the equation (2) is parabolic: Assume that F is a smooth function 

defined on the positive cone s+ of positive definite symmetric maps, such that 

(3) 

for every A inS+, whenever B is a symmetric, nonzero, non-negative map. It should be 

noted that the form of F means that it can be written as a symmetric function of the 

principal curvatures: F(W) = J()-.1 , ... , A11 ). Then the condition (3) is just equivalent 

to the requirement that f be monotonic increasing in all n variables. 

This leaves a lot of room for different examples of flows. Some useful examples are 

the following: The elementary symmetric functions are defined by 

( ) - 1 (k) 
Ek W - (~) trA W, for k = 1, ... , n, 

where A(k)W is the kth exterior power of W (that is, the map induced on k-planes by 

W). The functions Ek satisfy the condition above, as do the quotients 

fork> e. 

Another interesting family is the power means, given by 

1 

H,.(W) = (!_ t >-r)" for r -1= 0, 
n i=l 

where A1, ... , -\,:. are the principal curvatures (eigenvalues of W). 
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Any of these examples can be used to produce further examples by taking the signed 

powers 

F(a:) = sgno:Fa: for a # 0. 

Some special instances of these are the mean curvature H = nE1 = nH1 , the scalar 

curvature R = n( n- 1 )E2, the Gauss curvature J( = En = Hf:, and the harmonic mean 

curvature En/En-1 = H-1· 

In most cases one is interested in flows where the speed is homogeneous of some 

degree, so that a solution remains a solution if it is scaled up or down, as long as the 

time is also appropriately rescaled. The flows then divide naturally into two classes: 

The expansion flows, where the speed is of negative degree in the curvature, and the 

contraction flows, where the speed is of positive degree. 

The expansion flows have been considered by Urbas [Ul-2], Huisken [Hu3], and Ger

hardt [Ge]. For speeds which are homogeneous of degree -1, it is shown that the 

hypersurfaces expand to infinity, converging to a sphere after rescaling as the elapsed 

time approaches infinity. The behaviour is similar if the degree of homogeneity is be

tween -1 and 0, but the "rapid expansion flows", which have degree less than -1, are 

more difficult. For these flows the hypersurfaces reach infinity in finite time; it is not 

clear that the rescaled hypersurfaces always converge, but some evidence suggests that 

they do. Some special cases are known [Al, section III]. 

2. OPTIMAL BEHAVIOUR: SPEED HOMOGENEOUS OF DEGREE ONE. 

The optimal results which have been obtained for the mean curvature flow can be 

extended to a wide class of other flow equations where the speed shares certain crucial 

characteristics with the mean curvature. Most importantly, it is found that the degree 
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of homogeneity of the speed F as a function of the \Veingarten curvature W plays an 

important role: We find that flows where the speed is homogeneous of degree one in 

the curvature, as it is for the mean curvature flow, tend to behave well. If the speed is 

homogeneous of some other degree, then the entire method of proof seems doomed, and 

we are forced to use other methods. 

In this section I will sketch the results for degree-one homogeneous speeds, and the 

method of proof. In later sections I will describe some of the other techniques which 

can be applied (usually for special flows) for other degrees of homogeneity. 

The importance of the degree of homogeneity is evident from several results which 

have appeared since that of Huisken: Chow [Ch1] considered evolution equations wl~ere 

the speed is a power of the Gauss curvature (F = J(<\ o: > 0), following work by Tso 

[T] on the Gauss curvature flow ( o: = 1 ). He showed that in all cases solutions converge 

to points, and in the case o: = ~ that the rescaled solutions converge to a sphere. Chow 

also considered the flow by square root of the scalar curvature (F = R~ ), and showed 

(under some further assumptions on the initial hypersurface) that solutions contract to 

points and become round [Ch2]. 

The results for more general flows of this kind may be described as follows (note that 

in the case n = 1 the flow is uniquely determined by the degree of homogeneity, so we 

need only consider n 2:: 2): 

Theorem 2 (A2]. Let n 2:: 2, and assume that F = F(.\1 , ••• , An) is a smooth symmetric 

function defined on the positive cone (0, oo )n, which is homogeneous of degree one 

and satisfies the parabolicity condition (3). Suppose also that either F is concave and 

approaches zero on the boundary of the positive cone, or F is convex. Then for any 

smooth, strictly convex initial immersion t.po : Mn --t R n+l, there exists a unique, 

smooth solution t.p : 1.1n x {O,T) --t Rn+l to equation (2) which converges toa point, 

becoming spherical as the final time is approached~ 
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Remark. In the case that F is concave, but not necessarily zero on the boundary of 

the positive cone, then the same conclusion holds provided that F<;') on the initial 

hypersurface is greater than the maximum of -rlx on the boundary of the positive cone 

(or, more generally, the limit superior of this quantity as the boundary of the positive 

cone is approached). Note that we mean "<p becomes spherical" in the sense of Theorem 

1. 

In order to sketch the proof of this result, we first need to know how various quantities 

evolve. In particular, we need to know how the induced metric g(u, v) = (T<p(u), T<p(v )) 

varies for any given tangent vectors u and v, where T<p is the tangent mapping of 'P· We 

also need to know the evolution of the unit normalv, and of the second fundamental 

form )l(u,v) = -(DuDv<p,v) and the associated Weingarten map W(u) = Duv. This 

calculation can be carried out in a very general setting: 

Lemma3. Suppose<p: Mnx[O,T)--? Rn+l satisfiesft<p(z,t) = -F(z,t)v(z,t), where 

F: Mn x (0, T)- Rn+l is smooth, and v gives the unit normal to <p(M) at each point. 

Then the following evolution equations hold: 

for any tangent vectors u and v to A1. Here '\1 is the covariant derivative given by the 

Levi-Civita connection of the metric g. 

Now ifF is given as above by a function of the Weingarten curvature W, we can 

immediately deduce a good-looking evolution equation for the speed itself: 

(4) 
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Here Pj is the derivative of F with respect to the component Wf of the ·Weingarten 

curvature (working in a local coordinate system). The parabolicity assumption ensures 

that this is a positive definite map whenever W is positive definite. Hence the leading 

term on the right hand side is an elliptic operator acting on F. 

Some further effort is required to obtain a good evolution equation for the Weingarten 

curvature W. If we take the evolution equation above, and expand the first term on the 

right hand side, we obtain: 

The second term.here has a definite sign, on account of the concavity or convexity ofF 

in the curvatures. The first term looks like it could be elliptic, if only we could exchange 

some indices around. In fact we can: We can apply the following identity, which is a 

generalisation of a result of Simons [Si]: 

(5) 

This follows by applying the Gauss-Codazzi identities to exchange the various deriva

tives. The brackets around indices denote symmetrisation. 

Substituting this into the evolution equation for the curvature, we find: 

(6) 

The.nice form -of this evolution equation depends very strongly on the degree of homo

geneity, since we have used the Euler relation for homogeneous functions: P~.kw~ :::::F. 

We. can already deduce several useful things from these evolution equations: The 

evolution equation for F, for example, has a growth term of the order of F 3 • Since the 

speed is initially strictly positive, this forces the speed to become infinite within a finite 

time. So we deduce that the 'time of existence ofa solution is finite. 
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The second thing we can deduce is that a solution which is initially convex remains 

convex: Consider the evolution of the quotient lj;:. 

(7) a (w) (w) 2 . ( (w)) 1 .. 8t F = c F + FF \lF, \1 F + FF(\lW, \lW) 

where C is the elliptic operator pke\1 k \1 e. Thus the first term on the right is elliptic, 

the second is a gradient term, and the third has a definite sign. In the case where F is 

convex, the last term is positive, and we deduce the the minimum of lf increases. IfF 

is concave, then the maximum decreases; further, by taking the trace of this equation 

we see that the maximum of lJ decreases, where H is the mean curvature. But we 

have chosen Pin such a way that either of these estimates forces the solution to remain 

convex: In the convex case we have a constant C such that Amin ~ C F ~ C H ~ C Amax 

at every point, so convexity is .preserved. IfF is concave and approaches zero on the 

boundary of the positive cone, then we have lJ uniformly bounded. But this quantity 

tends to infinity on the boundary of the positive cone, so the solution must stay convex. 

In addition to showing that convexity is preserved, this argument gives a pointwise 

pinching condition for the principal curvatures: There is a constant C depending only 

on F and c.po such that ~:~:[:? ::::; C for every x in M. This is a rather strong geometric 

restriction. 

Lemma 4. Suppose c.p : Mn --+ R n+l is a smooth, strictly convex embedding for whicl1 

the weingarten curvature W satisfies a pointwise pinching condition: 

(8) Amax(x) < C sup ( ) _ .. 
xeMn Amin X 

Then c.p(Mn) is contained between concentric spheres of radii P- and P+• where 

P+ <C' 
P- -

where C' is a constant depending only on C and n. 
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In order to prove this result, it will be useful to know a little more about some 

properties of convex regions. In particular, vve need to know something about the 

quantities known as quermassintegrals which are associated with convex regions. The 

kth quermassintegral is given by: 

(9) 

fork= 0, 1, ... , n. Vn+ 1(M) is just proportional to the enclosed volume V(M): 

(10) Vn+l(M) = (n + 1)V(M). 

These quantities have an simple geometric interpretation: The kth quermassintegral 

Vk(M) is equal to the k-dimensional volume of the projection of Nf onto k-planes in 

R n+l, integrated. with respect to the Haar measure on the Grassmannian Gn+l .~ of 

such k-planes. In particular, Vn is the surface area, Vn-l is the total mean curvature, 

and V1 is the mean width of the convex hypersurface. 

The Minkowski inequalities compare the different quermassintegrals of a convex hy

persurface. ln the simplest form, these may be stated as follows: 

(11) 

for k = 1, ... , n. Since Vo is just equal to ISnl, a constant, we can deduce further 

inequalities from these: 

(12) V1 > (V2)~ > ... > (Vk)t > ... > (Vn+l) n~l 
Vo - Vo - - Vo - - , Vo 

These can be seen as generalisation of the isoperimetric inequality. I will have more to 

say about these, including a method of proof, in a later section of the talk. 

Let us consider the mean width V1 more closely. An alternative expression for this is 

as follows: 

(13) V1 (M) = ~ f w(z)d1C(z), 
2 }sn 
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where w(z) is the width of the hypersurface .Af in the direction z- that is, the distance' 

between the two hyperplanes normal to z which are tangent to the hypersurface. I 

claim that 1'1 bounds the diameter of the hypersurface: First, consider a diameter of 

the hypersurface- meaning a line of maximum length joining two points of the surface. 

Let z0 be the direction of the normal at one of the endpoints of this diameter, so that 

we have w(z0 ) = diam(.M). Then we can estimate the widths in other directions: 

w(z);::: w(zo)l(z,zo)l. 

Integrating over the whole of sn, we obtain the following: 

F1 (.111) ;::: ~w(zo) { i(z, zo)l d?-ln(z) 
2 Js .. 
w(zo) 

=--
n 

Hence if we can bound V1 , we have a bound on the diameter of the hypersurface. 

Even better, if we have a bound on the isoperimetric ratio ~n+t, then we have control 
Vn+l 

on the diameter from above, and the enclosed volume from below, as required for the 

Lemma. 

Now, finally, we can apply the pinching estimate obtained above for solutions to the 

evolution equations: \Ve can obtain a useful estimate simply by applying the Holder 
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inequality: 

1 

= cv;;>. 

Now we can apply the Holder inequality again to control Vn+l: 

Vt::; CVn 

= { sE1 dp 
jM 

::; C f sE,t dp 
jM 

::; C (11 sEnd{t) ~ (JM sdp) l-* 

Rearranging, we obtain the required estimate on the isoperimetric ratio: 

1 

(14) v < cvn:n 
1 - n+l ' 

where C depends only on the pinching bound for the principal curvatures. 

This controls the shape of the evolving hypersurfaces. Lemma. 4 ensures that the 

hypersurfaces can be written as graphs over a sphere, with height bounded above and 

below. Writing the evolution equations in this setting, we find that the evolution equa

tion becomes a uniformly parabolic equation for the height function (the coefficients 

of the elliptic operator are given in terms of the map j?, which is strictly positive and 

bounded, in view of the pinching estimate). 

It follows that we can apply standard regularity estimates, such as those proved by 

Krylov [K], to deduce uniform estimates on the curvatures and their higher derivatives, 
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after rescaling to keep the volume of the hypersurfaces constant. This in turn ensures 

that there is a subsequence of times on which the solution converges to a smooth limiting 

solution after rescaling. Since the pinching ratio improves in time, this limit must be a 

sphere. From here, it is not difficult to prove that the solution converges in a stronger 

sense, not just for a subsequence of times. 

3. RIEl\iANNIAN BACKGROUND SPACES. 

In this section I will discuss the application of the ideas of the prevwus section 

to the evolution of hypersurfaces in Riemannian manifolds. Here the results really 

provide something new, and allow us to deduce useful topological information about the 

hypersurfaces. The basic plan is to make use of the good behaviour of the flows which 

are homogeneous of degree one, and to see whether the same estimates can be pushed 

through. 

The first work in this direction was by Huisken [Hu2], who considered the mean 

curvature flow. The mean curvature flow in this setting can be written exactly as for 

the Euclidean case, as an evolution equation for an immersion rp in to a Riemannian 

manifold of dimension n + 1. 

Let N be a smooth, complete Riemannian manifold, with metric gN, Levi-Civita 

connection \IN, and Riemann tensor RN. \7Ve require that N satisfies the following 

bounds: 

- K1 s; e>N s; I<z 

IVN RNigN s; L 

for some non-negative constants K 1 , K 2 , and L, where e>N is any sectional curvature of 

N. The following result is from [Hu2]: 



14 

BEN ANDREWS 

Theoren1 5. Suppose that yo : J\1" -+ N"+ 1 is a smootl1 immersion, such that every 

principal curvature ,\ of yo satisnes the inequality 

(15) 

where H 2::: Ai is the mean curvature. Then there exists a unique smooth solution 

to tl1e mean curvature flow witl1 yo as initial condition. This solution converges to a 

single point p of N in nnite time. After rescaling neighbourhoods of pin N to make the 

volume IIPt(M)I constant, the solution converges to a diffeomorphism IP= of M to the 

unit sphere sn in R n+1 . 

Hence, a hypersurface which satisfies the conditions of the theorem is necessarily 

the boundary of an immersed disc. In the case of hypersurfaces in a locally symmetric 

space (L = 0), this is a very nice-looking condition, amounting simply to a certain 

minimum convexity- if the background manifold has non-negative sectional curvatures, 

then strict convexity is enough. However, if the gradient of the Riemann tensor of the 

background space does not vanish, the condition is somewhat less satisfying: \Ne must 

assume that the initial hypersurface has extra convexity to overcome this apparent 

geometric obstacle. 

What happens when we consider flows with other speeds? It turns out that carefully 

chosen speeds can improve the results significantly. In the following result, an optima.l 

conclusion is obtained for a class of evolution equations which does not include the 

mean curvature, or the nth root of the Gauss curvature or the square root of the scalar 

curvature. A good example of a flow which does behave well is the flow by the harmonic 

mean curvature H -1· 
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Theorem 6 [A3]. Suppose <po is a smooth immersion of M to N, such that every 

principal curvature A of <po satisfies 

(16) A> Vi(;. 

Then there exists a unique smooth solution <p : M X [0, T) ----+ N to the following equation: 

(17) 
a ( 1 n -1) -l 
at c.p(x, t) =- ;;: 8 (A;-~) v(x, t); 

<p(x,O) = c.po(x). 

<p converges to a point in finite time, becoming spherical in the sense of Theorem 5. 

The convexity condition (16) is still sharp, and does not depend on the size of the 

gradient of the background tensor. 

I will sketch the proof for the case of non-negative sectional curvatures (I<1 = 0). As 

in the Euclidean case, the problem simplifies greatly once a pointwise curvature pinching 

estimate is obtained. The evolution of metric, normal and curvature changes slightly in 

the setting of a Riemannian background space: 

Le1nma 7. The metric and normal evolve as in Lemma 3. The curvature W evolves as 

follows: 

(18) 

Hence the speed F evolves according to the following equation: 

(19) a . · z · N atF=£F-rFF(W )+FF(R (v,.,v)), 

where £ is the elliptic operator fke'V k 'V C· 
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As before, there is a Simons' identity which can be applied to obtain a good evolution 

equation for the curvature. The resulting equation is as follows: 

(20) 
a · · ·· · · 2 · • N · at Wf = CWf + F(V;W, \71W) + F(W )Wf + F(R (v, ., v))Wf 

+ 2FprWi.(RN)pi/- pPqWi(RN)piq k- pPqWNRN)pk/ 

+ pPq\7N(RN) j _ pPq\7N(RN). j 
, Opq p •qO 

Here the subscript 0 represents the normal direction. 

Now a straightforward calculation gives the evolution of the quantity lj: which con

trols the ratios of principal curvatures: 

(21) 

~ (w!) = c (w1) + !_F(V·W viw) + :!:...pklv F\7 (w!) at F F F '·' F k t F 

+ ~ (2FPrWi.(RN)pi/- FPqWi(RN)pi/- FPqW;k(RN)pk/) 

+ F *\7NRN 
F 

where the * represents some linear combination of contractions. Remarkably, all the 

terms in this equation, except for the final one involving the derivatives of the Riemann 

tensor of N, are good: The first term is just an elliptic operator, and the second a 

gradient term; the concavity term is negative; and the terms involving the background 

curvature can be written in terms of the sectional curvatures, so that the positivity of the 

sectional curvatures yields a negative term. The last term is uniformly bounded, since F 
is uniformly bounded above (this would not be the case if we has chosen the nth root of 

the Gauss curvature, or the square root of. the scalar curvature, for example), and F is 

uniformly bounded below (by the evolution equation (19)). Therefore Amax ~ C(1 + t)F 

by the maximum principle. But equation (19) shows that the time of existence is finite, 

so Amax ~ CF. Since F = H-1 ~ Amin, this implies Amax ~GAmin· 

Thus a pinching estimate holds as in the Euclidean case. Of course, it takes much 

more work to prove from this that the evolution equation behaves well and converges 
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nicely, since there are no such convenient quantities as the quermassintegrals. However. 

careful application of the regularity estimates of Krylov shows that there is a subsequence 

of times tk, and a corresponding sequence of points Xk in J..1, such that after rescaling 

about the points Xk to make the curvature there equal to 1, the hypersurfaces converge 

to a complete, smooth, strictly convex hypersurface in Euclidean space with pinched 

principal curvatures. A result of Hamilton [Hal] ensures that such hypersurfaces must 

be compact, and the proof proceeds as for the Euclidean case. 

There are some useful applications of this result: For example, we obtain a new proof 

of the 1/4-pinching sphere theorem of Klingenberg, Berger, and Rauch. The idea of the 

proof as is f~llows: 

We start with a Riemannian manifold N of dimension n + 1, which is strictly 1/4-

pinched: There is some c; > 0 such that all the sectional curvatures O'N of N satisfy 

(z_:e) 2 :::; aN :::; 1. Now choose a point p in N, and consider geodesic spheres about 

p. These are a family of immersions <p of the sphere sn into N, with all principal 

curvatures becoming infinite as the distance s from p approaches zero. As s increases, 

the immersions evolve by moving outward at constant speed: 

(22) 
a 
at<p(x,s) = v(x,s). 

The evolution equation for the curvature is given by Lemma 7: 

(23) a j ( 2)i ( N) j OS W; = - w i - R OiO • 

This gives: 

Hence the curvatures of the geodesic sphere at distance s satisfy: 

~ cot (-8 
-) ~ Am ax ~ A min ~ cot( s ). 

;t,-c; 2-c; 
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Hence for so E ((1- ~t:)r.,r.) we have 0 > ,\max(so) > ) > -oo, so that the 

geodesic sphere has bounded curvatures, and is strictly convex in the ouhvard direction 

from p. The evolution equations for the metric and for the derivatives of the 

curvature imply that the hypersurface remains smooth as long as the curvatures rer.:1a.in 

finite; in particular, (p 80 is a smooth immersion. 

Now cp 80 can be used as an initial hypersurface for Theorer:a 6. This a 

of hypersurfaces which converge to a 

sphere (with respect to p) is a disk. Thus N can be written as a union of two and 

is homeomorphic to a sphere. 

4. OTHER DEGREES OF HOMOGENEITY. 

I have considered in detail the very strong results which have been obtained for 

solutions to flows where the speed is homogeneous of degree one in the Now 

I want to consider some more general flows. One flow which has received considerable 

attention is the Gauss curvature flow. This flow predates the mean curvature 

flow, having been considered by Firey [F] in 1974, as a model for the of pebbles 

on a beach. The derivation of this equation for such a process is quite simple: Consider 

a pebble, which we think of as a convex region in space R n+l. I do not wish to speculate 

about whether such higher-dimensional pebbles exist. Suppose that the 

of this pebble is caused by the continual impact of other pebbles; these impacts are 

supposed to come from every direction with equal 

assumption that these other pebbles are much 

that they can reasonably be approximated as 

Now make the 

than the one being ""'"'->'-'"'"''·00'-' so 

The rate of collisions in some 

small region of the pebble is just proportional to the measure of the set of n"n"''"n 

which have tangential contact with the pebble in this region, This is precisely the 

measure of the Gauss image of the region, or locally the Gauss curvature times the 

surface area element. The rate at which the surface wears away is just proportional to 

the rate of collisions per unit area, which is just the Gauss curvature. 
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Firey was able to show that any initial region which is centrally symmetric (invariant 

under the involution z -+ -z of R n+l) shrinks to a point, and becomes spherical in 

the process (actually, the problems of existence and regularity of solutions were not 

addressed by Firey; the arguments required for this were provided later by Tso [T]). 

Firey conjectured that the conclusion should hold without the assumption of central 

symmetry. Tso showed that the solution always converges to a point, but the harder 

problem of determining whether the solution becomes round remains unresolved despite 

considerable attention. 

The problem aris'es oecause there does not seem to be any good estimate on the 

curvatures __:.. certainly nothing as simple and elegant as the pinching estimate for the 

homogeneous degree one flows. This problem is shared by the myriad other flows which 

have a degree of homogeneity different from one. 

However, even without knowing that the rescaled solutions converge, useful infor

mation can be obtained: I will next describe an interesting application of the Gauss 

curvature flow to prove some of the Minkowski inequalities (12) between Quermassinte

grals. 

Lemma 8. Under the Gauss curvature flow (equation (2) with F = K), the following 

inequality holds: 

(25) 

with equality if and only if Mt is a sphere. 

This is easy to prove: First, Vn+l evolves as follows: 

gt Vn+l = -(n + 1) JM Kdf-L = -(n + 1)Vo. 
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Next we compute how Vk evolves: 

where we have used the Newton inequalities 

_ n±l-k 
k 

n-!-1-k 
?::_ Ic-,- and 

applied the Holder inequality. Now we can combine these: 

= 0, 

as stated in the Lemma. 

Corollary 9. 

(26) 

fork = 1, ... , n, with equ.a.lity only for spheres. 

?::_ J("-;,k, and 

This follows since the solution to the Gauss curvature fiow converges to a point. 'I'hus 

at the final the daim holds with equality. By the lemma, the left-hand side 

is decreasing in time, so it must have been au•.u-.uc•cca•e> 

unless lift is a sphere). 

initially 

By using other :flows as well as the Gauss curvature :flow, one can in fact prove all of 

the Minkowski inequalities, and even the more general Aleksandrov-Fenchel inequalities 

[A4]. 
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The family of Gauss curvature flows, with speeds given by K 01 for any positive a:, has 

received a lot of attention: Chow [Ch1) showed that each of these flows contracts convex 

hypersurfaces to points; he also proved Harnack inequalities [Ch3), and in the special 

case a: = 1, he found a decreasing, scaling-invariant integral (known as the entropy). 

Hamilton has shown that for the Gauss curvature flow [Ha2], the entropy estimate gives 

control on the isoperimetric ratio, and the Harnack inequality gives a bound on the 

Gauss curvature of the rescaled solutions. 

Many of these results which have been proved for the case a:= 1 can be proved also 

for other a:. The following Theorem summarises various partial results: 

Theorem 10. Let r.p0 be a smooth, strictly convex initial immersion of a compact 

manifold M into R n+l, and let r.p be the solution to the flow (2) with F = K 01 , a: > 0. 

Then r.p converges in finite time to a single point [T, Chl). If a: = n~2 , then the rescaled 

solution converges to a diffeomorphism r.p 00 from M to an ellipsoid in Rn+l [A6). If 

~ 2:: a: > n~2 , then the rescaled solutions converge to a limiting solution which evolves 

homothetically [AS); if a:= ~ then this limiting solution is a sphere [Ch1). If a: > ~ then 

the rescaled solution has bounded isoperimetric ratio, and bounded Gauss curvature; if 

it has a smooth limit, then this must be nomothetic [Ha2,A8). 

The general picture seems to be that the solutions will converge (probably to spheres) 

for a: > n~2 , and will generically diverge for a: < n~2 : In the case n = 1 of curves in 

the plane, it can be shown [A 7) that for a: < t there are initial conditions for which the 

rescaled solutions have no smooth limit at the final time; the hypersurfaces collapse onto 

a one-dimensional line. In higher dimensions I expect that similar behaviour occurs, but 

I can prove so far only that there are examples which do not converge to spheres [A5). 

In a sense, in these cases the speed does not "react" quickly enough to large differences 

in curvature between different points of the hypersurface. 

Also in the case of curves, more can be said for higher homogeneities: In fact, for this 
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case everything behaves perfectly: For any 01 > t, the solutions converge to a round 

circle after rescaling [A 7]. 

The Gauss curvature flows are at present the only family of flows for which any 

reasonable results are known. It would be nice to have techniques which were more 

robust, with less dependence on the precise details of the function (just as for the 

homogeneous-degree-one flows the techniques worked for a wide class of F). 
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