
Chapter 8 

Designing numerical libraries in C 

The purpose of this chapter is to have a bit of a look "under the hood" to see how 
a library of routines inC can (and we believe, should) be built up. The philosophy 
here is to make use of the features of C to make programs more flexible and easier to 
write (and debug), while not sacrificing too much efficiency. There are other ways of 
designing numerical libraries, but this has been found to be a useful and flexible way 
ofdesigning numerical libraries in C. 

8.1 Numerical programming in C 

Numerical and scientific programming has been traditionally associated with Fortran. 
Indeed, a great deal of software has been written in Fortran, in spite of its well known 
defects (lack of good data structures, lack of strong typing, reliance on "GOTO", poor 
lexical characteristics, clumsy input/output). This has led to the "historical" defense 
of Fortran: "There is so much already written in Fortran that we have to program in 
Fortran." 

However, more sophisticated algorithms need more sophisticated data structures 
and more structured programs. Sparse matrix data structures and operations on them 
are one example of this. C is one of a number of languages that easily support such 
structuring. As well, C is a very flexible language, especially as regards memory 
management. While it is often argued that C is "merely a systems programming 
language", several aspects of C seem to indicate otherwise. For example, C has both 
single and double precision. Sometimes the argument is made that C is not suitable for 
numerical programming because single precision numbers are automatically converted 
to double precision whenever they are passed as arguments or used in expressions. This 
is no longer true in ANSI C. Even with the older C convention, the main drawbacks are 
the time spent converting between double and single precision numbers. Operations 
done entirely in double precision are immune to this inefficiency. It is, in any case, 
a better state of affairs than not having double or extended precision numbers as is 
the case with Pascal or the original version of Modula-2. Also, the standard Unix™ 
mathematics library has not only the standard functions ( exp, log, and the trigonometric 
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functions), but also Bessel functions, the r function and the error function. Admittedly, 
C does not have complex numbers, but this is a standard extension to C++. 

8.1.1 On efficient compilers 

The comment is sometimes made that Fortran must be more efficient than C. This is 
based on the fact that pre-Fortran 90 Fortrans are simpler languages, and that C has a 
rather more permissive structure. ,However, with modern compilers the difference in 
performance is usually fairly small, and is often non-existent. One of the reasons for 
this is that on many new machines compilers for different languages share common 
code-generation and optimisation parts. Indeed, the first NAG Fortran 90 compiler is 
actually a pre-processor that converts Fortran 90 into C- this is a sensible strategy 
because of the high quality and wide availability of many C compilers. The point 
that should be made is that efficiency is often a question of how much effort goes into 
developing the compilers. In the late 1970's the MACLISP compiler developed at MIT 
could produce machine code for compiled Lisp that rivalled Fortran in efficiency for 
numerical operations. 

There are some inefficiencies that can be introduced in writing C code that would 
not appear in writing Fortran. But this is due to using a different style of programming. 
For example, overusing dynamic memory allocation can result in a great deal of 
overhead. (Beginners to programming in C can easily fall into a trap of writing code 
that spends most of its time allocating and deallocating temporary objects.) However, 
with a little care, this overhead can be kept to a negligible level while providing far 
more flexibility than is possible in Fortran 77. 

8.1.2 Strategies for using C 

The aspects of C that numerical programmers should make use of include 

1. the ability to create self-contained data structures representing meaningful math
ematical objects. 

2. dynamic memory allocation and de-allocation of data structures and arrays, 
which often avoids the need for workspace arrays. 

3. error and exception handling using setjmp () and longjmp (). 

4. flexible input and output so that self-contained data structures can be read in and 
printed out. 

5. use of pointers to represent user-defined objects whose characteristics are not 
known at compile time. 

Self-contained data structures not only simplify argument lists, but can also be 
used for internal consistency checks to catch illegal operations. They should also make 
programs easier to understand in that they correspond closer to mathematical objects, 
and avoid the need to a plethora of additional length arguments and variables. By 
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using functions to perform most of the needed operations on these data structures, the 
chances of misusing the data structures can be greatly reduced. 

Dynamic memory allocation and de-allocation not only avoids workspace arrays, 
but also avoids the need for the strategy of declaring the largest conceivable array sizes 
in local arrays. With this, memory can be used far more effectively. 

A common error/exception handling mechanism means that the usual testing of 
"IFLAG" arguments can be avoided as well. A suitably structured mechanism can be 
used to provide a safe way of giving control back to the user if an error occurs. The users 
need to state what error they wish to "catch" and the code in which they wish to "catch" 
it; if an error occurs executing the code, control passes to the "catch" mechanism which 
can pass control back to the user's own code for handling the errors. Done properly, it 
can also provide a partial "backtrace" of the state of the active functions at the time of 
the error. 

Input and output are, of course, very important. After all, a program without output 
is useless. More than this, by structuring input and output, output can be reused as 
input. Consider how often have you had to edit data just so that your program can use 
it as input? 

Another aspect of structuring input is that comments can be incorporated into the 
input. Data, by itself, rarely means much. Including comments makes it much more 
intelligible to mere mortals. The flexibility of C's input and output has been used to 
do this. 

User-defined objects (of any sort) can be handled by a combination of functions 
and pointers. Pointers to functions can be arguments to functions, and components 
of arrays or other data structures. This means that essentially arbitrary user-defined 
data structures can be used by code without knowing any of their characteristics at 
compile time. This style of programming has some of the flavour of object-oriented 
programming. 

Meschach in various places makes use of all these aspects of C. We hope that you 
find this way of programming effective and efficient, not only in terms of CPU time, 
but your own (programming and debugging) time as well. 

8.1.3 NonmC programmers start here! 

Before going past this point, you really should read a book on C and programming in 
C. However, as there are undoubtedly non-C programmers who will want to follow 
the discussion in this chapter, here are some very brief notes which should help you 
understand the examples. 

C programs consist of collections of functions, one of which is the main program 
(called "main () "). Routines consist of a header followed by a sequence of state
ments (the body of the routine) inside braces ( { ••. } ). Statements are either simple 
statements, which must end with a semi-colon(;), or compound statements, which is 
a collection of simple or compound statements bracketed by braces. The braces work 
very much like Algol, Pascal and Ada begin ... end pairs. Comments inC have the 
form/* • • • * /. 
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Before a C program is compiled, it is passed through a pre-processor. Pre-processor 
directives must have a # as the first character on that line. The pre-processor can be 
used to define macros, to include files, and to delete code according to whether macros 
are defined. Standard header files are almost always included in C programs. Here is 
an example: 

#include <stdio.h> /* standard input/output header file */ 
#include "mydefs.h" /* uses file from current directory */ 
/* examples of macro definitions */ 
#define max(a,b) ((a) > (b). ? (a) : (b)) 
#define DEBUG TRUE 

The basic data types in C include int ("integer"), double ("double precision 
floating point") and char ("character"). A declaration has the name of the data type 
before a list of variables, as in 

int 
double 

i, j, idx; 

alpha; 

A pointer to a particular data type is declared by putting a * before the variable which 
is to be a pointer. For example, after the declarations 

double d, *pd, **ppd; 

d is a double, pd is a pointer to double, and ppd is a pointer to a pointer to 
double. 

Consistent with this, accessing the value pointed to by a pointer is simply a matter 
of putting a * before the variable. For example, the value pointed to by pd is -*pd. 

The reverse operation of finding a pointer that points to a variable is done by putting 
& before the variable; e.g. pd.= &d; now makes pd point to the variable d. 

Arrays are declared using square brackets such as 

double x[10]; 

This declares x to be an array with 10 entries. However, the starting index is zero, not 
one. So the valid entries of x are x [ 0] , x [ 1] , ... , x [ 9] . This is called zero-relative 
inde~ing. This may appear unusual at first, but is no barrier in practice. 

Arrays and pointers are very similar; when arrays are passed to subroutines, only 
a pointer is passed, and pointers can be used like arrays. For example, pd [ 0 l is 
equivalent to *pd; pd [ 1] is the double precision number next to *pd. This is called 
pointer arithmetic and can be easily abused. There are two important differences 
between arrays and pointers: (1) pointers are not necessarily associated with any 
usable piece of memory, while arrays are, and (2) array names cannot be assigned, but 
pointers can. So pd = x; is legal, but x = pd; is not. 

Data structures containing (possibly) different kinds of objects are declared using 
struct. For example, complex numbers can be declared as 

typedef struct cmplx { double real, imag; } complex; 
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(Here we have used typedef in order not to use the longer name struct cmplx.) 
Complex numbers can then be declared by 

complex zl, z2; 

Structures can be imbedded in structures, and recursive structures (such as linked lists) 
can be declared using pointers to that structure. For example, here is a linked list 
structure: 

struct list { int contents; struct list *next; }; 

The components of a data structure can be obtained by using " • ". The real part 
of zl is zl. real. If pz is a pointer to a complex number, then the real part of 
the complex _number pointed to is ( *pz) • real, which has the equivalent shorthand 
form: pz->real. 

The control structures inC are familiar to most programmers- if-then-else, while, 
do-while (cf Pascal's repeat-until) and for loops. These have a straightforward syntax 
except for the for loop construct. Before these constructs are described, it should be 
noted that C has no Boolean or logical data type. Instead, zero or NULL is regarded as 
"False", while non-zero and non-NULL values are regarded as "True". The results of 
logical and relational operations are always integers int, with 1 representing "True". 
The comparison operators are equality test ( == ), inequality test (! = ), and the usual 
numerical comparison operators ( <, >, <=, >=). Logical operators include "logical 
and"(&&), "logical or" (I I), and "logical not" (! ). (There are also bitwise and, or, not 
and exclusive or operators.) Expressions involving && and I I are evaluated left-to
right and evaluation is "short-circuited" so that latter expressions are not evaluated if 
not needed. This is very useful to avoid performing invalid operations. For example, 

ok = ( i < array_length ) && item_ok[i]; 

does not evaluate i tem_ok [ i] if i >= array _length. 
If statements have an optional else part and can be strung together. 

if ( conditionl ) 
statementl; 

else if ( condition2 
{ statement2; statement3; } 

While loops have the form "while ( condition ) statement;" or ''while 
( condition ) {... }". Thedo-whilevarianthastheform "do statement; 
while ( condition ) ; "or"do { • • • } while ( condition ) ; ". The 
for loop in C is the most flexible and has the form 

for ( initialisation; test; update 
statement; 

where "statement;" can be replaced by a compound statment. This is equivalent 
to a while loop: 
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initialisation; 
while ( test ) 
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{ statement; update; } 

The for loop is most commonly used in a standard idiom: 

for ( i = 0; i < array_length; i++ ) 
• • • • • • array [ i] ..... . 

The expression i + + returns the value of i and then increments the value of i by one. 
(Here, of course, the value of the expression is ignored.) This is the post-increment 
operation; i-- is the post-decrement operation. Preceding the variable with++ or-
pre-increments and pre-decrements the value of that variable. Other updates commonly 
used include incrementing the index by a different stride: i = i+stride, or with 
the shorthand i += stride. 

Inside all loop constructs in C you can put break and continue statements. 
The break statement causes the loop to exit immediately; the continue statement 
causes control to be passed to just before the end of the loop. 

All routines in C are functions. They might have side--effects and they might return 
void (so that the returned value is unusable), but they are functions. It is not necessary 
to do anything with the returned value, whether or not it has type void. Also, all 
function arguments are passed by value rather than by reference. Thus if you wish a 
function to set the value of a variable, you need to pass a pointer to that variable. For 
example, an integer swap routine would be called like this: 

int i, j; 

swap(&i,&j); 

If the type of the returned value from a function is not int (i.e. the standard integer 
type) then it should be declared before use. For example, a routine to add complex 
numbers together might be declared before use as 

complex cadd(); /* adds two complex numbers */ 

If this is preceded by extern it means that the function is defined in another file. 
In ANSI C argument types can also be checked if you declare your functions using 
function prototypes such as 

complex cadd(complex, complex); /*or*/ 
complex cadd(complex zl, complex z2); 

Ther are two styles for defining a function: the old way, and ANSI C. Here is the 
old way: 

complex cadd(zl, z2) 
complex zl, z2; 
{ complex z; 

z.real = zl.real + z2.real; 
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z.imag = zl.imag + z2.imag; 
return z; /* z is the returned value of cadd() */ 

} 

And here is the ANSI C way: 

complex cadd(complex zl, complex z2) 
{ complex z; 

} 

z.real = zl.real + z2.real; 
z.imag = zl.imag + z2.imag; 
return z; /* z is the returned value of cadd() */ 
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Functions can be passed as parameters, but what is actually passed is a pointer 
to a function. A pointer to a function can be used as other pointers can: arrays of 
pointers to functions are legal, as are structures containing pointers to functions. Here 
is declaration of a pointer to a function returning a double: 

double (*f)(); 

Or using ANSI C, the types of the argument( s) can be included: 

double (*f) (double); 

Then assigning f ·· = exp; is perfectly valid. 

8.2 The data structures 

C allows for extensive use of data structures. The struct and typedef facilities 
provide means whereby heterogeneous structures and primitive types can be combined 
and used together. As such they provide a static way of describing the data structure; 
they define the way things are stored. Equally important to the way things are stored, 
is the question of how such information is used. This is the dynamic part of the data 
structure. While Cis not really set up to deal with complete formal descriptions of both 
the static and dynamic aspects of a data structures in the way object-oriented languages 
(such as SmallTalk and C++) are, we can go part way by providing functions that do 
at least the basic operations on the data structures. 

8.2.1 Pointers to struct's 

One approach that we have taken throughout the library is to pass only pointers to the 
actual struct's. Passing the actual struct's is useful for relatively small objects, 
but we believe it is inappropriate to do this for large objects and for objects which 
contain pointers to allocated memory. For example, complex numbers 

typedef struct { double real, imaginary; } complex; 
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should be passed as single entities, while vectors 

typedef struct { int dim, .•. ; double *ve; } VEC; 

should not. 
Why should this distinction be made? 

1. Passing large structures is less efficient. 

2. Copying the struct itself will only copy the pointers in the struct, not what 
those pointers are pointing to. 

The second item notes that only a shallow copy is made by an assignment of a struct. 
For example, the following code does not do a true copy (at least it is usually not what 
the writer intends). Do not do this! 

VEC x, y; 

y = x; /* this is an error in pre-ANSI C *I 
y. ve [ 1] = 3 • 0 ; 
I* now x.ve[l] is also 3.0 *I 

Pointers can be copied, but here it is clear that its effect is not a deep copy. 

VEC *x, *y; 

y = x; /* y and x now point to the same place *I 
y->ve[l] = 3.0; 

/* now x->ve[l] is 3.0 */ 

It is only with C++ that assignment can be forced to result in a deep, rather than a 
shallow, copy. 

8.2.2 Really basic operations 

Some operations are so basic that it is absolutely vital that they are implemented first. 
They are (in order): 

1. Allocation and initialisation. 

2. Output 

3. De-allocation. 

4. Copying. 

You might find it strange that output routines appear so soon. However, one thing is 
sure about developing data structures: you will want to debug them. 

Writing allocation and initialisation routines is not difficult, but you should use the 
discipline that all returned values from malloc (), calloc () and realloc () are 
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checked. Also, check that the parameters passed make sense. If something goes wrong 
at this level it is unlikely that you can do much sensible. Passing control to an error 
handler, such as the error ( ) macro does, is probably the most sensible thing to do 
here. Here is a hypothetical struct and the code to do (some) of the allocation and 
initialisation: 

In the file foo. h we define the data structure and the new type foo: 

typedef struct { int size; ..• double *array; } foo; 

In the file foo. c the basic operations are defined: 

#include "foo.h" 

foo *get_foo(size) 
int size; 
{ 

} 

foo *my_foo; 

if ( size <= 0 ) 
error(E_BOUNDS,"get_foo"); 

I* get foo struct first */ 
my_foo = (foo *)calloc(l,sizeof(foo)); 
if ( my_foo = (foo *)NULL ) 

error(E_MEM,"get_foo"); 
/* now set up pointers */ 

my_foo->array = (double *)calloc(size,sizeof(double)); 
if { my_foo->array = (double *)NULL ) 

error(E_MEM,"get_foo"); 
my_foo->size = size; /* now it is safe to set the size */ 

return my_foo; 

The function call calloc (num_elts, size_elts) allocates a block of memory 
for num_elts blocks of size size_elts characters. What is returned is a pointer 
to the allocated memory. If calloc () returns a NULL pointer, then this indicates 
that there is insufficient memory. The returned value of calloc (), malloc () 
and realloc () should always be checked before use. If an error occurs, then the 
error ( ) macro is called, which raises an error at this point, and no further code in 
this function is executed. 

TheMeschach macros NEW(type) andNEW_A(num, type) inmatrix.h sim
plify writing this sort of code: 

if ( (my_foo = NEW(foo)) -- (foo *)NULL ) 
error(E_MEM,"get_foo"); 
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if ( (my_foo->array = NEW_A(size,double)) -- (double *)NULL ) 
error(E_MEM,"get_foo"}; 

De-allocation should be done using the function free ()in the reverse order: 

void free_foo(my_foo) 
foo *my_foo; 
{ 

} 

if ( my_foo -- (foo *)NULL ) 
return; 

if ( my_foo->array != (double *)NULL 
free(my_foo->array); 

free (my_foo); 

There is not much more error checking that can be done at this stage. Checking that 
memory heaps are not corrupted can only be part of the design of the memory allocator, 
not the data structure or its routines. 

Notethatonlypointers to memory that has been allocated by calloc (), malloc () 
or realloc () can be de-allocated using free (), and this can only be done once. 
Common errors are to try freeing memory more than once. 

8.2.3 Output 

Output should be structured but human readable. Usually we will want to be able to 
read the output back in later, so we should try to make the output reasonably machine
readable as well. (Writing input routines is usually much harder and more complex.) 
Hence the output should contain fore-warnings about what is coming, and how big it is 
before we get to it. It should also be possible to direct the output to any fileor stream 
that we choose. 

In the foo example, 

void fout_foo(fp,:my_foo) 
FILE *fp; 
foo *my_foo; 
{ 

int i; 

fprintf{fp,"Foo: "); 
if ( my_foo == (foo *)NULL 
{ 

} 

fprintf(fp,"NULL\n"); 
return; 
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} 

fprintf(fp,"size: %d\n",my_foo->size); 

fprintf (fp, "array: "); 
for ( i = 0; i < my_foo->size; i++ 
{ /* no more than 6 items on a line */ 

} 

if ( (i % 6) == 5 I I i == my_foo->size - 1 ) 
fprintf(fp,"%g\n",my_foo->array[i]); 

else 
fprintf (fp, "%g ",my_foo->.array[i]); 
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(Actually, returning my _foo at the end would be useful behaviour, although we haven't 
done this in Meschach.) 

Note that care is taken to treat the NULL case separately so that this will not result 
in failure; instead the message "Foo: NULL" is printed. For a proper allocated and 
initialised the output might look something like this: 

Foo: size: 10 

array: -3.7 2.5 3.141592 2.2 -1 
1.5345 101 25.2321 -3.2 2.5 

Writing an input routine to read this in is simplified because it can see how big 
to make the array before it has to read any of it in. Writing a routine to output 
every bit of the foo structure (even though most users won't want it) is often useful 
for debugging purposes. This can be done by writing an additional foo_dump () 
function. 

8.2.4 Copying 

The purpose of these routines is to provide a deep copy which copies all the component 
parts as well as the struct itself. There are two styles of doing this; one is to return 
a completely new struct, created and initialised, and the other is to copy the data 
structure into an already allocated and initialised one. One way to do both in one 
routine is to check the target structure pointer; if it is NULL then a new target structure 
should be created: 

foo *cp_foo(from,to) 
foo *from, *to; 
{ 

int i; 

if ( from == (foo *)NULL ) 
error(E_NULL,"cp_foo"); 

if ( to == (foo *)NULL ) 
I* can't copy NULLs */ 
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} 

to= get_foo(from->size); /*create a new foo */ 
else if ( to->size < from->size ) 

/* make sure target is big enough */ 
to= foo_resize(to,from->size}; 

I* now do copying */ 

for ( i = 0; i < from->size; i++ 

to->array[i] = from->array[i]; 

The results of using cp_foo () can be used without checking as when a failure occurs, 
there is a call of the error ( ) macro which invokes the error handling code. Once 
the checking is done, the actual copying can proceed as a straightforward loop. The 
efficiency of copying routines can be improved by using specialised copying routines 
such as bcopy () for BSD, or memmove () for ANSI C. 

8.2.5 Input 

Although this is not one of the "really basic" routines, they are useful and even 
important. Also, they are also trickier than output routines to write well. 

It has been observed that in many software systems that the overall complexity of 
the code is usually dominated by the user interface. Writing a numerical library avoids 
a lot of that, and getting other programs/libraries to do your input/output is often a good 
idea. (Writing routines to output matrices in MATLAB save/load format means that 
you can use MATLAB to produce three-dimensional plots of "matrices".) However, 
writing input routines often cannot be avoided, and can also be useful for debugging 
purposes. 

The input and output that is used by Meschach is all character-based. Fancy 
window-based input/output could also be done, but there the problem is more about 
standards and the many different ways of graphically displaying and inputting matrices 
and vectors. 

There are two styles of input in Meschach. Interactive (from a "tty" in Unix jargon), 
or "batch" from a file or other input stream. Interactive input has fewer design rules 
than batch input, but still can be challenging to write well. (A fully featured input 
routine would really be an editor.) The basic design rules for batch input are: 

1. The format produced by the output routine can be input. 

2. Comments which begin with a "#" and continue to the end of the line are ignored. 

Writing interactive input has a number of traps. For example, the following code 
looks fairly respectable: 

int size = -1; 
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do { 
printf ("Input size: ") ; 

} while ( fscanf ( fp, "%d", &size) ! = 1 I I size <= 0 ) 

The idea here is that the loop is with the prompt Input size: is redisplayed until 
size is correctly scanned as input, and is positive. Note that the call to scanf () 
must take place before the test size <= 0 is evaluated. The variable fp is the .file 
pointer which indicates from which file f scanf ( fp, ... ) reads data. The function 
f scanf ( ) ignores leading and trailing blanks, so inserting leading or trailing blanks 
does not affect the code. 

However, what happens if you input the letter "x"? The f scanf ( ) routine would 
read the letter, realise that it cannot be part of a number, and put it back on the input 
stream. The result the loop is an infinite loop giving the user no chance to take control 
as nothing beyond the "x" is read. 

The way to avoid this is to use line-by-line input by means of fgets (). Also 
output to stderr instead of stdout means that output file re-direction does not 
prevent interactive input. Here is a better approach. 

int size; 

do { 
fprintf (stderr, "Input size: "); 
if ( fgets(line,MAXLINE,fp) == (char *)NULL ) 

error(E_INPUT,"in_foo"); 

} while ( sscanf(line, "%d", &size) != 1 II size < 0 ); 

The idea here is to input a line into a character array, and then scan the character array. 
Since every failure results in a new line being read, it cannot get stuck. Failure to read 
a line from the file results in an error being raised so end-of-file situations are caught. 

When interactively inputting arrays, it is a good idea to let the user (at the keyboard) 
know where you are in the array at all times. If the user makes a mistake, then re
display the prompt including the current position. Allowing the user to go back to 
correct mistakes, and then go forward again, helps to prevent the user from becoming 
too frustrated at the system. And what could be more frustrating than having hit the 
return key just after you realise that you made a mistake near the end of a large matrix 
with over a hundred entries? Here is how the code for inputting the entries of a vector 
allows for forward and backward motion, and printing out old values where necessary. 

for ( i = 0; i < dim; i++ ) 
do { 

redo: 
fprintf(stderr,"entry %u: ",i); 
if ( ! dynamic ) 

fprintf(stderr,"old %14.9g new: ",vec->ve[i]); 
if ( fgets(line,MAXLINE,fp) == NULL 
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error(E_INPUT,"ifin_vec"); 
if (*line -- 'b' II *line -- I B I) && i > 0 ) 

{ i--; dynamic = FALSE; go to redo; } 

if (*line -- 'f, II *line -- IF') && i < dim-1 ) 

{ i++; dynamic = FALSE; go to redo; } 

} while ( *line -- '\0' II 
sscanf(line, "%lf", &vec->ve[i]) < 1 ); 

By the way, there is only one other place (outside the input routines) where a goto is 
used. Note also that an end-of-file signal will result in an error being raised. 

The batch input parts of input routines are relatively easy to write. Comments can 
be skipped over by using skipj unk ( fp) ; and if an error in the input occurs, then 
an error should be raised. There is no need to try to re-read the input stream. The 
error handler may try to skip the input until some marker is reached, but this is up to 
the programmer. Apart from that, all that is necessary is to have enough f scanf ( ) 
calls to skip over the markers that are printed by the output routine. For example, 
fscanf(fp, "Foo: "); will skip over the header produced by the fout_foo() 
routine above. Ignoring the return value of f scanf ( ) for this purpose is acceptable 
- the result is a less temperamental input routine. 

8.2.6 Resizing 

Resizing objects is an operation that cannot be done to all data structures, such as those 
involving hairy user-defined objects and functional arguments. However, allocated 
arrays can be resized by means of the standard library function realloc ( ) . There is 
a macro RENEW(var, num, type) in matrix.h which calls realloc (),and 
also handles NULL values of var. For example, resizing a foo data structure could 
be done something like this: 

foo *foo_resize(my_foo, new_size) 
foo *my_foo; 
int new_size; 
{ 

} 

double *temp; 
if ( my_foo == (foo *)NULL ) 

return get_foo(new_size); 
temp = my_foo->array; 
/* actual re-sizing operation: */ 
temp= RENEW(temp, new_size, double); 
if ( temp == (double *)NULL ) /* check for failure */ 

error(E_MEM,"foo_resize"); 
my_foo->array = temp; 
my_foo->size = new_size; 
return my_foo; 
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Note that the result of RENEW () is checked immediately. Also, resetting the size is 
the last thing that is done. 

8.3 How to implement routines 

The basic rule that should be used is that the more operations that a user wants to use that 
are provided by the designer of the library, the less the user has to do and the less likely 
it will be that the user will make mistakes. Finding a good set of kernel operations for 
a particular data structure is a crucial problem in good library design. Sometimes, not 
only the obvious operations should be supplied, but also "support" operations should 
be implemented. (An example of the need for this can be seen with sparse matrices 
where there are support routines for setting up the column access paths.) The more 
complex the data structure, the more support routines you will probably need to write 
to be able to effectively and efficiently use that data structure. Efficiency will often 
lead to additional routines. For example, even though there are routines for adding 
vectors v _add ( ) , and for computing scalar multiples of vectors sv _ml t ( ) , it is 
more efficient to use the "multiply and add" routine v _ml tadd ( ) than to use the add 
and scalar multiply routines separately. 

8.3.1 Design for debugging 

Arguments should be checked for consistency, except possibly at the lowest level(s) 
of the library. At the lowest levels it may not be worth doing the checking and losing 
efficiency. But at almost all other levels which deal with more time-consuming and 
complex operations, it is well worth checking the arguments. You probably should 
check at least that 

1. none of the input arguments are NULL. 

2. the sizes of the arguments are compatible. 

For example, in a function foo_bar (), the following checking should be done: 

foo *foo_bar(my_fool, my_foo2, result_foo) 
foo *my_fool, *my_foo2, *result_foo; 
{ 

} 

/* check that operands are not NULL */ 
if ( my_fool == (foo *)NULL I I my_foo2 == (foo *)NULL ) 

error(E_NULL,"foo_bar"); 
/* check that they have compatible sizes */ 
if ( my_fool->size != my_foo2->size ) 

error(E_SIZES,"foo_bar"); 
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Detailed checking for self-consistency of a data structure is not usually necessary; if 
the programmer using the library is using it properly, then they shouldn't have much 
opportunity to mess up the data structure. Of course, the library_ shouldn't mess up 
the data structure either. If debugging using a good and thorough output routine is not 
sufficient to debug the library, then maybe a function that checks internal consistency 
should be written. However, the checking function would probably be most effective 
when used to help to debug the library than as an automatic argument check. 

An example of detailed argument checking that is not worthwhile is checking that 
a matrix is symmetric before a Cholesky factorisation. If detailed checking of this kind 
is wanted, then a checking routine would be written, such as a currently non-existent 
chk_symm { } function. 

There are a number of macros that have been written for error handling which 
work in conjunction with the function ev _err {} (short for "evaluation error") in the 
file err. c. The first is clearly the error { } macro, which calls ev _err { } with 
the _FILE_ and _LINE_ macros so that the file and line number where the 
error was raised can be printed out. The file err. c and the error-handling macros in 
matrix. h are independent of the rest of the library, and can be used separately. 

A tool that is useful for debugging is to use 

tracecatch{code_to_execute,"function"}; 

The effect of this macro is that if code_ to_ execute raises an error, then once the 
error is processed (which usually means printing out an error message) the error is 
re-raised at the place of the tracecatch {}. If the body of each function (excluding 
the usual initial argument checks) is enclosed in a tracecatch{}, then what is 
effectively a stack backtrace would be printed when an error occurs, indicating what 
functions were active when the error occurred. 

A related macro is catchall {code_to_execute, error_code}. This 
macro executes code_to_execute noonally, but if this raises an error, then 
error_code is executed. This can be used to print out particular infoonation that 
might be the cause (or result) of the error. You can put a line containing 

error{_err_num,"catchall"}; 

at the end of error_ code tore-raise the error, and continue the stack backtrace if 
desired. 

For more infoonation about designing for debugging, see §8.6 on debugging. 

8.3.2 Workspace 

In most Fortran libraries, routines using extra memory require workspac~ arguments 
to be passed to the routine. The programmer using the library l).as to pass a workspace 
array of a particular size (which the user has to work out before-hand). With C's 
memory allocation/de-allocation facilities this is not necessary in C, though sometimes 
it might be useful. 
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Passing workspace arrays adds to the complexity of using a function, aud is usually 
a headache for the user. Getting the workspace size right is also a way in which errors 
can occur. 

To avoid having to pass workspace arrays, there are two main approaches to making 
the necessary workspace available. The first is to allocate the workspace on entry (as 
soon as its size can be worked out) and deallocated on exiting the function. The second 
is to have a static local array which is first allocated and then reallocated. 

The first approach keeps the memory available only for as long as is necessary. 
This is more efficient in memory, but less efficient in time as the workspace has to be 
reallocated every time the routine is called. The second approach keeps the workspace 
memory, and so is less memory efficient, but is more time efficient. In one sense, 
the two methods are two extremes of a range of "compromises" between memory 
efficiency and time efficiency. 

Here's one way of setting up the second sort of internal workspace: 

foo *foo_bar( ••• ) 
{ 

} 

static double *wkspace = NULL; 
static int wksize = 0; 

new_wksize = 

if ( wkspace == (double *)NULL ) 
wkspace = (double *)calloc(new_wksize,sizeof(double)); 

else if ( wksize < new_wksize ) 
wkspace = (double *)realloc(wkspace, 

new_wksize,sizeof(double)); 
/* check results of calloc() or realloc() before use! */ 
if ( wkspace == (double *)NULL ) 

error(E_MEM,"foo_bar"); 
wksize = new_wksize; 

(Note that the initialisation ofwkspace and wksize are unnecessary as un-initialised 
static variables are initialised to zero or NULL.) This sort of approach is even more 
convenient with self-contained data structures which can be resized as needed, such as 
the vectors in the Meschach library: 

foo *foo_bar( ••• ) 
{ 

static VEC *wkspace = VNULL; 

new_wksize = ; 



206 CHAPTER 8. DESIGNING NUMERICAL LIBRARIES INC 

wkspace = v_resize(wkspace,new_wksize); 

} 

Both of these approaches for workspace have their limits. 
However, in Meschach, the "compromise" between memory and time efficiency is 

put in the hands of the user. This involves "registering" workspace arrays so that they 
can be freed on request by a call outside of the function where the static workspace 
variable is defined. Registering a static variable is easy: 

foo *foo_bar( .•. ) 
{ 

} 

static VEC *wkspace = VNULL; 

new_wksize = 
wkspace = v_resize(wkspace,new_wksize); 
MEM_STAT_REG(wkspace,TYPE_VEC); 

Note that you can only register static variables. If you try to register an automatic 
variable, the program will most likely crash. There is no way that the variable can be 
checked for whether it is static or not. 

There is a "workspace group number" or "mark" that must be set before (in the 
dynamic sense, not necessarily in the code sequence) a workspace variable is registered. 
When a static workspace variable is registered, it is "marked" as belonging to the current 
workspace group or "mark". This "mark" can be set by, for example, 

mem_stat_mark(l); 

This call is usually made in the main calling routine before any routines usipg static 
workspace variables are called. The "mark" can be changed by calling 
mem_stat_mark () with a new "mark" or "group number". All of the static 
workspace variables registered with a particular "mark" can be deallocated and their 
memory freed with acallmem_stat_free (mark}. Note thatthisunsets the "mark". 

Examples of how the mem_stat_ .. () routines work are in chapter 2. 

8.3.3 Incorporating user~defined types into Meschach 

Meschach 1.2 provides a number of facilities to track memory usage and to control the 
allocation and deaUocation of static workspace arrays. User-defined data structures 
can be incorporated into these mechanisms so that it can track memory usage and free 
up workspace variables for your own data structures. 

Since related data structures are often defined together, the information about the 
data structures is passed to the mem_info_ .•. ()and mem_stat'- .•• () routines 
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by a collection of arrays containing the names of the types, the .• _free () functions 
for these data structures, and an array of long's for storing information about the 
amount of memory used by the various data structures. This collection of arrays 
is called a list, and it describes a family of types. Each family of types known to 
Meschach has its own list number; the family of standard Meschach types has zero as 
its list number. 

Here is an example taken from memtort • c. First there are the definitions: 

/* the number of a new list */ 
#define FOO_LIST 2 

I* type numbers *I 
#define TYPE_FOO_l 1 

#define TYPE_F00_2 2 

I* new types */ 
typedef struct { 

int dim; 
int fix_dim; 
Real (*a) [10]; 

} FOO_l; 

typedef struct { 
int dim; 
int fix_dim; 
Real (*a)[2]; 

} F00_2; 

The arrays which contain the information are: 

char *foo_type_name[] = { 

"nothing", 
"FOO_l", 
"F00_2" }; 

#define FOO_NUM_TYPES \ 
(sizeof(foo_type_name)/sizeof(*foo_type_name)) 

int (*foo_free_func[FOO_NUM_TYPES]) () = { 
NULL, 
foo_l-'-free, 
foo_2_free }; 

static MEM_ARRAY foo_info_sum[FOO_NUM_TYPES]; 
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Note that the type number TYPE_FOO_l and TYPE_F00_2 correspond to the position 
their type names and . . _free () functions have in the arrays. This list of types is 
made known to the Meschach routines by the call 

mem_attach_list(FOO_LIST, FOO_NUM_TYPES, foo_type_name, 
foo_free_func, foo_info_sum); 

if { ! mem_is_list_attached(FOO_LIST) ) 
printf("Error: list FOO_LIST is not attached\n"); 

which should be at the beginning of the main ( ... ) routine. 
Knowing that certain types exists is a start, but to track memory usage, the routines 

that perform memory allocation, deallocation and resizing need to keep the Meschach 
system informed about changing memory usage. For example, in foo_1_get (): 

FOO_l *foo_l_get(dim) 
int dim; 
{ 

} 

FOO_l *f; 

if ((f = (FOO_l *)malloc(sizeof(FOO_l))) --NULL) 
error(E_MEM,"foo_l_get"); 

else if (mem_info_is_on()) 
{ 

} 

mem_bytes_list(TYPE_FOO_l,O,sizeof(FOO_l),FOO_LIST); 
mem_numvar_list(TYPE_FOO_l,l,FOO_LIST); /* 1 more*/ 

f->dim = dim; 
f->fix_dim = 10; 
if ( (f->a = (Real (*) [10]) 

malloc(dim*sizeof(Real [10]))) --NULL) 
error(E_MEM,"foo_l_get"); 

else if (mem_:info_is_on()) 
:mem_bytes_list(TYPE_FOO_l,O, 

dim*sizeof(Real [10]),FOO_LIST); 

return f; 

The routine that actually notifies the Meschach system about the change in the 
amount of memory usage is mem_bytes_list (), and the routine that notifies 
Meschach about the number of allocated structures is mem_numvar_list (). For 
:mem_bytes_list () the first argument is the type number, the second is the old size 
in bytes, the third is the new size in bytes, and the last parameter is the list number of 
the family of types. It is not important that the absolute values of old and new sizes 
are correct, other than being non-negative; rather it is the difference between them 
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that is important. For mem_numvar_list () the change in the number of allocated 
structures is passed. 

The corresponding .. _free () routine also needs to call mem..__,byte_;l.ist (): 

int foo_l_free(f) 
FOO_l *f; 
{ 

} 

if ( f != NULL) { 

} 

if (mem_info_is_on()) 
{ 

mem_bytes_list(TYPE_FOO_l, 
sizeof(FOO_l)+f->dim*sizeof{Real [10]),0L,2); 

mem_numvar_1ist(TYPE_F00,..:1,2); /* 1 less *I 
} 

free{f->a); 
free(f); 

return 0; 

Similarly, •• _resize () routines need to call mem_bytes_list () if there is any 
actual memory allocation, deallocation or resizing. If the argument is NULL, then the 
main •• _get ( ) routine should be called; otherwise there is no change in the number of 
FOO_l structures, and so there is no need to call mem_num.var_list (). Merely re
arranging the internal structure doesn't have to be reported viamem_bytes_list (). 

User-defined data structures can be used as static workspace arrays, just like the 
standard Meschach data structures. They can be registered as workspace variables just 
like the standard Meschach data structures, except that the list number of the family of 
types needs to be given, and is positive. For example, 

hairyl( •.• ) 
{ 

} 

static FOO_l *f; I* initially NULL */ 

if ( ! f } f = foo_l_get(); /* allocate iff NULL*/ 
I* ... or could use a .. _resize{) routine*/ 
mem_stat_reg_list(&f, TYPE_FOO_l, FOO_LIST); 

These static workspace variables will be deallocated using a call to 
mem_stat_free~list (). Note that unlike the MEM_STAT_REG () macro, you 
have to explicitly take the address off; MEM_STAT_REG () is a macro. 

This is an example of how to use this to free f: 

main ( ••• ) 
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{ 

} 
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mem_stat_mark(l); 

for ( i = 0; i < 1000; i++ 
hairyl( •• ~); 

I* now free up FOO_l and F00_2 workspace structures *I 
mem_stat_free_list(l,FOO_LIST); 
I* now free up standard Meschach workspace structures *I 
mem~stat_free(l); 

I* which is equivalent to: mem_stat_free_list(l,O); *I 

If you have a family of types, where creating one type involves creating another in 
the same family, care should be taken to avoid double counting. In this case a "main
type" contains a pointer to a "sub-type", say. There are two ways around this: one is 
to call mem_bytes_list () and mem_numvar_list () only for those parts of the 
data structure not in the "sub-type". The other, more complex approach, is to infmm 
the routines that create the "sub-type" that it is created as part of the "main-type", and 
to account for all of the memory and structure allocation as part of the "main-type". 
This second approach is only really of use if the "sub-type" is understand as being only 
of use as part of the larger "main-type". This approach is used in Meschach for sparse 
rows in sparse matrices. Stand alone sparse rows can be created, destroyed, etc., but 
are almost never used in this way. 

8.3.4 Output and object resizing 

While it is quite possible to create a new data structure and allocate new memory for 
every new result, this reduces the efficiency of the algorithms and rapidly loses memory. 
As there is no garbage collection in C, the memory that is "lost" is unrecoverable. Also, 
numerical analysts and applications people are often working with large problems on 
the limits of the machine( s) that they use. So it is rather important that the programmer 
using a library will want control over memory allocation, or at least over the allocation 
of the large objects. 

The standard used in Meschach is that whenever a large or composite object results 
from a computation, there is an extra parameter in which the result is to be put. As 
before, this parameter is a pointer to a data structure. If this pointer is NULL, then the 
output data structure is allocated and initialised. This allows for the creation of the 
output when the user desires, but still gives control over memory allocation. 

If the output object is not NULL, but is not of the correct size, then a resizing 
function should be used. An example of this might be: 

foo *foo_bar(my_fool, my_foo2, out_foo) 
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foo *my_fool, *my_foo2, *out_foo; 
{ 
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if ( out_foo == NULL I I out_foo->size != my_fool->size 
out foo = foo_resize(out_foo, my_fool->size); 

} 

Thecalltoget_foo () is notnecessaryiftheresizingfunction(here foo_resize ()) 
allocates and initialises a new foo data structure if it is passed a NULL. 

If you cannot write a resizing function, then raise an error if the sizes are incom
patible. In such a case, it is better to get the user to create the thing with the right size 
to start with. The alternative approach to that of creating a new object when the output 
data structure has the wrong size will result in "memory leaks" with code such as 

foo *my_fool, *my_foo2, *out_foo; 

out_foo = f,oo_bar(my_fool,my_foo2,out_foo); 

If out_foo is the wrong size, then creating a new data structure will result in the 
original out_foo data structure being lost, and being replaced by a newly created 
data structure. This memory would be lost until the program terminates. 

To repeat: the output parameter should be resized if it is the wrong size, or raise 
an error. 

8.4 User-defined functions 

When data structures of a conventional sort cannot explicitly and easily cope with the 
complexities of a problem, it is usual for programmers to use functional parameters -
especially numerical and scientific programmers. In C these are not difficult to use: 
just remember that you are actually passing pointers to functions, rather than the code 
itself! 

A standard example used is working out the definite integral 

1b f(x)dx 

using a quadrature (integration) rule of some kind. The function that computed the 
integral might look like this: 

double integrate(f, a, b, n) 
double (*f)(); /*function to integrate*/ 
double a, b; /* lower and upper limits */ 
int 
{ 

n; 

int i; 

/* number of sub-intervals to use */ 
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double sum; 

sum+= (*f) (a+i*(b-a)ln); 

return sum/n; 
} 

Then integrate(sin, 0.0, PI, 100) would give an approximation to 
f01r sin( x) dx. If you want to integrate a particular function, then you have to write 
it yourself. So far, so good. However, the function f in integrate () must be a 
function of only one variable- the variable that is integrated. Usually functions have 
parameters, and usually those parameters are changed from run to run, or call to call. 
These parameters are outside this model of how f works as a function. 

The standard way of dealing with this in C is to set up some global variables 
containing the parameters and then modifying them as necessary from run to run, or call 
to call, of integrate (). This is not a very good way of dealing with parameters: as 
a general rule, the more global variables, and "pathological" (i.e. hidden) connections 
between routines, the more unpredictable a piece of code becomes. 

The alternative that we would recommend here is to allow for an extra parameter 
in f of the type void *. This could be a pointer to a struct containing the relevant 
parameters, or even much larger, more complex, data structures. The code for the 
integration function would then look like: 

double integrate2(f, fparams, a, b, n) 
double {*f) 0 i /* function to integrate *I 
void *fparams; I* extra parameters for f *I 
double a, b; I* lower and upper limits *I 
int n; I* number of sub-intervals to use *I 
{ 

sum+= (*f) (fparams,a+i*(b-a)/n); 

} 

Then, for example, for a general quadratic f ( x) = ax2 + bx + c, the following 
code could be used: 

struct PQ { double a, b, c; }; 

double quadratic(params, x) 
struct PQ *params; 
double x; 
{ /* using Horner's nested multiplication scheme */ 

return x*(params->a*x + params->b) + params->c; 
} 
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{ 

This could be used in something like the following: 

struct PQ par_quad; 

par_quad.a = 5.0; 
par_quad.b = -3.7; 
par_quad.c = 101.433445; 
printf ("Integral = %g\n", 
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integrate2(quadratic, (void *)&par_quad,O.O,l.O,lOO)); 

} 

What if you want to integrate a function that really is just of one variable, with no 
additional parameters? At the cost of an extra layer of function calls it can be done 
using 

double apply{f, x) 
double (*f)(), x; 
{ return (*f) (x); } 

so that J011" sin(x) dx can be computed (approximately) by the call 

int_val = integrate2(apply, sin, 0.0, PI, 100); 

Ideally, both styles should probably be implemented, but the additional flexibility 
in having a void * parameter for functional parameters is well worth the effort of 
writing them into a library. 

This approach is an alternative to the "reverse communication" path that is taken in 
most Fortran libraries. The disadvantage of reverse communication is the complexity 
needed to handle a routine that uses reverse communication. There are possibly 
some particularly complex things for which reverse communication is still the best 
technique. However, implementing a number of separate routines which act on the 
same data structure might still be a more convenient way of doing things than reverse 
communication. 

8.5 Building the library 

Building up a library of routines to be generally useful, or even to solve a single 
problem, usually takes a few steps. The best advice here is summed up in the term 
"incremental testing". As routines are added to the collection that forms your library 
or problem solver, they should be tested. There is very little more disheartening than 
to spend a week trying to find an unexpected bug buried somewhere deep in the code. 
Keep the argument checking and debugging tools (e.g. print-out routines) around
they are still useful. 
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Build new data structures as you need them, and test them and their routines before 
going on to the next level. Even if you decide later that you would prefer to use a 
different way of doing the sub-problems, the interface to a modified data structure 
should probably stay pretty much the same as for the original data structure used. Use 
previous (debugged) data structures and their routines. This prevents a lot of errors 
and simplifies programming; they start to work more like building blocks than isolated 
bits of code. For example, if you are a control systems designer, you might want to 
have a "rational function" data structure representing ratios of polynomials: 

P(x) 
R(x) = Q(x). 

Each of the polynomials P( x) and Q( x) can be represented by vectors of coefficients. 
The data structure for R( x) might be 

typdef .struct { int deg_P, deg_Q; VEC *P, *Q; } rational; 

There is some redundancy in this data structure since deg_P should be one more than 
the dimension of the vector P. Whether or not this degree of redundancy is acceptable 
will depend on whether users of the library will want to have direct access to deg_P 

and deg_Q, and whether routines are written to rely on deg_P and deg_Q or P- >dim 
and Q->dim. 

Before defining the operations to be performed on objects of type rational, the 
basic operations on polynomials should be defined: adding, subtracting, multiplying 
and normalising polynomials; synthetic division of polynomials, and evaluating a 
polynomial at a real or complex value of x. Some of these can be defined in terms of 
operations on VEC's. Then the operations on rational functions can be defined in terms 
of the polynomial operations. 

8.5.1 Numerical aspects 

An important issue in numerical computations is that of the accumulation and mag
nification of roundoff error. That is, the computations should be numerically stable, 
and avoid accumulating or magnifying roundoff errors. While it can, in general, be 
very difficult to predict the effects of roundoff error, some situations are more likely 
to lead to bad results than others. For example, polynomials can be rather badly 
behaved in this regard. An example can be found in K. Atkinson's Introduction to 
Numerical Analysis, 1st Edition, pp. 80-84 (1979). The designers of MATLAB's 
polynomial root finding algorithm in fact avoid polynomials altogether in their ap
proach: they find instead the eigenvalues of the companion matrix of the polynomial 
p(x) = x" + a,_lx"-1 + · · · + a1 x + ao, 
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Since rootfinding of polynomials can be badly conditioned, setting up the companion 
matrix· would lead to an equally ill conditioned eigenproblem. However, generally 
eigenproblems are apparently less likely to suffer such ill conditioning as extreme as 
for polynomial rootfinding. A control system designer might take this as a hint and deal 

with control systems in [ ~ ~] matrix form, using companion matrices to represent 

polynomial systems. 
A rule of thumb that seems to work for a great many applications for keeping good 

numerical stability, is to keep intermediate computations in a form close to the form of 
the original data. Elaborate transformations might give exactly equivalent problems, 
but the introduction of noise and rounding errors can make some methods far better or 
far worse than others. 

There are a number of hard-won rules which numerical analysts have discovered 
over the years (and re-discovered far too many times!). In relation to matrix computa
tions the oldest and most important one is: 

Don't compute the inverse of a matrix if all you want 
is to solve some equations. 

Computing the inverse of a matrix does not make any of the subsequent calculations 
for solving a system of equations faster than using its LU factors, the accuracy is slightly 
worse usually, and it takes longer to compute the inverse in the first place. For sparse 
matrices it is even more important. The LU factors of a sparse matrix are usually 
fairly sparse, but the inverse is almost never sparse for practical problems. Forming 
the inverse of alarge sparse matrix may be an impossible undertaking on a machine, 
even though solving the system of equations can be accomplished quite quickly on that 
same machine. 

Another problem that one would do well to avoid is "finding all eigenvectors of a 
large matrix". Finding all the eigenvalues of a large symmetric matrix is not an unrea
sonable task (use the Lanczos routines). Generating the eigenvectors can then often be 
done using inverse iteration (seeK. Atkinson's An Introduction to Numerical Analysis, 
1st Edition, pp. 548-553 (1979)) on demand for large sparse matrices. Remember: 
just storing all the eigenvectors of a 10 000 x 10 000 matrix will take up 800Mbyte -
not a small amount on any current computer! 

8.6 Debugging 

While the error ( ) macro will save many types of errors, it cannot save you from all 
of them. If your program is crashing, then put 

setbuf(stdout, (char *)NULL); 

at the start of your main () program (at least on Unix systems) to ensure that you are 
seeing all your output. Use liberal printf () and •• _output () calls to check the 
values of your data types, and to "checkpoint" your program. This also means you 
should write •• _output () routines for any new data structures that you define. 
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Potential bugs can sometimes be spotted by automatic tools, such as lint-on 
Unix machines, which can detect things like unreachable code, unportable pointer 
conversions, and function argument incompatibilities for non-ANSI C code. The GNU 
compiler gee can detect potential portability and related problems in a similar wayto 
lint if you use the -Wall option (which reports all warnings). 

Try using open-ended test programs so that you can input any object of a particular 
data structure, and checking the result. Avoid tests which only give you a "yes/no" 
answer. If it got the answer by chance, then it has a 50% chance of fooling you. 
Compute residuals. For systems of equations this means printing out IIAx - bll; 
for eigenvalues/eigenvectors this means IIAx- >.xll/llxll; for solving f(x) = 0 this 
ineans printing II f ( x) II; for least squares problems this means printing II AT (Ax - b) 11. 
Whatever your problem is, try to compute sufficient information that it is easy-to verify 
the complete computed results. For optimisation problems, this would mean checking 
the first order necessary conditions at least. Use the routines that you have available, 
not just for doing the computations, but also for helping you to do the verification as 
well (such as v _norm2 ( ) ). 

If a program has a problem, try to find out where the problem is. If the program 
crashes at an unknown point for some reason, put in checkpoints in you main program. 
Once you've narrowed down the range in which the error occurs there to a single 
statement, the chances are that it will be a function call. "Open up" that function, 
putting in checkpoint statements, and printing any relevant quantities until the problem 
can be located in that function, continuing until the problem is localised. 

8.6.1 Memory allocation bugs 

These bugs occur when the memory allocation heap has been corrupted. This can occur 
when an allocated array is written to at an invalid location, or free () is called with 
an invalid address (that is, an address that wasn't returned by malloc (), calloc () 
or realloc () ). Either way the memory heap's headers are corrupted. The results 
of memory heap corruption can be unpredictable, sometimes resulting in the program 
crashing, sometimes resulting in apparently "intermittent" bugs. The rules given above 
for localising bugs don't work for these sorts of bugs, since the corruption is not evident 
until a call to malloc () or free () etc. Most programmers could use some help 
with these sorts of memory heap corruption bugs. 

As of version 1.2 of Meschach, there are some built-in routines for keeping a 
watch on memory usage which are mem_info_on(), mem_info_file () and 
mem_info_type (). These routines respectively turn the ''mem_info_ ••• "system 
on or off, printout a summary of the memory used in Meschach data structures to a file 
or stream, and return the amount of memory used for a particular Meschach data type. 
They can be used as follows to check for memory leaks, here in a function hairy { } : 

main() 
{ 

mem_info_on(TRUE); 
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} 

hairy ( .... ) ; 
mem_info_f(stdout); /*print out summary*/ 
printf ("Memory used for vectors by hairy(): %d\n", 

(int)mem_info_type(TYPE_VEC)); 
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If you get negative amounts of memory in use then something has gone wrong. If 
static workspace arrays are used you may need to use the MEM_STAT_REG () and 
mem_stat_ ... () routines. The routine mem_stat_dump () can also be useful in 
determining the status of workspace variables. 

If you suspect that there is a subtle memory over-writing error, then you should 
use a package that replaces the standard (fast) memory allocation package malloc () 
and free () etc, with something like the public domain package by Conor P. Cahill 
(uunet address: uunet! virtech! cpcahil). This provides a drop-in replacement 
for the standard library routines: compile your program as in 

cc -o my_prog my_prog.c ...... meschach.a libmalloc.a -lm 

and use his malloc_chain_check ( 0) to check for corruption of the malloc () 
heap. There may be other "debugging" memory allocation/deaHocation packages that 
you have access to. 

There are also tools that come with the GNU C compiler for tracking bugs that 
affect the memory heap. 

These are also useful tools to determine if your program has a "memory leak" 
that results in memory being allocated and then thrown away, although mem_info () 
should be enough to track down memory leaks. 

8.6.2 If an else fails 

Beyond these things, there are two ways of dealing with these problems. 

1. Look at the source code. No-one's code is perfectly readable but we believe that 
it is not too difficult to follow, especially for experienced C programmers. 

2. Contact us. This is best done by e-mail; a current e-mail address is 

david.stewart@anu.edu.au 
zbigniew.leyk@anu.edu.au 

We cannot guarantee to even look at your problem as we are not employed as pro
grammers, but as academic mathematicians. Our e-mail addresses are also subject to 
change without notice. 
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8. 7 Suggestions for enthusiasts 

There are a number of areas which seem to be particularly ripe for additions. Porting 
to C++ and making use of classes and operator overloading in itself would be a useful 
project. 

Sets can be implemented a number of ways using permutations and/or integer 
vectors. 

Some extensions that have been considered (and maybe something will be released 
eventually) include linear programming extensions, ODE solvers, and maybe some 
nonlinear equation solvers. But there is much more that can be done. One item 
conspicuously absent are sparse matrix re-ordering routines. A good minimum degree 
algorithm should be implemented for Meschach. 

8.8 Pride and Prejudice 

This section is about our own personal beliefs and prejudices. These opinions are 
nobody's but our own. If you find them obnoxious or frivolous, remember, you have 
been warned! 

8.8.1 What about Fortran 90? 

We might have started thinking about it if it had been around when we started on this 
project six years ago. As it is, we still haven't seen a Fortran 90 compiler, although we 
have seen a very near miss in the Connection Machine Fortran. 

Learning Fortran 90, especially the parts of interest to us, would involve learning 
a whole new language. When it comes to pointers, dynamic memory allocation and 
de-allocation, structures/records etc, it is a completely new language. We doubt that 
many future users of Fortran 90 will use the full power of the language for a good 
many years yet. And then, the people who do make full use of it will be people who 
have programmed before inC, C++, Ada, Modula-2 (or perhaps Modula-3) and the 
like. They will know the benefit of using these advanced features. 

Porting it to Fortran 90 might be a possibility someday. We don't want to do that 
job. Porting to C++ would be a much more useful task in the near future. (Meschach 
has already been used within a C++ program.) 

8.8.2 Why should people writing numerical code care about good soft
ware? 

Numerical analysts and scientists often write unreadable programs. 
One of us remembers trying to translate Bill Gear's DIFSUB program from Fortran 77 

to C. And failed. He got lost in the spaghetti. So he looked at his description of what 
it was supposed to do, and implemented that. And the result worked. 

Quite a few older programmers find this situation normal or even desirable, almost 
as a sort of job security, or a sense of machismo: "Real programmers don't document 
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their code; if it was hard to write, it should be hard to read." It wasn't academic politics 
that made this attitude unacceptable in any modern computer science department, but 
practical experience combined with the urgency of the "software crisis" of the late 
sixties and seventies. This "software crisis" still hasn't gone away; big, complex 
systems (such as commercial and military aircraft) rely more than ever on good, bug
proof software. 

On a more personal level, not being a masochist, we much prefer being able to 
write programs and modify them without having to remember to juggle a dozen flags, 
set and reset global variables, and so on. Modifying programs is the nature of research. 
You need to be able to modify the code to do things in different, but meaningful, ways. 
Trying to do this without helpful software underneath is painful; usually we find that 
the same underlying operation needs to be re-implemented for the nth time. 

Routines which are general purpose, and are designed with flexibility in mind, make 
an enormous difference when it comes to programming and designing new algorithms. ,, 
This is why people use numerical libraries. And that is why we wrote this library. The ' 
state of the art moves on, and instead of waiting for one's favourite numerical library to 
be updated with,spmething you would like to see, this library enables you to implement 
new algorithms. The code is there for inspection, use and modification. (But, please, 
don't modify old routines unless they have bugs in them- real bugs- but modify 
the code to create new routines.) In doing so, you can provide a platform for further 
development by yourself or others. Thus the computer can be used not just to crunch 
numbers, but also to improve your "personal productivity" as the advertisements say. 
After all, if computers can't make life easier, or more productive, what good are they? 


