
Chapter 7

Installation and copyright

7.1 Installation

There are several different forms in which you might receive Meschach. To provide
a shorthand for describing collections of files, the Unix convention of putting alterna
tive letters in [•••] will be used. (So, fred[123] means the collection fred1,
fred2 and fred3.) Meschach is available over Internet/AARnet via netlib, or at
the anonymous ftp site thrain. anu. edu. au in the directory publmeschach.
There are five .shar files: meschach[01234] .shar (which contain the library
itself), of which meschachO . shar contains basic documentation and machine de
pendent files for a number of machines. Of the meschach [1234]. shar files, only
meschach [12] • shar are needed for the basic Meschach library; the third • shar
file contains the sparse matrix routines, and the the fourth contains the routines for
complex numbers, vectors and matrices. There is also this README file that you
should get directly, or extract it from meschachO. shar.

If you need the old iterative routines, the file oldmeschach. shar contains the
files conj grad. c, arnoldi. c and lanczos. c.

To get the library from netlib,

mail netlib@research.att.com
send all from clmeschach

There are a number of othernetlib sites which mirror the main netlib sites. These include
netlib@ornl.gov (Oak Ridge, TN, USA), netlib@nac.no (Oslo, Norway),
ftp. cs. uow. edu. au (Wollongong, Australia; ftp only), netlib@nchc. edu. tw
(Taiwan), elib. zib-berlin.de (Berlin, Germany; ftp only). (For anonymous ftp
sites the directory containing the Meschach • shar files is pub I net 1 ib I c lmeschach
or similar, possibly depending on the site~)

Meschach is available in other forms on thrain. anu. edu. au by ftp in the
directory publmeschach. It is available as a. tar file (mesch12a. tar for version
1.2a), or as a collection of • shar files, or as a • zip file. The • tar and • zip versions
each contain the entire contents of the Meschach library.

181

182 CHAPTER 7. INSTALLATION AND COPYRIGHT

To extract the files from the • shar files, put them all into a suitable directory and
use

sh meschachO.shar
sh meschach1.shar
sh meschach2.shar
sh meschach3.shar
sh meschach4.shar
sh meschachS.shar

to expand the files. (Use one sh command per file; sh *. shar will not work in
general.)

For the • tar file, use

tar xvf mesch12a.tar

and for the • zip file use

unzip mesch12a.zip

(Or use pkunzip mesch12a. zip if you have pkunzip.)
On a Unix system you can use the configure script to set up the machine

dependent files. The script takes a number of options which are used for installing
different subsets of the full Meschach. For the basic system, which requires only
meschach[012] .shar, use

configure
make basic
make clean

For including sparse operations, which requires meschach [0123]. shar, use

configure --with-sparse
make sparse
make clean

For including complex operations, which requires meschach [0124] . shar, use

configure --with-complex
make complex
make clean

For including everything, which requires meschach [012 3 4] • shar, use

configure --with-all
make all
make clean

To compile the library in single precision, add the --with-float option to configure
(with Real equivalent to float); e.g. use

7.1. INSTALLATION

eonfigure· --with-all --with~float
make all·
make clean

183

Some Unix-like systems may have some problems with this due to bugs or incom
patibilities in,various parts of the system. To check this use make torture and run
torture. In this case use the machine-dependent files from the ina chines directory.
(This is the case for RS/6000 machines, the -o switch r.esults in failure of a routine in
schur ~c. Compiling without the -0 switch results in correct results.)

If you want to use the GNU gee compiler, use the configgnu configuration
script. This works just like the configure script, except that it will use gee in
preference to other compilers. ··

If you have problems using configure, or you use a non:-Unix system, check the.
MACHINES directory (gener~ted by meschachO . shar) for your machine~ operating
system and/or compiler. Save the machine dependent files makefile, mac:;hine. c
and machine • h. Copy those files from the directory for your machine to the directory
where the source code is.

To link into a program prog. c, compile it using

cc -o prog_name prog.c ••• (source files) ••. meschach.a -lm

This code has been mostly developed on the University of Queensla..'ld, Australia's
Pyramid 9810 running BSD4.3. Initial development was on a Zilog Zeus Z8000
machine running Zeus, a Unix workalike operating system. Versions have also been
successfully used on various Unix machines including Sun 3's, mM RT's, SPARe's
and an ffiM RS/6000 running AIX. It has also been compiled.on an ffiM AT clone
using Quick C. It has been designed to compile under either Kernighan and Richie,
(Edition 1) C and under ANSI C. (And, indeed, it has been compiled in both ANSI C
and non-ANSI C environments.)

7.1.1 Installation on non-Unix systems

First look in the machines directory for your system type. If it is there, then copy
the machine dependent files machine. h, makef i 1 e (and possibly machine . c) to·
the Meschach direc~ory ..

If your machine type is not there, then you will need to either compile "by hand",
or construct your own .makefile and possibly ;machine. h as well. The machine
dependent files for various systems should be used as a starting point, and the "vanilla"
version of machine • h should be used. Information on the machine-dependent files
follows in the next three subsections.

On an ffiM PC clone, the source code would be on a floppy disk. Use

xcopy a:* meschach

to copy it to the meschach directory. Then cd meschach, and then compile the ·
source code. Different ·compilers on MSDOS machines will require different· instal
lation procedures. Check the directory meschach \machines for the appropriate ·

184 CHAPTER 7. INSTALLATION AND COPYRIGHT

"makefile" for your compiler. If your compiler is not listed, then you should try
compiling it "by hand", modifying the machine-dependent files as necessary.

7.1.2 makefile

This is setup by using the configure script on a Unix system, based on the
makef i le. in file. However, if you want to modify how the library is compiled, you
are free to change the makefile.

The most likely change that you would want to make to this file is to change the
line

CFLAGS = -0

to suit your particular compiler.
The code is intended to be compilable by both ANSI and.non-ANSI compilers. To

achieve this portability without sacrificing the ANSI function prototypes (which are
very useful for avoiding problems with passing parameters) there is a token ANSI_C
which must be #define'd in order to take full advantage of ANSI C. To do this you
should do all compilations with

#define ANSI_C 1

This can also be doneat the compilation stage with a -DANSI_C flag. Again, you will
have to use the -DANSI_C flag or its equivalent whenever you compile, or insert the
line

#define ANSI_C 1

in machine • h, to make full use of ANSI C with this matrix library.

7.1.3 machine.h

Like makefile this is normally set up by the configure script on Unix machines.
However, for non-Unix systems, or if you need to set some things "by hand", change
machine.h.

There are a few quantities in here that should be modified to suit your particular
compiler. Firstly, the macros MEM_:COPY () and MEM_ZERO () need to be correctly
defined here. The original library was compiled on BSD systems, and so it originally
relied on bcopy () and bzero () .

In machine. h you will find the definitions for using the standard ANSI C library
routines:

1*--------------------ANSI C--------------------*1
#include
#include

<stddef.h>
<stri:ng.h>

#define MEM_COPY(from,to,size) memmove((to), (from), (size))
#define MEM_ZB,:RO (where, size) memset ((where},' \0', (size).)

7.1. INSTALLATION 185

Delete or comment out the alternative definitions and it should compile correctly.
The source files containing :m.e:mmove () and/or memset () are available by anony
mous ftp from some ftp sites (try archie to discover them). The files are usu
ally called me:rmnove. c or memset. c. Some ftp sites which currently (Jan '94)
have a version of these files are munnari. oz. au (in Australia), ftp. uu. net,
gatekeeper. dec. com (USA), and unix. hens a. ac. uk (in the UK). The di
rectory in which you will find memmove. c and memset . c typically looks like
•.. /bsd-sources/lib/libc/ ...

There are two further machine-dependent quantities that should be set. These
are machine epsilon or the unit roundoff for double precision arithmetic, and the
maximum value produced by the rand () routine, which is used in rand_ vee () and
rand_mat (). The current definitions of these are

#define MACHEPS 2.2e-16
#define MAX_RAND 2.147483648e9

The value of MACHEPS should be correct for all IEEE standard double precision
arithmetic.

However, ANSIC's <float .h> contains #define'd quantities DBL_EPSILON

and RAND_MAX, so if you have an ANSI C compiler and headers, replace the above
two lines of machine • h with

#include <float.h>
I* for Real == float */
#define MACHEPS DBL_EPSILON

#define MAX_RAND RAND_MAX

The default value given for MAX_RAND is 231 , as the Pyramid 9810 and the SPARC 2's
both have 32 bit words. There is a program macheps. c which is included in your
source files which computes and prints out the value of MACHEPS for your machine.

Some other macros control some aspects ofMeschach. One of these is SEGMENTED

which should be #define'd if you are working with a machine or compiler that
does not allow large arrays to be allocated. For example, the most common mem
ory models for MS-DOS compilers do not allow more than 64Kbyte to be allocated
in one block. This limits square matrices to be no more than 90 x 90. Inserting
#define SEGMENTED 1 into machine. h will mean that matrices are allocated a
row at a time.

7 .1.4 machine.c

The core routines in machine • c as they presently are, are adequate on scalar pro
cessors. However, they are not designed to make best use of the recent super-scalar
processors, or of vector processors. If you wish to make best use of these features of
your machine in using the matrix library, then you should re-write these appropriately,
possibly in assembly language. This has already been done to some extent, using
"loop-unrolling":

186 CHAPTER 7. INSTALLATION AND COPYRIGHT

sumO = suml = sum2 = sum3 = 0 • 0;

len4 = len I 4;
len = len % 4;

for (i = 0; i
{

sumO +=
sum.l +=
sum2 +=
sum3 +=

}

< len4; i++)

dp1[4*i]*dp2[4*i];
dp1[4*i+l]*dp2[4*i+l];
dp1[4*i+2]*dp2[4*i+2];
dp1[4*i+3]*dp2[4*i+3];

sum = sumO + suml + sum2 + sum3;
dpl += 4*len4; dp2 += 4*len4;

for (i :b· .••. 0; i < len; i++
sum+= dpl[i]*dp2[i];

Itmayseemoddtousedpl [i] *dp2 [i] instead'(*dpl++) * (*dp2++) inthequest
for speed, but optimising compilers cannot be trusted to do what you intend. The ex
pression dpl [i] *dp2 [i] was recognised for what it is, but (*dpl++) * (*dp2++)
was not, by the RS/6000 optimising compiler. This may be a matter of taste by the
compiler writers, so check it out on your own system before making any terminal
decisions about what is fastest on your machine.

Also note that the _zero_ () routine is defined from machine. c. This uses
the MEM_ZERO () macro in ma.chine. h in the standard release. However, if the
double precision zero is not represented by a bitstring of zeros, the body of this routine
would need to be replaced by

for (i = 0; i < len; i++
dp [i] = 0. 0;

These are the only routines that need be modified, as essentially all other routines
rely on these routines and on the MEM_COPY () macro, to provide adequate speed.

Such a re-writing effort may be worthwhile on, say, the i860 processor, where the
speed of computing inner products in assembly (using special pipeline instructions)
is an order of magnitude faster than general arithmetic operations. (See "Personal
supercomputing: with the Intel i860" by Stephen S. Fried, Byte, 16, no. 1, Jan 1991,
pp. 347-358 for an indication of possible performance;) Better use of the IBM RS/6000
super-scalar architecture has been obtained by re-writing some of the r.outines in
machine. c. The speed of the core inner product routine on a 20MHz RS/6000 320
went from near the LINPACK mting of 7Mflops to about 20Mftops, half the theoretical
peak speed of 40Mflops for a multiply and add each clock cycle.

7.2. BACKWARD COMPATIBILITY 187

7.2 Backward compatibility

As with any piece of software that is being modified, there is the problem of being able
to use programs written for older versions of the library. This is especially important
with Meschach 1.2 as the naming scheme has been made much more uniform and
self-consistent. Names such as get_vec () (allocate vector) and cp_vec () (copy
vector) have been changed to v _get () and v _copy () to be more consistent with
v _add () (add vectors) and m_ml t () (multiply matrices).

The cost of this consistency is inconsistency with programs written for the older
versions of Meschach. To deal with this, there is included in Meschach 1.2 a "compat
ibility" header file oldnames . h. Add the line

#include "oldnames.h"

at the beginning of files using pre-version 1.2 names. This header file consists of a
collection of #define's such as

#define get_vec
#define freevec
#define cp_vec

v_get
V_FREE
v_copy

The old iterative routines are still included in release 1.2a of Meschach (pccg (),
sp_pccg (), cgs (), sp_cgs (), lsqr (), sp_lsqr (), lanczos (),
sp_lanczos (), lanczos2 (), sp_lanczos2 (), arnoldi () and
sp_arnoldi ()). However, because of the new data structure for iterative methods,
these are being phased out and can be replaced by the newer routines iter_cg (),
iter_spcg () etc. The old iterative routines will not be supported in future.

7.3 Copyright

The copyright provisions for Meschach are intended to follow the lead of the Free
Software Foundation in ensuring that the rights of people using and modifying the
library cannot take away rights from others, while still enabling commercial use of the
library. In that sense Meschach is not entirely "in the public domain". Notice that
there is no intention to restrict the possible uses to which Meschach and parts of it
are put, or to impede the work of programmers. The intent is only to make sure that
users of any derivatives or modified versions of Meschach can still obtain access to the
original code, and also to protect the reputations of ourselves and other programmers
who modify or use Meschach.

Copyright subsists on the documentation and on the matrix library and source code
for same and is held by David Edward Stewart and Zbigniew Leyk. It may be used
free of charge provided the following rules are followed:

For legal purposes, in this section "the matrix library" shall refer to the "Meschach
matrix library" as copyrighted by David Edward Stewart and Zbigniew Leyk.

188 CHAPTER 7. INSTALLATION AND COPYRIGHT

1. Anyone to whom software is sold containing part or all of the matrix library in
any form, whether modified or not, must have the matrix library source code
made available to them in machine readable form at nominal cost.

-2. Anyone distributing the library must ensure that copyright notices "Copyright (C)
David E. Stewart and Zbigniew Leyk, 1986-1993" are published prominently
along with the distribution in whatever farm. .

3. Anyone making changes to the libra.rY must prominently display this fact on any
documentation relating to any use of the library (whether the use involves source
or comphed'code). Also, any such modification must be reflected in the routine
m_ version (), which prints out the current list of modifications to stdout.

4. Any code sold in object code form must include m_ version () so that if the
user so desires, he/she can determine what modifications and/or extensions to
the original library have been made and who by.

Item (4) is deemed to be satisfied if there is a "version" command which executes the
m_ version () routine.

Finally, there is the usual statement about legal rights if something goes wrong
in using the software. Trying to frame conditions under which Meschach can be
guaranteed to work is unlikely to be a rewarding task for anyone to undertake, especially
with the wide range of software and hardware systems it could work under. This is
further complicated by the usual problems of numerical analysis where "proof of
correctness" is not a realistic possibility and round-off errors are always present.
Finally, due to the non-c9mmercial nature of Meschach, there is unlikely to be any
value to persons attempting to sue me forfailure of the library in any situation.

Meschach IS PROVIDED ''AS IS", WITHOUT ANY EXPRESS OR IM
PLIED WARRANTY. IN PARTICULAR, THE AUTHOR DOES NOT MAKE
ANY REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING.
THE MERCHANTABILITY OF TillS SOFTWARE OR ITS FITNESS FOR
ANY PARTICULAR PURPOSE.

