
Chapter 3 

Numerical Linear Algebra 

This chapter aims to provide a brief introduction to numerical linear algebra. People 
who are unfamiliar with how to go about (say) solving linear equations, or how to 
compute eigenvalues and eigenvectors might find this useful for selecting the best 
routine(s) to solve their particular problem, and to understand the rationale for the way 
the routines are set up in the way they are. 

3.1 What numerical linear algebra is about 

There are a number of core operations and tasks that make up numerical linear algebra. 
At the lowest level these include calculating linear combinations of vectors and inner 
products, and at the higher level consists of solving linear equations, solving least
squares problems and finding eigenvalues and eigenvectors. 

The lower level operations are usually quite straightforward in terms of what they 
do and what the accuracy of the results are. However, with higher level operations 
more care must be taken with regard to both efficiency and the accuracy of the answers. 
The routines used to perform these higher level operations are more varied and allow a 
number of different ways of performing the same computation. The difference between 
them lies often in the speed (or lack of it) and the accuracy of the answers obtained. 

There are further complications because of some intrinsic limits to the computations 
that a computer can do accurately, at least with floating point arithmetic. Floating point 
arithmetic cannot store numbers to an accuracy (relative to the number stored) better 
than what is called "machine epsilon", or "unit roundoff'. This quantity is usually 
denoted by u, but is represented in the library by MACHEPS. It is also referred to 
in the ANSI C header file <float .h> as DBL_EPSILON for double precision and 
FLT_EPSILON for single precision. For most machines this quantity is about 2 x 10-16 

for double precision, and 10-7 for single precision. 
Practically all floating point calculations introduce errors of size of machine epsilon 

times the size of the quantities involved; for all intents and purposes, these errors are 
unavoidable. Perturbations in the data of a problem are essentially unavoidable. 
Algorithms that compute answers that would be exact for slightly perturbed data 
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are called backward stable; algorithms which give answers that are close to the exact 
answer are called forward stable. Sometimes the problems that are solved are inherently 
unstable, or "ill conditioned" (see below). In these circumstances, no algorithm can 
be expected to be forward stable. However, well designed algorithms are at least 
backward stable; the answers are exact for slightly perturbed data The algorithms in 
Meschach are essentially all backward stable in this sense. Combining these algorithms 
in programs can sometimes lead to methods that are not stable in this sense. Careful 
analysis of the algorithm may need to be done to check this. 

3.2 Complex conjugates and adjoints 

Unlike real matrices, inner products of complex vectorS have to involve complex 
conjugates: 

(x, y) = L XiYi· 
i 

This cannot be written as xT y, but is often written as a;T y. The vector a;T not only 
is a row vector, but has the components replaced by their complex conjugates. (The 
complex number z = u + iv has complex conjugate z = u - iv where u and v are real 
numbers.) 

The vector a;T is cal\ed the adjoif!.t of x and is denoted in this documentation as x*. 
Some texts use this convention, others use related conventions. 

There are also adjoints of matrices: A* = _AT. Generally, where one would use a 
transpose for real matrices, one should use an adjoint for complex matrices. Of course, 
if x is a real vector, and A is a real matrix, then x* = xT and A* = AT. 

While real orthogonal matrices satisfy QT = Q-1 , their complex cousins, the 
unitary matrices, satisfy Q* = Q-1 • 

3.3 Vector and matrix norms 

While it is quite straightforward to talk about the magnitude of a number, it is less so 
with vectors and matrices as there are a number of different ways of defining it. These 
"magnitudes" or norms must have a number of basic properties in order to be of some 
use. These properties for vector norms are written out below; the norm itself is written 
as 1111. 

(3.1) 

llxll is a non-negative real number 

llx + Yll ~ llxll + IIYII 
!lax!! = lalllxll where a is a real or complex number. 

Matrix norms have not only these properties (with x andy replaced with matrices), but 
often have an additional one: 

IIXYII ~ IIXIIIIYII· 
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This inequality holds for all matrix norms implemented in Meschach. 
Some standard vector norms are 

(3.2) 

The last norm Cllll2 ) is actually the standard or "Euclidean" norm and is the definition of 
"magnitude" used in geometry and mechanics etc. However, different problems often 
have natural ways of measuring vectors related to the specific problem. For example, 
if e is a vector of errors, then llelloo :::; .01 means that no error is larger than .. 01. 

These vector norms can be computed by the routines v ~norml ( ) , v _norm2 ( ) 
and v _norm_inf () , for the II II 1 norm, the II II 2 norm and the II II 00 norm respectively. 

Associated with these vector norms are matrix norms that are defined by 

IIAII =max IIAxllfllxll. 
x~O 

The associated matrix norms for the above vector norms are: 

IIAII1 = m~ L laijl, IIAIIoo = m~ L ja,jl 
J • ' . 

' J 

IIAJja = (maximum eigenvalue of AT A) 112 • 

(3.3) 

Some matrix norms are not associated with any particular vector norm, such as the 
Frobenius norm: 

These matrix norms can be computed by the routines m_norml () for the II II 1 
norm, m_norm_inf () for the II lloo norm, and m_norm_frob () for the Frobenius 
norm II II F. The matrix 2-norm has not been implemented as it.is a rather expensive 
operation. The matrix 2-norm is best computed using the SVD, which is discussed 
later. 

3.4 : "Ill conditioning" or intrinsically bad problems 

Users of numerical routines sometimes . find that the results they get are erratic or 
obviously wrong for some reason or other. Barring programming errors, there are 
some reasons why this can happen. Often it comes under the heading ill conditioning, 
which means that the problem is inherently difficult.., 
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Whenever the computer does some calculation with real numbers (like 3.1415926 
. . . ) it almost always adds some error to the result whose magnitude is about "machine 
epsilon" times the magnitude of the result. If such a change in the data can radically 
change the answer, then the problem or task is called "ill conditioned". This is a 
property of the problem, not of any algorithm to solve it. 

As with most things in numerical analysis, it is a good idea to quantify "how badly 
conditioned". For the problem of solving linear systems of equations, the measure of 
conditioning for a particular norm 1111 is 

K(A) = II All IIA -1 11 

which is called the condition number of A. The condition numbers for the 1111 1, llll2 
or lllloo norms are usually denoted K1(A), K2(A) or K00 (A) respectively. 

A justification of why this is used as a measure of the conditiomng of a system of 
linear equations, is given in the following theorem: · 

Theorem 3.4.1 If A is nonsingular and IIA-1 IIIIEII < 1 and 

Ax= b, and (A+ E)(x +e)= b + j, 

then 
II ell K(A) [liE II 11!11 J w ~ 1- K(A)(IIEII/IIAII) .IIAII + lfbiT . 

A proof of this may be found in a number of numerical analysis textbooks such as 
Matrix Computations, by Golub and van Loan, §2.7, pp. 79-80, 2nd Edition, (1989), 
or in An Introduction to Numerical Analysis, by K. Atkinson, Ch. 8, pp. 462-463, 1st 
Edition, (1979). 

Do ill conditioned problems or tasks occur in practice? The answer is "All too 
often." One family of matrices that are notoriously ill-conditioned are the Hilbert 
matrices: 

1 
1/2 

Hn = 1/3 

1/2 
1/3 
1/4 

1/3 
1(4 
1/5 

1/n 1/(n + 1) 1/(n + 2) 

1/n 
1/(n + 1) 
1/(n + 2) 

1/(2n -1) 

These. matrices arise quite naturally in finding best integral-least square error fits for 
functions in terms of 1, x, x2 , ••• , xn-1 • The condition number of Hn for n = 5 is 
already ~ 4.8 x 105 and for n = 10 is ~ 1.6 x 1013 • In fact the condition number of 
Hn for large n increases super-exponentially inn. Because they are so ill-conditioned, 
they are a favourite family of matrices to test linear equation solvers. 

This condition number can be computed in O(n3 ) floating point operations essen
tially by calculating the inverse of the original matrix. Alternatively, it can be estimated 
relatively cheaply (in O(n2) operations) once the LU factors of the matrix are known. 
This can be done using the routine LUcondest ( ) . 
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3.5 Least squares and pseudo-inverses 

It is quite common, when analysing data, to perform a "least squares fit". For example, 
if there are three controlled quantities and one measured quantity in an experiment, it 
is common to fit a linear model: 

where each a1 is a parameter to be fitted, and Yi is the ith measured value, and xi,j is 
the ith value of the jth controlled quantity. 

The "least squares fit" is the a vector that minimises 

m 

L (Yi- (alxi,l + a2xi,2 + a3xi,3))2 . 
i=l 

This can be cast in terms of matrices and vectors by setting X to be the matrix of the 
xi,i• andy to be the vector [y1 , y2 , ••• , Ym]T. Then the approximation is y ~ X a, 

and more specifically, the least squares fit is obtained by minimising IIY - X all~ = 
(y- Xa)T(y- X a). By taking partial derivatives with respect to the a;'s gives the 
system of linear equations known as the normal equations: 

If the columns of X are linearly independent, then the matrix XT X is positive definite 
and the Cholesky factorisation can be used to solve this system of equation once XT X 
is formed. The following piece of code does this: 

MAT *X, *XTX; 
VEC *y, *XTy, *alpha; 

/* set up X and y */ 

XTX = mtr.m_mlt(X,X,MNULL); 
XTy = vm_mlt(X,y,VNULL); 
CHfactor(XTX); 
alpha= CHsolve(XTX,XTy,VNULL); 

If the columns of X are not linearly independent, then there are redundant variables 
being set in the experiment: at least one of the variables being set is just a linear 
combination of the others. In the above piece of code, this may result in an error being 
raised to the effect that the matrix XTX is not positive definite. Whether this happens 
or not depends on the way that the rounding errors go. 

In practice it may well be that some of the set quantities are nearly, but not exactly, 
redundant. The Cholesky factorisation may not be able to pick this up. However, 
there are other "factorisations" that can. These are the QR factorisation (with column 
pivoting) and the SVD. Later, we will return to the QR factorisation as another means 
of solving least squares problems. 
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3.5.1 Singular Value Decompositions 

The SVD or Singular Value Decomposition is analogous in some ways to finding 
eigenvalues and eigenvectors. The SVD of a matrix X is a decomposition X = UT~V 
where U and V are orthogonal matrices, and ~ is a diagonal matrix. The values on the 
diagonal of ~ are unique, except for their sign. If the entries of ~ are all nonnegative 
and ordered so that they are nonincreasing going down the diagonal, then the diagonal 
entries are called singular values, and are denoted by ui. The columns of U and V are 
called singular vectors. 

How well or ill conditioned a least squares problem is can be determined directly 
from the singular values. The usual condition number for least square problems is 
K-Ls(X) = udun where X ism x nand m ~ n. If Un = 0 then X has linearly 
dependent columns, and the problem cannot be solved to any degree of accuracy. Such 
a matrix is also referred to as being rank deficient. 

3.5.2. Pseudo;.inverses 

Whether a matrix is square or rectangular, rank deficient or has full rank, it always has 
a pseudo-inverse. This is the matrix x+ = VT~+u where the ith diagonal of~+ is 
1/ ui is ui =f. 0 and zero otherwise. This has a number of useful properties such as the 
Moore-Penrose properties: 

xx+x =X, · (xx+l =xx+ 
x+xx+ =x+, .(x+x)T =x+x. 

(3.4) 

This means that xx+ is an orthogonal projection onto range(X) and x+ X is an 
orthogonal projection onto range(XT). 

The least squares problem can, in general, be solved by setting a = x+y. This 
solution is, in fact, the smallest a that minimises the sum of errors squared. This 
approach appears quite simple for providing a way of solving least squares problems 
(and others) involving rank deficient matrices. However, there are a number of practi
cal difficulties. The first of these is that small perturbations to rank deficient matrices 
usually result in full rank matrices; the ui's that were formerly zero before the pertur
bation, become nonzero, but small after the perturbation. This means that where ~+ 
had a zero on the diagonal before the perturbation, after the perturbation it has 1/ ui 
which is quite large. In short, the pseudo-inverse is not a continuous function of the 
matrix entries; small perturbations can give very large changes in the results. 

While the SVD can be computed numerically, roundoff error will ensure that almost 
always the computed ui's are all nonzero. In these cases it is important to estimate the 
rank by considering the size of the ui 's. For such problems an error tolerance is needed 
to decide how small the u/s need to be before they are considered "too small". The 
choice of such an error tolerance should be based on the size of the errors in the matrix, 
and their source. If, for example, the values in the X matrix have a measurement error 
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of about 10-3 , then a tolerance of about 10 times this should detect near rank deficient 
matrices. If, on the other hand, the only errors are those from roundoff error, then a 
value of 100 times unit roundoff (MACHEPS in the library) should be adequate. 

3.5.3 QR factorisations and least squares 

An alternative approach to solving least squares problems for full rank matrices (i.e. 
those that are not rank deficient) is to use the QR factorisation. This method is also 
described in section 3 of the tutorial chapter. The QR factorisation of a matrix A is a 
factorisation A = Q R where Q is orthogonal and R is upper triangular. 

This QR factorisation is computed by means of Householder matrices. These are 
discussed in more detail in the manual entry for the routines that implements these 
operations, hhvec (), hhtrvec (), hhtrcols () and hhtrrows (). The QR 
factorisation can also be computed by using Givens' rotations which are discussed in 
the manual entries for givens (),rot_ vee (), rot_cols () and rot_rows (). 

To use this factorisation to solve a linear least squares problem X o: ;=::j y we 
compute, first, the QR factorisation of X= QR. For X m x nand m > n, as the R 
matrix is upper triangular, 

If X has full rank, then R1 is a nonsingular n x n matrix. The matrix Q should be split 
in a consistent way: Q = [Q1, Q2]· 

The residual vector's norm is then 

[Rll [Qfl 0 0:- Qf y 2. 

This means that 

IIX 0: - Yll~ = IIRl 0: - Qf Yll~ + II Qf Yll~. 
The minimum 2-norm of X o: - y (with respect to o:)is obtained by solving 

R1o: = Qfy 

and has the value IIQf Yll2· The code in section 3 of the chapter 1 provides a complete 
program for solving least squares problems of this sort. 

There are some advantages of this method over the "normal equations" approach, 
of which the main one is accuracy. In the normal equations approach, the system 
xr X o: = xr y is solved for o:. The error in the computed o: in the 2-norm is of 
the order of ux:2 (XT X). On the other hand, the error in the computed o: for the QR 
factorisation method is of the order of U11:Ls(X). Now if X = ur~v is the SVD of 
X, then 

xrx = VTETEV = vr diag(ai, ... , cr~)V 

and the eigenvalues of xr X are the squares of the singular values of X. So 
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and forming xr X effectively squares the condition number of the problem. This is 
particularly important for badly conditioned problems with "'Ls(X) ~ 1/ y'U; for such 
problems the QR factorisation method would work, but the normal equations approach 
would faiL 

3.6 Eigenvalues and eigenvectors 

There are two main classes of problems and algorithms for computing eigenvalues 
and eigenvectors. They are problems involving symmetric matrices, and problems 
involving nonsymmetric matrices. The case of symmetric matrices is easier both in 
theory and practice. It is also less vulnerable to the effects of roundoff errors. 

Symmetric matrices all have real eigenvalues, and the corresponding eigenvectors 
are both real and orthogonal. Thus for any symmetric matrix A there is an orthogonal 
matrix Q such that QT AQ = A where A is the diagonal matrix of eigenvalues. If the ith 
diagonal element of A is.\, and qi is the ith column of Q, then Aqi = >.iqi. Regarding 
stability of the eigenvalues to perturbations of the matrix A, the ith eigenvalue of 
A+ E, denoted .Xi, satisfies Ai - IIEII2 ::; xi ::; >.i + IIEIIz. 

The eigenvectors are not so stable with respect to perturbations of A, especially if 
eigenvalues are close together. The extreme case is where there is a repeated eigenvalue, 
in which case the eigenvalues are not essentially unique (up to a scale factor). Instead, 
there is a two or three or higher dimensional subspace of eigenvectors. If all the 
eigenvalues are distinct, then for a matrix A+ E, IIEII2 "small", the perturbation in 
the eigenvector qi is of size roughly bounded by 

As for previous problems, the perturbations in A due to roundoff error is roughly 
I!EIIz ~ ui!AII 2 • This means that the eigenvectors would not usually be reliably 
computed if its eigenvalue is no more than about u!IAI!z from other eigenvalues. 

The eigenvalues for a symmetric matrix can be computed using the symmeig ( ) 
library routine, which will compute the Q matrix of eigenvectors as well as a vector 
containing the eigenvalues if desired. 

For the nonsymmetric case, a rather different strategy has to be adopted for several 
reasons: 

1. The matrix A may not be diagonalisable; the Jordan canonical form is not 
numerically stable. 

2. The matrix of eigenvectors may not be well conditioned. 

3. The eigenvalues may not be real. 

The standard strategy used is to compute the real Schur decomposition. This is a 
variant of the complex Schur decomposition. The complex Schur decomposition is a 
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factorisation 

Q*AQ = T 

where T is upper triangular, and Q is unitary; that is, Q*Q = I where Q* is the 
adjoint of Q. The diagonal entries ofT are the eigenvalues of A. The complex Schur 
decomposition can be computed for complex matrices by the routine zschur (). 

For the real case, 

where T is block upper triangular with 1 x 1 and 2 x 2 blocks on the diagonal and 
Q is orthogonal. The eigenvalues of the 1 x 1 and 2 x 2 diagonal blocks of T are 
the eigenvalues of A. This real Schur decomposition is computed by the schur ( ) 
routine. If you wish to obtain the actual eigenvalues and eigenvectors, there are 
the auxiliary routines schur_vals () and schur_vecs (). The schur_vals () 
routine computes the (complex) eigenvalues and returns the real and imaginary parts of 
the eigenvalues. The schur_vecs () routine computes the eigenvectors of a matrix 
by means of its real Schur decomposition, by using one cycle of inverse iteration for 
each eigenvector. That is, the system 

(T- >.I)x = r 

is solved for x where 1' is a random real vector. 
Unfortunately, if there are repeated eigenvalues, this method cannot be expected 

to give good results: the matrix of eigenvectors would be ill-conditioned. Indeed, it is 
usually not possible to get a nonsingular matrix of eigenvectors if there are repeated 
eigenvalues. Consider the general 2 x 2 matrix 

[~ ~]· 
This matrix has repeated eigenvalues if and only if (a - d) 2 = -4bc. The repeated 
eigenvalue is (a + d)/ 2. If X is the matrix of eigenvectors, and is nonsingular,then 

x-1 [~ ~]X= (a+ d)/21 

which implies that 

[~ ~]=(a+d)/21 
and a = d and b = c = 0. Clearly, small perturbations of matrices with repeated 
eigenvalues usually result in matrices which do not have a nonsingular matrix of 
eigenvectors. 

The proper way to handle the situation of repeated eigenvalues is either to use the 
Schur decomposition (real or complex), or to use the Jordan Normal form. The Jordan 
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Normal form of the matrix A has the form 

[J, 0 0 

~.1 x-'AX = ~ J2 0 
0 J3 
0 0 

where each Ji (called a Jordan block) has the form 

.>..i 1 0 0 
0 .>..i 1 0 

Ji = 0 0 .>..i 0 

0 0 0 ).i 

Note that Ji may be as small as 1 x 1 or 2 x 2. 
This form is not favoured by numerical analysts as it is difficult to compute when 

roundoff errors are present, and the criterion for deciding how big a Jordan block 
should be is a difficult task as it requires numerically estimating the rank of a number 
of matrices. Golub and van Loan's Matrix Computations discusses the difficulties of 
computing the Jordan Normal form pp. 390-392 (2nd Edition, 1989). Also, the Schur 
form can be used for almost all the same purposes as the Jordan Normal form, such as 
computing matrix exponentials. 

3. 7 Sparse matrix operations 

Sparse matrices are simply matrices where most of the entries are zero. These are 
important as they can be stored in a more compact way by storing only the nonzero 
entries and their position in the matrix. The zero entries can usually be ignored for 
most computations. Thus far larger problems can be dealt with, and more quickly, than 
if array storage is used. 

While the previous discussion holds for all matrices whether sparse or not, if 
sparse matrices are to be used effectively then their sparsity needs to be preserved. 
This quickly rules out a lot of algorithms which work well for matrices that are not 
sparse (i.e. dense). For example, the Schur decomposition and explicit matrix inverses 
usually result in intermediate and result matrices where most of the entries are nonzero. 

Sparse matrices have a structure that dense·matrices don't. This is essentially the 
set of ( i, j) entries of a matrix that are nonzero, or at least that have memory allocated 
for a value. And it is often important to keep this structure and to prevent the number 
of nonzeros in intermediate matrices from increasing too quickly. The introduction of 
nonzero entries into sparse matrices is called fill-in. Not only does fill-in result in more 
space required to store the intermediate matrices and result indirectly in more floating 
point computations, but it also requires some sort of dynamic memory management. 
(This is easier in 'C' than in Fortran, but still has a cost in both time and memory 
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space.) The routines provided for manipulating sparse matrix data structures hides 
much of the complexity of the data structures and operations that needto be performed 
when there is fill-in. 

Sparse matrices are also important as they are often more suitable for iterative 
rather than the direct methods that have been discussed so far. Often some mix of 
iterative and direct methods will provide the best performance for solving some large 
problems. 

The direct routines implemented for sparse matrices include sparse Cholesky and 
sparse LU factorisation, with a number of variants which are provided for control the 
"structure" of the sparse factorisations. The iterative methods for solving systems of 
linear equations include pre-conditioned conjugate gradients for solving symmetric, 
positive definite systems, the CGS method of Sonneveld, the GMRES method of 
Saad and Schultz, the MGCR method of Leyk for solving systems of non-symmetric 
matrices, and the LSQR method of Paige and Saunders for non-square least squares 
problems. For eigenvalues, the Lanczos method is provided for symmetric matrices, 
and the Arnoldi method for nonsymmetric matrices. 

Those who are familiar with the standard "classical" iterative methods (Gauss
Jacobi, Gauss-Seidel and Successive Over-Relaxation etc.) may be disappointed that 
they are not implemented. There are three reasons for this. The first is that the iterative 
routines that have been implemented do not require an explicit representation c;f the 
matrix; aU that is needed is a way of fanning Ax for any vector x. That is, only a 
functional representation of the matrix (A) is needed. The second is the difficulty 
in obtaining good convergence with the classical methods. These classical methods 
require good estimates of convergence rates and the like, and are difficult to turn into 
general purpose routines when the "rate estimation code" is included. The third is that, 
for instance, conjugate gradients (without pre-conditioning) give the same order of 
convergence as that for SOR with the optimum over-relaxation parameter for standard 
test problems. It therefore appears that there is not a great deal of reason to implement 
SOR over conjugate gradient methods, although conjugate gradient methods can be 
modified to use an SSOR-based pre-conditioner M: 

M = (D + wL)D-1(D + wLf 

where D is the diagonal part of A, and L is the strictly lower triangular part of A and 
w is the ( over)relaxation parameter. Solving M z = w for z can be done essentially by 
backward and forward substitution and can be easily programmed without explicitly 
forming M. The Gauss-Seidel pre-conditioner is obtained by setting w = 1. 

The crucial point about iterative methods is that there is usually no natural limit to 
the number of iterations. A relative precision for the residual must usually be specified, 
and it needs to be significantly larger than u (or, as it is represented in the library 
MACHEP S). The number of iterations is also important for the speed with which a system 
of linear equations is solved. If the relative error tolerance is set toE, then the number of 
iterations is roughly proportional to J x:2 (A) ln(l/ E) for conjugate gradient methods. 
For LSQR, it is roughly proportional to x:Ls(A) ln(l/E). For finding eigenvalues of 
symmetric matrices, the Lanczos routine finds the bottom eigenvalue to an accuracy 



48 CHAPTER 30 NUMERICAL LINEAR ALGEBRA 

of E in time roughly proportional to J(>.k- >.2)j(>.2- >.1) ln(n(>.k- >..1)/E) where 
>.1 < >.2 < 0 0 

• < >.k are the distinct eigenvalues of A. (i.e. >.k is the largest eigenvalue 
of A.) 

The use of functional representation also opens up the possibility of pre-conditioning 
for the CGS and LSQR, and even the Lanczos methods. Here incomplete factorisations 
may be able to improve performance, such as the incomplete Cholesky factorisation or 
the incomplete/modified LU factorisation. 


