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Abstract. This paper examines the use of the Remez Exchange Algorithm for Multi-channel 
FIR filter design. 
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1. Introduction. The design of one-channel linear-phase FIR digital filters was 
a hot topic in the early '70s. Especially the Chebyshev approximation attracted great 
interest, since it is optimal and the optimality is also an appealing one, because the 
optimization error is evenly distributed over frequency. [9]looked at linear program­
ming techniques, and a few others proposed a whole range of different approaches to 
the problem. A major breakthrough was achieved in [7] and [6] the introduction 
of the application of Remez exchange algorithm [1]. 

In 1995, an attempt was made to generalize the Parks-McClellan algorithm [4]. 
The proposed method extends the usage beyond the linear-phase region, enabling 
the user to specify filters with arbitrary magnitude and phase response. It has some 
limitations, however, the most important being that in the general case, the algorithm 
is optimal on a subset of the desired interval only. 

Not much research has been performed on global optimization of filters, i.e. when 
optimality of an entire system, consisting not only of the filter, but also of other com­
ponents, is opted for. In the original paper presenting the Parks-McClellan algorithm, 
only piecewise-linear specification functions is regarded. As is evident from reading 
their sources, this is actually an unnecessary requirement. In fact, any continuous 
requirement function is allowed, opening the possibility to optimize entire systems, 
where the actual filter forms one component only. 

The developments in the field of telecommunications have caused multi-channel 
connections to become very common. Naturally, signals in such connections needs 
to be maintained and replenished regularly just like for one-channel systems. This 
calls for multi-channel filters and, indirectly, design algorithms for these. What makes 
these special is that channel interference has to be accounted for. 

The global least-squares optimization problem for multi-channel filters is solved 
(see, e.g. [2)), so the least-squares norm will not be regarded in this report. For 
other matrix norms, there are only iterative and, due to the nature of the problem, 
very inefficient methods available. Encouraged by the unprecedented performance of 
the one-channel Remez exchange algorithm, we examine the multi-channel problem 
thoroughly with the hope to find a similarly efficient method. 

1.1. Problem formulation. Figure 1.1 shows a one- or multi-channel system 
H consisting of a linear-phase interference function G and a linear-phase filter F (see 
Section 2.1 for a discussion on the properties of linear-phase systems). The frequency­
domain response Y(w) to a signal X(w) is 

Y(w) = FZ(w) = F(w)(GX(w)) = HX(w), H(w) = FG(w). 
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FIG. 1.1. An interference function and a filter 

We want the overall magnitude response function H(w) = FG(w) to be the best 
possible approximation to a specified, desired magnitude response function Hdr(w). 
This function is called the specification function. The problem can be recast into an 
optimization problem (a are the filter coefficients): 

minimizea:IIE(w)ll = minimizea:IIFG(w)- Hdr(w)ll, 'Vw E [O,wjl, (1.1) 

where E(w) is the error function, and 11·11 denotes whatever norm we deem suitable. 
Please note that the design we are looking for is the best design for a system consisting 
both of an interference function and a filter, ie. we want to optimize the performance 
of the entire system, not just the filter. 

The discussion will not be restricted to one-channel systems, but the systems are 
required to have an equal number of input and output channels. 

EXAMPLE 1.1. A telecommunications problem. Imagine a long telecommunica­
tions link consisting of two coaxial cables lying next to each other in the ground. Each 
cable carries one phone call. It is reasonable to expect the signal to deteriorate by 
distance, so we had better put "repeaters", electronic devices designed to amplify and 
recondition the signal, along the way. The deterioration of the signal is modelled with 
the two-channel magnitude function G(w) depicted in Figure 1.2. We have modelled 
signal deterioration within channels as being inductive (low-pass) in character whereas 
inter-channel distortion is more likely to be capacitive (high-pass) in character. 

Figure 1.3 shows the desired magnitude response function for the entire system 
Hdr· Obviously, we want to attenuate external noise present in the system, a noise 
which is often of high pitch. This is accomplished by the low-pass character of the 
diagonal elements of the filter. Furthermore, we would rather see all interference 
between channels annihilated, which is reflected by the all-stop look of the off-diagonal 
elements. 

Figure 1.4 shows one solution to the problem. It is the resulting filter of a maxi­
mum absolute value (MAV) norm optimization, carried out as a linear program (LP), 
see Section 4.2. The filter error function, the total system response, and the total 
system error function are shown in Figures 1.5, 1.6, and 1.7, respectively. The tap 
sizes for the filters are 39 taps for diagonal elements and 29 for off-diagonal elements. 

1.2. Different Approaches Attempted. A number of different approaches to 
the problem have been explored. A wide range of methods are used hereby, from very 

1So-called don't-care regions are never used in this report. For global optimization problems, a 
controlled behavior of the filter in the don't-care regions cannot be guaranteed. 

68 



general optimization methods with a solid theoretical background, to more specialized 
methods exploiting known properties of the problem-here, the theoretical foundation 
might sometimes be a bit thinner. 

To summarize, this is the contents of the rest of the paper: 

Preliminaries This section briefly introduces and discusses theory and notation 
needed and used throughout the rest of the report. Issues covered are linear-phase 
filters and the error function. 
The One-Channel Filter Describes the Remez Exchange algorithm, the most pop­
ular method available for the design of Chebyshev-optimal one-channel linear-phase 
FIR filters, as well as the element-wise approach to the multi-channel problem. 

Nonned Optimization In all instances, the goal is to achieve optimum performance 
of the filter in respect to a (known or unknown) norm. However, this norm might not 
be present at all throughout the algorithm. This is very much the case for the Remez 
Exchange Algorithm. In this section we take a dose look at algorithms where we do 
use a norm, ie. a matrix norm, to summarize all the complex behavior of a matrix 
transfer function into one single scalar error function, which is then optimized. We 
end up with either a linear program (LP) or a semidefinite program (SDP), which are 
both very well-known optimization problems with an extensive theoretical foundation 
and a multitude of efficient algorithms available. 

The Multi-Channel Remez Exchange Algorithm No matter how efficient the 
algorithms for LPs and SDPs might be, they suffer from the same basic weakness: The 
error function has to be optimized over a very dense set of frequencies, which tends to 
make the problem formulation very large and also very quickly growing (sometimes 
exponentially) with filter length and other parameters involved. Therefore, an at­
tempt has been made to reduce the number of frequencies to optimize for by choosing 
just a few which are expected to exhibit "extremal" behavior. The error function is 
optimized for these frequencies, and an exchange policy is also incorporated so those 
frequencies that cease to behave "extremally" can be discarded in favor for those who 
pop up during the course of the algorithm. This is very much the same approach as 
the Remez exchange algorithm in the one-channel case, except that the behavior of 
the algorithm has to be a bit more complex to accommodate for the interdependency 
between channels. 

2. Preliminaries. 

2.1. Linear-Phase Filters. The z-transform of an M-tap FIR filter F is: 

M-l 

.F(z) = L h(t)z-t, 2 

t=O 

where h(t) is the filter impulse response. The frequency response function is 

M-1 

.F(ejw) = L h(t)e-jwt. 
t=O 

2The letter t is chosen to denote "tap"-this should cause no confusion since no time domain 
discussions are carried out in the report. 
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:F(eiw) = e-jwM:;l L h(t)e-jw(t-M:;l) 
t=O 

· M-1 (h (M2-1) + = e-Jw-2-

. (t 72t-l )) h(M- 1- t)eJw --2-

M-3 
-2-

2: h(t)e-iw(t- M;l) + 
t=O 



It is easy to see that if we assume the symmetry condition h(t) = h(M -1- t) to the 
impulse response, the above expression can be simplified further into 

. . M-1 M - 1 -r- M- 1 
( 

M-8 ) 

:F(eJw) = e-3w-2- h (-2-) + ~ h(t) cosw (t- - 2-) 

L 

= e-iwL I>~(t) coswt = e-jwL F(w), 
t=O 

L M-1 
F(w) = I:O-:(t)coswt, L = - 2 -

t=O 

where the a coefficients are: 

{ a(O) 
a(t) 

= h(L) 
= 2h(L - t), t = 1, 2, · · · , L. 

(2.1) 

(2.2) 

(2.3) 

F(w) is the real-valued frequency response function. The phase is a linear function 
of frequency, which means that the group delay3 will be constant over frequency-no 
phase distortion is introduced by the filter, which is often an absolute requirement 
for signal processing applications. Equation 2.1 reassures us that the phase always 
will be linear, and in all further discussions, the phase will be disregarded, as will 
the complete frequency response function :F(eiw) in favor of the simpler real-valued 
frequency response function F(w). 

With some simple modifications (see for instance [8, pp. 620-623] or [6]), Equa­
tions 2.1 and 2.3 can be generalized to apply to filters with an even number of taps 
M, and with an antisymmetric impulse response function (h(t) = -h(M- 1- t)), as 
well. 

2.2. Multi-Channel Linear-Phase Filters. The real-valued frequency response 
function for a linear-phase multi-channel filter is simply a matrix where each element 
is a real-valued frequency response function, so for a C-channel filter we get: 

F(w) = ( 
Fu(w) 
F21(w) 

Fc1(w) 

Fw(w) ) 
F2c(w) 

Fcc(w) 

where 

L;; 

Fii(w) = L.:aii(t)coswt, i,j = 1,2,··· ,C. 
t=O 

2.3. The Error Function. The error function is given by 

E(w) = FG(w) - Hdr(w). 

3 The group delay is the time it takes for a signal to pass through a filter. 
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Affine Format 
The Semidefinite Programming (SDP) approach of Section 4.1 requires the error 

function to be in affine format, which is simply a linear combination of matrices. 
In this context, we choose to express the error primarily as a function of the filter 
coefficients, a, and we let the superscript n E 1, 2, · · · , N denote for what frequency 
sample Wn it is being evaluated: 

C C Lij 

= -Hdr(wn) + L L KijG(wn) L a;j coswt, (2.7) 
i=l j=l t=O 

where K;j denotes a special matrix that has zeroes everywhere except for a one (1) 
in the ( i, j) position. 

Column Format 
In Section 4.2 and Section 5 we will need Equation 2.6 expressed as a matrix 

times the filter coefficients a expressed as a vector: 

where 

cola= ( au(O) 

Acola, 

au (Ln) 0121 (0) 
T 

acc(Lcc) ) , 

where col is the column operator, that converts a matrix to a single column vector 
simply by picking elements from the matrix column by column. 

The Kronecker product can be used to implement the column operator, due to 
the following property: 

colFG(w) = (G(wf 0 I 1 )colF(w), I 1 E Rm.x:m 

This is now applied to the transfer functions, which are all C x C-matrix-valued (C 
is the number of channels) functions of frequency. Since col F is a vector of sums 
containing the a coefficients we wanted as a separate vector, we will have to continue 
further by using the Kronecker product once again, but we first define 

COSLW = ( 1 COS W COS 2w cosLw ) , 

so we get 

colF(w) = (I2 0 cosLw)colo:, 

All in all we now yield 

colFG(w) = (G(w)T 0 I 1 )(I2 0 cosLw)cola = A(w)cola, 11 E Rcxc, (2.8) 

where 
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3. The One-Channel Filter. The original paper [7] describing the application 
of the Remez exchange algorithm for the design of optimal linear-phase FIR filters 
refers to [1, pp. 72-100], for all the underlying theory. The bits of this that are of 
most importance for Section 5 further on will be summarized here. Please note that 
our treatise of the subject in general and the Remez exchange algorithm described in 
Section 3.2 below in particular is somewhat more general than the one of the original 
paper. The reason for this is that the authors of the original paper apparently did 
not foresee, or for that sake, cared about, the need of an algorithm that could find 
the optimal solution for an entire system-they were apparently only interested in 
finding the best possible filter for piecewise-constant specifications, and they could 
hereby make a few simplifying assumptions. These assumptions are however not very 
significant, as we will see, and we will consistently use and cite the more general 
theory from [1, pp. 72-100). 

3.1. Introduction. Throughout this section, we will work with so-called gener­
alized polynomials only: 

L 

H(w) = L a(t)f3t(w), (3.1) 
t=O 

where 73 is a vector of continuous basis functions f3t, 

fJL ) , f3t E C[O, n], t = 0, 1, · · · , L, (3.2) 

that fulfill the Haar Condition. 

DEFINITION 3.1. The Ham· Condition. A vector of continuous basis functions (3 
as described in Equation 3.2 is said to satisfy the Haar condition if a system of these 
function vectors, evaluated on any variable vector w of the same size, 

(3.3) 

is nonsingular. This is equivalent to saying that zero (0) is the only generalized poly­
nomial (Eq. 3.1) that has L + 2 or more roots on [0, n]. 

Lemma 3.1. For every ordered set of frequencies w, 0 :::; w1 < w2 < · · · < 
WL+2 :::; 1r the determinants det 7J(w) all have the same sign. 

A natural choice of basis functions for signal processing applications would nor­
mally be trigonometric functions, eg. 

7J(w) = ( 1 cosw cos2w cosLw ) , 

but since we wish to optimize entire systems including interference functions, it is not 
feasible to restrict the discussion to that case. 
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We now want to find the generalized polynomial H that approximates a given 
function Hdr as well as possible in the Chebyshev sense, that is, we want to solve the 
following optimization problem: 

At the core of the solving of this problem efficiently is the alternation theorem below. 

Theorem 3.1. The Alternation Theorem. In order that a certain generalized 
polynomial 

L 

H(w) = L atf3t(w), wE [0, n] 
t=O 

shall be a best approximation to a given function Hdr E C[O, n] it is necessary and 
sufficient that the error function E = H - Hdr exhibit at least L + 2 "alternations" 
thus: 

E(wn) = -E(wn-d = ±maxiE(w)l, w1 < w2 < · · · < W£+2· (3.4) 
w 

Provided that the optimal frequency vector w is know, the optimal set of coeffi­
cients can be found simply by solving the full-rank linear equation system 

2, · · · ,L + 2} 
L 

{::} L a(t),Bt(wn) - Hdr(wn) = ( -l)n A, Vn E {1, 2, · · · , L + 2} 
t=O 

( fl.(w,) 
.81 (wl) /h(wl) 1 

)( a(O) ) .Bo (w2) .81 (w2) ,BL(w2) -1 
{:} 

: a(L) 
(3.5) 

.Bo(~£+2) .81 (w£+2) ,8LWL+2 ( -l)L+2 A 

( Hd,(w,) ) Hdr(w2) 

Hdr(~£+2) . 

(3.6) 

Note that A is also an unknown in this expression, but since w was assumed to be the 
optimal frequency vector, 8 = IAI = IIEII· Also note that even if w is not assumed 
to be the optimal one, the solution of the linear equation system of Equation 3.6 
gives us the optimal solution for that subset of frequencies. Obviously, the trick is to 
iteratively find the subset on which subset optimality equals global optimality. 

3.2. The Remez Exchange Algorithm. Below follows an outline of the fa­
mous Remez exchange algorithm. Figure 3.1 might help understanding the algorithm. 
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The Remez Exchange Algorithm 

Input: The tap size L E R, the set of basis functions 
7J E CL+l (0, n], and an initial, ordered frequency set w E R £+2 

(this can be an arbitrary set, eg. a uniformly distributed one). 
Output: The filter coefficients a E R L+ 1 . 

Minimize: Minimize the error function E(w) by solving 
Equation 3.6. This yields a set of filter coefficients a 1 as well as 
the 81 = J.A'J. 

Evaluate: Evaluate the new error function E'(w) = 'E~=o a'f3t(w). 
We will have 

E'(wn) = -E1(Wn+I) = ±8', n = 1,2, ... ,L+ 1. (3.7) 

Exchange: 
1. Due to (3.7) and continuity, E'(w) has a root Zn in each 

interval [wn-1, wn], n = 2, 3, · · · , L + 2. In addition, z1 = 0, 
Z£+3 = 1r. Let CJn = signE'(wn)· 

2. Select a trial set w' by finding local extrema of the error 
function on each subinterval defined by its roots: 

w~ = max CJnE'(w). 
wE[zn ,Zn+d 

3. While IJE'II > maxn JE1 (w~)l 
Do Define v such that E'(v) = 1/E'JJ. Insert v in w' and 

remove a point such that the values of E'(w~) still 
alternate in sign. 

Repeat: Repeat from Minimize with the new set of extremal 
frequencies w' as long as the criterion of the alternation 
theorem (Eq. 3.4), 

E(wn) = -E(wn-r) = ±maxJE(w)J, vJ1 < w2 < · · · < W£+2, 
w 

is not satisfied. 

The Exchange step can be implemented in several different ways. What is important 
is that the new E' (w') alternates in sign and that the largest peaks of the error 
function are included. A typical situation for the Exchange steps above is depicted in 
Figure 3.1 

The convergence of the algorithm to the unique4 , optimal solution is governed by 
the following theorem. 

Theorem 3.2. Convergence of the Remez Exchange Algorithm. The 
successive generalized polynomials H(k) (w) = 'E~o a(k) (t)f3t(w) converge uniformly 
to the best approximation H* according to the following inequality: 

(3.8) 

4 The uniqueness of the optimal solution is guaranteed by the Haar condition, see [1, pp. 80-82]. 
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FIG. 3.2. An interference function and a filter 

3.3. Application to One-Channel Filters. We like to solve the following 
optimization problem for the one-channel filter F including a continuous interference 
function G: 

minimizea:IIEII, {:::::} minimizea:IIFG- Hdrll 

{:::::}minimize" ( m;x IG(w) t.a(t) coswt- Hdrl). 
76 
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Obviously, the FG above is a generalized polynomial in the basis functions 7J defined 
as follows: 

/J(w) = ( G(w) G(w)cosw G(w)cos2w G(w) cos Lw ) . (3.10) 

By the Haar condition of Definition 3.1 it follows that G cannot have any zeros in the 
interval [0, 1r]. 

Experiment. 

EXAMPLE 3.1. Element-wise Optimization of the Multi-Channel Filter. Say for 
instance that we have the specification function Hdr(w) of Figure 3.3 and the interfer­
ence function G(w) depicted in Figure 3.4. If we use the Remez exchange algorithm 
individually for each element of the filter, we get the filter error function of Figure 3.5, 
which might look good enough. If however the effect of the interference function on 
the total system error is taken into account, things start to look much less encourag­
ing, as in Figure 3.6. 

Discussion. 
The Remez exchange algorithm possesses a number of features that distinguishes 

it from other optimization algorithms and also contributes to its extreme efficiency: 

"' The a priori knowledge of the nature of the optimal solution provided by 
the alternation theorem (Th. 3.1) means that we know exactly what to look 
for. The alternation theorem tells us that as long as we can find the right 
extremal frequencies wn, we need to optimize the objective function for these 
frequencies only, and we need not bother about any of the other frequencies. 
This saves tremendous amounts of calculation and, consequently, time. 

~ The convergence :rate given by Theorem 3.2 is very good, leading to, in 
most cases, less than 10 iterations. 

<~~ Each step of the algorithm involves the solution of a fuU-rank linear 
equation system and a linear search for local extrema of the error func­
tion. Both these steps can be very efficiently implemented . 

., The algorithm is a multiple exchange algorithm, meaning that in the search 
for the "correct" extremal frequencies, all "trial" extremal frequencies are 
exchanged simultaneously at each step. This is much more efficient than 
exchanging only one frequency at a time. 

4. Normed Optimization. From an optimization viewpoint, a norm can be 
defined as a way of summarizing the sometimes very complex behavior of a vector­
valued or matrix-valued function into one single scalar function. Instead of trying to 
optimize all the elements and aspects of the original function, we can now concentrate 
on the simpler representation of it and hope that an optimal (in some sense) norm 
implies an optimal objective function (in some sense). Of course, what is meant by 
optimality is in practise defined by the norm used. 

The choice of norm also determines the type and nature of the optimization 
problem we end up with. We have chosen to study these two different norms: 
The Spectral Norm The maximum singular value (MSV) norm, or the spectral 
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norm, is defined as 

IIAIIMsv =maxai(A), ViE {1,2,··· ,min(m,n)}. (4.1) 

where ai denote the singular values. 
The optimization problem of minimizing the maximum singular value norm 
of a matrix-valued function can be recast as a semidefinite program (SDP), 
described in Section 4.1 below. 

The Maximum Absolute Value (MAV) Norm For a matrix A E Rmxn, the 
maximum absolute value (MAV) norm is defined as 

IIAIIMAV =maxlaijl, ViE {1,2,··· ,m}, Vj E 1,2,··· ,n, (4.2) 

where aij denotes the (real-valued) elements of A. 
The minimization of the MAV norm can be expressed as a linear program 
(LP), as explained in Section 4.2 later. 

4.1. Semidefinite Programming (SDP). A semidefinite program (SDP) con­
sists of a linear cost function which we wish to minimize and a linear matrix inequality 
(LMI) which expresses the constraints: 

{ minimize.: 
subject to 
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where x E R L is the variable, and the { Ei} are a set of of square symmetric matrices of 
equal dimension. The expression for E(x) above is called an affine matrix expression. 
With E(x) ~ 0 it is meant that the affine matrix E(x) has to be nonnegative definite, 
ie. 

LMis can be stacked diagonally. If, in the above example, we wish the variables 
to simultaneously meet 

_ft(nl(x) ~ 0, Vn E {1,2,··· ,N}, 

the constraint matrices can be stacked as one LMI E(x) like so: 

( 

_ft(ll(x) 

- 0 
E(x) = . 

0 0 

( 4.4) 

There are quite a few efficient algorithms for SDPs available. We have chosen 
to use one written by Stephen Boyd and Lieven Vandenberghe, see [10]. This is a 
package specifically written for SDPs in C, using optimized library routines5 for the 
numerical linear algebra involved. The package is integrated with Matlab through the 
external interface, MEX. 

To minimize the spectral (MSV) norm the original problem is recast into an SDP 
using Schur complements: 

minimize"' IIE(n) (a) I!Msv 

can be written as 

{ 
minimize a,')' '"Y( 

subject to 

{ 

minimizex 

¢:=:} subject to 

qT X, q = ( 1 0 

(4.5) 

Compared to Equation 1.1 we have changed the notation slightly. Where the error 
function normally can be regarded as a function of frequency, E(w), it is here seen as 
a function of the filter coefficients, E(o:), and since a discretization over frequencies 
will be needed sooner or later, it has been done now, and therefore E(nl(a) denotes 
the error function evaluated at the frequency point Wn. Furthermore, the affine form 
of E is used, see Subsection 2,3. 

The spectral norm has to be minimized simultaneously for all frequencies, so the 
E;(n) (x), Vn E {1, 2, · · · , N} are therefore stacked as in Equation 4.4 above to yield 

5 Specifica!ly Netlib's BLAS and LAPACK, which for DEC AlphaStations are available as an 
optimized, and para!lelized if necessary, library, lmdx. 
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the final optimization problem: 

{ 
~{ 

minimize a: 

subject to 

minimize a: 

subject to 

qTx 

i;(n)(x) > 0, Vn E {1, 2, · · ·, N} 

qTx 

E(x) > 0, E(x) as in Eq. 4.4 
(4.6) 

When the spectral norm is applied for all frequencies like in equation 4.6, it is com­
monly called the H 00 -norm. 

Experiment. 
A series of examples were ran using this method. The results are very consistent 

and the algorithm used is efficiently coded and seems to work very well for all problems 
attempted. Therefore we present only a typical result here. 

We re-use the specification and interference functions of Example 3.1, Figures 3.3 
and 3.4. The example 2-channel filter has 69 taps in its diagonal elements, and 29 taps 
in its off-diagonal elements. Using the algorithms of [10], the optimization took 325s 
to run on a DEC AlphaStation. The resulting plot can be seen in Figures 4.1-4.4. 

Discussion. 
As previously mentioned, since the performance of the filter has to be optimized 

over a dense set of frequencies, we tend to end up with very large matrices in the 
affine expression. Even if they are also very sparse, it is still a big problem that takes 
a long time to run even on very powerful workstations. 

A few attempts were made with exchange algorithms. Instead of minimizing the 
error function norm for all frequencies, a few are chosen over which the error function 
norm is optimized. A new set of frequencies, which are the frequencies for which the 
error function norm is maximal, is selected and a new cycle is employed. The method 
is fairly hard to implement, since it is not known how many extrema to look for in 
the error function norm. If a fairly large number of extrema are chosen, the algorithm 
can still start to oscillate between to different sets of extremal frequencies. There are 
a number of more systematic methods available, such as [5] and [3], but the method 
still has to be dropped due to its notoriously bad performance, in particular when the 
number of channels grow large. 

One might also question the optimality criterion" A quick look at Figure 4.3 
reveals that the error is not very well distributed over frequencies, and even if the 
solution is clearly optimal in the Hoo sense, it remains unclear whether this is actually 
the kind of optimality we want. 

Finally, we point out a SDP approach to minimization of the spectral norm with­
out the discretization of frequencies. This approach involves the use of a well-known 
bounded real lemma in the systems theory to replace w with a positive-definite ma­
trix P. The subsequent problem is a finite dimensional SDP problem and a numerical 
solution of polynomial complexity exists. The details of this approach can be found 
in [2]. However, this approach is not applied in our study because the dimension of 
P, is typically too large, rendering the numerical solution infeasible. This approach 
seems to be appliable only to cases where the tap sizes are quite small. 

4.2. Linear Programming (LP). A linear program (LP), which is a special 
case of the semidefinite program described above, consists of a linear cost function 
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and a set of linear constraints and looks like this in its standard form: 

{ minimizex 
subject to X 2: 0 ' 

E 
E 
E 
E 

(407) 

The linear programming approach can be utilized to minimize the Chebyshev 
norm of a vectoL If we for instance have an over-determined system of linear equa­
tions, 

{ ~d Aa = d, <-< 

E Rmxn 

E Rn , m > n, 
E Rm 

it can be approximated in the Chebyshev sense by solving the optimization problem 

{ 
={ 

minimize a,')' 

subject to 

minimize a,'/' 

subject to 

'Y 

( -~ -1 
-1 
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In the above expressions, 1 is used to denote a column vector consisting of ones only. 
When applied to multi-channel filter design, we want to minimize the MAV norm 

over all elements and all frequencies: 

where Wn, n = 1, 2, · · · , N is a "dense" frequency set, Obviously, this problem can be 
restated as finding 

subject to 

( A -A -1 
-A A -1 

argmin 1 
o:+,a-,s,r 

> 0 
> 0 
> 0 ' 
> 0 

(4.9) 

where A is related to Equation 2.9, d denotes the specification function Hctr evaluated 
for all WnS and written in column format, and cola= a+- a_. 

Note that we are effectively minimizing a Chebyshev norm, since all matrices are 
now written in column format. The MAV norm is hereby minimized indirectly. 

Experiment. 
A fair few simulation were carried through using the linear programming ap­

proach. The SDP solver package was used for the LPs as well due to its ease of 
use and stable behavior. The downside is however performance-you would expect 
dedicated LP solvers to run faster. 

In figures 4.5-4.8, plots of a test run using the specification and interference 
functions of Example 3.1, Figures 3.3 and 3A, are found. The filter has 69 taps in its 
diagonal elements and 29 taps in its off-diagonal elements. Using the LP algorithms 
of [10], the optimization took 708s to run on a DEC AlphaStation. 

Discussion. 
As for the SDP approach, since the performance of the filter has to be optimized 

over a dense set of frequencies, we tend to end up with very large matrices. The 
sparsity for the LP matrices are only around 10%, but they are on the other hand 
much smaller that the affine SDP matrices, and the number of nonzero elements are 
roughly the same. 

Have a closer look at Figure 4.7. Evidently, all the error functions alternates 
between the same extremal values. The number of alternations differ between the 
channels, so clearly, this approach distribute the approximation error in a very uni­
form way. 

5. The Multi-Channel Remez Exchange Algorithm. In this section we 
explore the possibilities of applying the general idea of the Remez exchange algorithm 
(as described in the beginning of Section 3.2) more or less unmodified to the multi­
channel problem. 
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It has to be emphasized that a new, working algorithm is not presented, but a 
few very promising simulations were carried through nevertheless. 

The purpose of this section is to present an idea, or a concept, that, in the opinion 
of the authors, would be worth exploring further. The general approach is to boldly 
assume that the same theory holds for multi-channel filters as do for one-channel 
ones. Therefore, we assume that there exists a solution, in some aspect optimal, for 
which all the matrix elements of the error function of the final multi-channel filter 
alternates. However, the necessary theoretical extensions required to support the 
above assumptions are never made. 

X z y 
G F 

H 

FIG. 5.1. A.n interference function and a filter 
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To be precise, We "enforce" 

simultaneously for all matrix elements ( i, j). Please note that there are different 
WnS for different channels. For each channel (i,j), we would expect to find Lij + 2 
alternations in the error function. There are also different AS, one for each element. 
So, if Equation 5.1 holds, the system is optimal only in the sense that each element 
in the matrix transfer function H(w) alternates between its extremum values. What 
sort of optimality in a strict mathematical sense this might equal to is not further 
investigated. Also note that the extremum values will be different for the different 
"l-::ments. 

What distinguishes this problem from the one-channel problem is the fact that 
the matrix-valued interference function G(w) introduces inter-channel interference, ie. 
the problem cannot be solved simply by solving an equation system like Equation 3.6 
for each element, but has to be treated "holistically", simultaneously, treating all 
elements together. 

The algorithm used forms one single equation system from the condition in Equa­
tion 5.1 by using the column operator as explained in Section 2.3. The resulting system 
is of the form 

(5.2) 

where A are the AS from Eq. 5.1 above, written as a column vector, A is a matrix 
corresponding to the ( -1) n factor from the same equation, A is the big matrix related 
to Equation 2.9, a are all the filter coefficients from all the filter matrix elements, 
written as one single vector, and b is Hdr for all frequencies and all matrix elements, 
written as one single vector as well. 

Just like in the one-channel case, the system is solved (it is full-rank as long 
as G(w) is nonsingular and the frequency vectors Wij contain no repeated values 
(Eq. 3.3)), after which the new error function is evaluated. New "extremal" fre­
quencies are found, individually for each matrix element, in the same fashion as for 
one-channel filters (Section 3.2), and a new A matrix is formed. The above procedure 
is repeated until the "extremal" frequencies do not change any longer. 

Constant Interference Function. 
An interesting special case is when G is constant, ie. does not vary with fre­

quency. In this particular case, the problem can be decoupled. To show this, we write 
Equation 5.1 in its full matrix form (please note that >.is a matrix): 

Clearly, since now F(wn) stands by itself, the problem is decoupled and can be solved 
as an independent problem for each matrix element (Chapter 3.1 & 3.2). 

Experiment. 

EXAMPLE 5.1. A big multi-channel Remez algorithm example. This is a really 
huge example. The filter has 69 taps in its diagonal and 29 in its off-diagonal elements 
and ten channels. The resulting equation system to be solved by the script has 1800 
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equations and variables, which means that the size of the system matrix exceeds three 
million elements! The matrix is sparse, but only to a limited extent-roughly 10%. 
In this context it has to be emphasized that the problem described in practise is far 
too big for any other method (as included in this report) to handle. The proposed al­
gorithm however converged to an "optimal" (with the limitations as discussed above) 
solution in eight iterations and less than two minutes only! The resulting overall 
system magnitude response and error functions can be seen in Figures 5.2 and 5.3, re­
spectively. Only a diagonal element and an off-diagonal element have been displayed 
in order to save space. 

Discussion. 

The algorithm proposed above works well for many simulated examples, especially 
when the cross-channel interference is not severe. However, reality is a bit cruel. For 
a fair few simulations with different tap lengths and different interference and re­
quirement functions, the algorithm simply did not converge. Simple observation of 
the simulation script in verbose mode (which means that the error function is plot­
ted for each step in the algorithm) suggests that the reason might be inter-channel 
interference, in the sense that the elements converge with different speeds and there­
fore, a slowly-converging element might disrupt the convergence of a faster-converging 
one, eventually causing an oscillation where a large error propagates back and forth 
between elements. A very interesting project would be to have a look at different 
techniques to control this. 

6. Conclusions. Encouraged by the excellent performance of the Remez Ex­
change Algorithm when optimizing global performance of systems via Linear-Phase 
FIR Digital Filters in the one-channel domain, the possibilities to increase the per­
formance accordingly for Multi-channel global optimization of systems were explored. 
Led by the results from this quest, a closer look was taken on the one-channel Remez 
algorithm. A few points are worth making: 

® The problem already have an analytical solution for the least-squares norm [2]. 
Due to the down-sides of that norm (the Gibbs effect etc.), other norms are 
still of significant interest, even if iterative methods have to be applied for 
these. 

* The general optimization algorithms available for solving linear and semidefi­
nite programs are not efficient for solving these problems. Generally, one can 
observe that only a small fraction of all the frequencies that is optimized for, 
are required, had the "correct", ie. extremal frequencies been selected and 
non-extremal frequencies discarded in the optimization process. 

e A very efficient algorithm for the multi-channel domain was proposed, but 
it does not work all the time. Further investigation into this algorithm is 
required. 
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