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Abstract 

This paper concerns with the balancing theory for the system governed by diffusion partial differential 
equation, which is refereed here as infinite dimensional system or distributed-parameter system. Based on the 
eigenvalue-eigenfunction structure of Laplacian differential operator, the approximate controllability and initial 
observability are constructed. In order to perform the balanced realization for infinite dimensional system, a brief 
review on finite dimensional balancing is presented, and more intuitive meaning of balanced realization is then 
obtained. After defining the Hankel operator of the infinite dimensional system, we compute the Hankel singular 
value and construct the energy balancing. And then, the model reduction problem is discussed. In the sequel, 
numerical simulation of the balanced model reduction for one-dimensional heat equation is conducted. 

Ke)"vords: Hankel singular value, balancing theory, diffusion system, infinite dimensional system, distributed 
parameter system. 

I. Introduction 

In this paper, we consider the diffusion PDE as following 

iJrjJ =Ar/J+Bu, ¢(0,!;)=¢0 (!;) 
iJt 
y = Crp, rp(t,O) = u1(t),rp(t,l) = u,(t) 

which can be related to three types of control problems: 
1) Boundary control problem, the control forces are applied through the functions u1(t),u,(t). 

2) Point control problems, the control forces are applied at discrete points, say !;a, i.e., the operator B is 

_Lo(!; -!;a). 

3) Distributed control problem, the operator B is a distributed function of location where the control forces are 
acting on e.g. H(!;-t;,)-H(!; -q2 ). 

On the other hand, the output operator C can also be divided into two types: point sensor and distributed sensor. 
In many engineering application dynamic system is described by complex models which are difficult to analyze 

and to control. Reduction of the order of the model (e.g. the minimum number of state to describe the model, also 
known as McMillan degree) may overcome these difficulties, but it is quite possible that the model reduction 
incurs a significant loss of accuracy. In practical application, model approximation is often based on trail and error 
methods, which is obviously not the best form from an analysis and control point of view. Formalization of model 
approximation of finite-dimensional system has been studied by a number of authors. Glover1 investigated the 
optimality of model approximations in the Hankel-norm, and gave a formal characterization of all optimal 
Hankel-norm approximations. Moore2 introduces the balancing for stable minimal linear system. The balancing 
method offers a tool to measure the contribution of the different state components to the past input and future 
output energy of the system, which are the measures of controllability and observability. This analysis yields a 
methodology for model reduction problem. 

Since the introduction of balancing method, balancing theory for stable linear finite-dimensional system has 
been explored in several directions. Balancing as a model reduction technique has been formalized by Glover1, and 
Enns5, who obtained an upper bound for the error in the Hankel- and Lw-norm, respectively. Open-looR balancing 
method for unstable linear systems is further developed by Meyer6, Obser et al7 Vander Schaft et al discussed 
the balancing method for mechanical system. The closed-loop balancing method was due to Jonckheere et al9, 

Opdenacker et al10 and Mustafa et al11 Scherpen12 extended the balancing method to nonlinear system. All these 
results are restricted to finite dimensional system. 

The controllability and observability for infinite dimensional system are more complicated than those for finite 
dimensional systems. Curtain and Pritchard13 has overcome many technical difficulties to the study of the 
controllability and observability for an infinite-dimensional system. Bensoussan et al14' 15 has discussed the 
controllability and observability with different approach. 

In this paper, the eigenvalue and eigenfunction structure is used to analyze the infinite-dimensional system, 
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which is very similar to modal analysis ~Sed m th~ analysis of structural'vibration. The state-space representation 
for infinite-dimensional system is then constructed and the conditions for controllability and observability can be 
evidently obtained. The balancing method is conducted as same as that for finite-dimensional system. In the sequel, 
the model-reduction problem for parabolic partial differential equation is performed. 

II. Controllability and Observability of Infinite Dimensional System 

Let n = [0,1] and H = L2 (il). Consider the following parameter distribution system: 

~ =Ar/J+Bu, rp(O,q)=r/J0 (q) 
/Jt 
y=C¢ 

where 

1) rpEV, Y{ithV ,;cijo,TlL2 (n)) 

(La) 

(l.b) 

2) A: D(A)~ H is a partial differential operator on Hilbert space H associated with boundary 

conditionsrp(t,O) = u1(t), rp(t,l) = u,(t). The domain of operator A is D(A) = ~ E H!ArfJexists}. Simple 

0 2 . o ( 0 2 ) ( 0 2 0 2 I 
examples of the operator A are A= 0 q 2 , A= /Jq a(q) 0 q 2 , A= 0 gz + /Jr7 2). 

3) B : R m ~ H with 

(2) 

4) C:H ~RP with 

Crp =[(ct,rp~t,-))H l 
{cP,rp(t,-))" 

(3) 

The inner product on Hilbert space H is defined as(f,g)H = J>*(g)g(g)ig, and (f,g)H = (g,J)H. The 

subscript H may be omitted without making confusion if it denotes the space L2 (n) on in the following sections. 

2.1 Eigenfunctions and adjoint operator of A. 

In most engineering application, the eigenfunctions {?,(;)}:1 of the operator A can form the bases for space H, 

and this operator is called a regular spectral operator. The adjoint operator· of A is recognized as A* with 

eigenfunctions {tp-,(;)};:1 and satisfies 

(A*x,y)=(x,Ay), '<!x,yEH (4) 

The eigenfunctions rp, and 'l'i are defined as 

then 

Arp,(q)= -t,rp,(q), A*'lf/q)= A~'lfif) 

(lfl,,r/Jj)=5ij 

(5) 

(6) 

i.e. after normalization {¢,(q)}:1 and ~1 (;)t=t are biorthonormal to each other. and they also form two bases 

for Hilbert space H. Hence the solution ofEq.(l), rp, can be represented by 

"' 
rp(t,q)= ~),(t)rp,(g) (7) 

i=l 

wherex,(t)=< l{l,,rp(t,-)> are the coefficients of the series expansion of rp(t,q) with respect to the basis {¢,(;)};:1 . 

After some algebraic operations, the following lemma is deduced: 

Lemma 1: 
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00 

(1) A¢(t,.;)= I>.t, <l{l,,t/J(t,.)>¢;,(.;) (8) 
i=l 

ro 

(2) e'4¢(t,q)= Ie"'' < l{l,,¢(t,-)> ¢,(,;) (9) 
i=1 

ro 

(3) t~>(t,.;)= I <t/J,,t/J(t,.)>lf!,(.;) (10) 
i=l 

ro 

(4) A'¢>(t,.;)= L'( <t/J,,t/J(t,.)>lf!,(.;) (ll) 
i=1 

(5) etA'¢(t,.;)= i.:e;,'• <¢,,¢(t,.)>lf!,(4) (12) 
i=l 

2.2 State-space representation 

Since the solution ¢(t,,;) can be expressed respect to the basis {t/J,(.;)}:P we can compute the following 

terms: 

(1) 8¢(t,.;). 
ot 

(2) Bu: Since the term b,(,;) can be expressed as the series expansion of the basis {t/J,(.;)}:1, for instance: 
oo ro 

bJ£')= L:<l{l,,bl >¢,(.;)= L:M.;)b,l, b,, =<lfl,,bl > 
i=l i=l 

where 

B, = [b,l h,2 ••• b,J= [(lfl,(£'tb1(£')) (lfl,(£'~b2(£')) 
(3) y = C¢: Similarly, y = C¢ can be expanded as following. Since 

< '• ,¢(1,)~«,, t, x,(t)¢, >¥,.;, > < ,,,¢, > f:;:;l 
then 

y~cHc, c, t:J.rtj 
where c, =kcl,¢,) (c2,¢,) ... (cP't/J,)r 

(4) A¢(t,,;): 

ro 

A¢(t,q)= L:x,(t)At/J,(.;)= [M.;) ¢2(,;) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

Substitution of above terms into Eq.(l ), comparing the coefficients of eigenfunctions {¢, (.; )}:1 leads to the 

state-space representation ofEq.(l) 
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(20) 

Eq.(20) contains infinity many states which are also decoupled. This is why we call this type of system as infinite 
dimensional system. Thus if the value of B, is zero, the corresponding state x1(t) is uncontrollable since the control 
input u(t) can't affect the state x1(t). But B; is a row vector, hence the controllability condition ofEq.(20) is 

Rank(B,)=1, i=1,2, ... 

Similarly, ifC1 has zero value, the measured output signaly(t) contains no information of the state X;(t);that is, the 
state x,(t) could not be observable from variable y(t). Thus, the condition for each state to be observable is C;;t!(), 
i= 1, 2, .... Because C; is a column vector, the observability condition ofEq.(20) is 

Rank(C;)=1, i=1,2, ... 

Therefore, the following theorem can be obtained: 

Theorem 1 Given a diffusion partial differential equation 

&p =AtjaB~ ot 
y=Ct/J 

the eigenfunctions of the partial differential operator A and A* are· {t/1, (,;)};:1 and w, (,;)}:1 respective{)', then 

· 1) this system is approximately controllable if and only if 
Rank([< lf'i,bl > < lf'i,bZ > ··· < lf'i,bm >])= 1, i = 1,2, ... 

2) this system is initial{)' observable if and only if 
Rankd<cl,t/1, > <cz,t/1, > ... <cP,tjJ, >f)=1, i=1,2, ... 

Remarks: 
1. It can be easily verified that the controllability condition ih Theorem 1 is equivalent to Theorem 3.11 or 

Proposition 3.13 in Ref 13 and the observability condition is equivalent to Theorem 3.25 in Ref 13. 
2. If we choose hFiff;, then the system is fully decoupled which means that we can control each state x1(t) by the 

corresponding input vector element u;(t). This is also referred as modal control in the study of vibration control 
of flexible structure. 

3. If the value of b, are orthogonal to certain eigenfunction '1/j ofthe adjoint operator A*, then the corresponding 
state x1 is uncontrollable. 

4. Similar results for c;'s as b;'s in Remark 2 and 3 can be obtained if the observability of state xis concerned. 

m. Balancing of Finite Dimensional System 

Let G be a stable system with differential equation of the form: 

{
x(t) = Ax(t) + Bu(t) 

G: 
y(t) = Cx(t) 

(21.a) 

(21.b) 

where A E R""", B E R""m, C E RP"" are continuous real matrix value functions. It is often convenient to assume 

that the system is relaxed in the infinitely remote pass, i.e., lim,_.~ x(t) = 0. The triple of matrices (A,B,C) is 

called a realization of the system. Assume this system is both controllable and observable, then the pair (A,B) is 
controllable and (C,A) is observable and the triple (A,B,C) is called minimal realization. 

3.1 Controllability function and observability function 

Define the controllability function Lc(x0) and observability function L0 (x0) of the linear system (21) as: 
0 

Lc(x0 ): min _! Jl~<tf dt (22a) 
uEL'(-«>,0) 2 

x( -oo )=0, x(O)=x0 -oo 

(22b) 

Note that Lc(x0} is the minimum control input energy which is used to drive the system state x(t) from rest 
(x( -oo) = 0) to the current state (x(O)=x0) and the functionLo(x0) is the free output response energy of the system 

which is released from state x(O)=x0 without any control input (u(t)=O, t~O). It is very easy to verify that 
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(23) 

where 

"' "' 
p = J etA BBT etA' dt , Q = J etA' cr CerA dt (24) 

0 0 

P and Q are called the system controllability gramian and system observability gramian, respectively, which can 
also be obtained as solutions of the following Lyapunov equations: 

AP+PAT +BBT =0, ATQ+QA+CTC=O (25) 

For stable A, these solutions are positive. The controllability gramian P and observability gramian Q are the 
convenient form of the joint characteristics of a system's controllability and observability. Let u be the Hankel 
singular value of this system, it can be proved that 

PQx0 = u 2 x0 (26) 

i.e. the square ot the Hankel singular value u 2 is the eigenvalue of the matrix PQ. Since the matrix PQ has n 
positive eigenvalues, we can denote their square roots by a diagonal matrix l: 

L =I (TI (T2 0 l 
l 0 u. 

where u 1, u 2 , ••• , u. are ordered with the decreasing magnitude. 

3.2 Why balanced realization? 

The system triple (A,B,C) is balanced, if its controllability and observability gramians are equal and diagonal [2] 
i.e. P = Q = l:. We say that this realization is an ordered balanced realization if the elements in l: satisfying 

u 1 > u2 > ··· > u. > 0. Let the current state x(O) of this balanced system be partitioned as 

it follows directly from Eq.(23) that the controllability and observability functions are written as 

1[1 2 1 2 1 2] 1[o- 2 2 2] Lc(x0 )=- -x01 +-x02 + .. ·+-x0., L0 (X0 )=- 1x01 +u2x02 + .. ·+u.x0• 
2 u 1 u 2 u. 2 

(27) 

The more intuitively physical meaning of the controllability and observability functions can be explained as 
follows. Lc(x0) is the input energy used to drive the system state which can be related to the actuator power, and 
L0 (x0) is the output response energy which depends on the sensitivity of the sensor measurement. If an order 
balanced system (A,B,C) has large Hankel singular values u1, u2, ... , u., then it means that 
1) Lc(x0) is small, i.e. only moderate actuator powers are necessary to drive the system from rest to state xo. 
2) The related L.(x0) is also large, i.e. the very accurate and sensitive sensors are not critically required. 

On the other hand, for an ordered balanced system with some small Hankel singular values, say Uk, ... , u., the 

magnitude L~=k x~,/ u; is large as the major contribution term in Lc(x0), so this system can only be driven to 

current state with large input actuator power. Similarly, the magnitude L,"=k a;xg; is small compared with other 

terms in L 0(x0), so only very accurate and sensitive measurement system can be used to detect these signals. Hence 
if <Jy >ak+ 1, the state components xk+ 1 to x. are insignificant from this energy point of view and may be removed to 
reduce the number of state components of the model without making significant drawback in system performance. 
Therefore the Hankel singular values can not only be used to judge the joint characterization of controllability and 
observability of the system but also indicate that the balanced realization can serve as a good technique to fulfill 
system model reduction. 

3.3 The implementation of balanced realization 
Assume that (A,B,C) is minimal but not balanced realization of system G, given by Eqs.(2I.a) (2I.b), i.e. 

(A,B) is controilable and (C,A) is observable, its controllability gramian P and observability gramian can't 

satisfY Eq.(38). In order to find the balanced realization of system· G, we have to perform the coordinate 
transformation. Let T be an invertable matrix such that the new state x is related to the original state x by 

x=Tx 
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then Eqs.(2l.a)(2l.b) become as 

where 

t: = ifx+Bu 

y=Cx 

A=r'AT, B=T-1B, C=CT 

(A, li, c) is the new representation. Is it possible for us to find similarity transform T such that 

balanced realization? That is, the solutions of the following two Lyaponov equations: 

AP +PAT +BBT =0, Jf.TQ +QA+CTC =0 

must satisfy 

P=Q=L. 
It has been proved that this similarity transform exists and given by 

(28) 

(29) 

(A.,li,c) is a 

(30) 

(31) 

T = Q-tvr,t (32) 

Therefore, the triple (A.,.B,c) in Eq.(29) which is obtained from Eq.(30) is the state-space representation of the 

balanced realization of system G. 

3A Balanced model tmneation 
Suppose the ordered Hankel singular values o-1,u2 ,···,u" of the system G satisfy the conditionuk >> uk+t 

for some k, then we can partition the states :X in balanced realization corresponding to k as 

x(t) = [~al = [[:xl .. . xk r J (33) 
xb [:xk+l ... :x"y 

The k-vector xa contains the components to be retained, while the (n-k)-vector x6 contains the components to 

be discarded. Now partition the matrices A , B and C conformably with x to obtain 

A=[;: i::J B=[;:J C=[c" cb] (34) 

By omitting the states and dynamics associated with :X6 , we obtain the lower-order system 

(35) 
Y =Caxa 

The ,tlh-order truncation of the balanced realization (l,B,C) is given by 

also partitioned as 

(Aaa,Ba,C'J The diagonal matrix~ is 

(36) 

More intuitive meaning about the balanced model truncation under the condition uk >> o-k+l can be understood 

as follows. Let u k be l 0 times larger than u k+l , we split the controllability gramian into 

LJx) = Lc(xa) + Lc(xb) (37) 

where 

L (- ) 1 [ 1 -2 1 -2] X =--X + .. ·-1--X 
c a 2 o-1 1 uk k ' 

X =- --X + .. ·+-X L (- ) 1 [ 1 -2 l -2] 
c b 2 O"k+l k+l ('jn n 

and since 

(38) 

it follows that 10 times larger control input energy is spent to drive the states (xk.,,. .. ,x") than to drive states 

(x,,.··,xk). Similarly, the sensor to detect the output energy contributed from states (xk.,,. .. ,:X") must be 10 

times more sensitive than from states (x,,· .. ,xk). Hence, we may say that states (xk+,,. .. ,x")is relatively less 

controllable and observable than states (:X,,· .. , xk). 

Remarks: 
l. The above observation leads to conclude that the states (xk+t•"',xn) are relatively less controllable and 

observable than the states (xl, .. ·, xk) instead of that states (xk+l• ... , xn) is uncontrollable and/or 
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unobservable. 
2. The Hankel singular value a; is recognized as the indicator to measure the relative controllability and 

observability which is not the same as the application of rank conditions 

rank(B AB ··· A"-1B]=n, rank~ CA ··· CA"-1r =n 

to judge the overall system's controllability and observability. We can use a; not only to indicate the distance of 
the state x, to the uncontrollable region but also to denote the distance of same state to the unobservable 

region. Thus the value of a; can be considered as the controllability margin and the observability margin of 
measuring the relative information about state x, . This is similar to the stability analysis in finite-dimensional 

system in which Nyquist criterion provides the same information on the absolute stability of a control system as 
does the Routh-Hurwitz criterion and phase margin and gain margin give qualitative indication on the relative 
stability of a closed-loop system as well. 

3. There are infinite many different types of state representation of system G, and each representation has a set of 

state variable x(t) = [x1 x2 ••• x.r to realize the system information. We can compute the controllability 
margin and observability margin associated with state x1• In general, these two margins are not the same but 
they do have the same value when the state-space representation is obtained through the balanced realization. If 
we put these two margins on two sides of weights and measures, they are in the state of equilibrium. 

IV. Balanced Realization of Infinite Dimensional System 

4.1 Hankel operator of infinite dimensional system 
Consider the same distributed-parameter system governed by Eq.(l), we can define the Hankel operator 

corresponding to G as in the case of finite-dimensional system, that is 
ra :L2 (-oo,O)~L2 (0,oo) 

u ~--+ y = (r0 u)(t) = CetArp0 

where 

(39) 

and etA is a strongly continuous semigroup with the differential operator A as its infinitesimal generator which 
can be constructed by 

tA 12 2 13 3 
e =l+tA+-A +-A+··· 

2! 3! 
The Hankel operator can be rewritten as 

(r0 u)(l) =roo Ce(t-•lABu(r }ir, for 1 ~ 0 

The adjoint of rG is then given by 

r~ :L2 [0,oo)~L2 (-oo,O] 

y 1--+ u = (r~y)(l) = r B* eC•-IJA" C*y(r)dr 

where A*, B* and c* are the adjoint operators of the operators A, B and C, respectively. Let u 2 * 0 be an 

eigenvalue of r~ra and nonzero u e L2 (-oo,O] be a corresponding eigenvector i.e. 

(40) 

Define 
1 2 v:=-r0 ueL [O,oo). 
u 

Then (u,v) satisfy 

rau=uv, r~v=uu 

This pair of vectors (u,v) are called a Schimdt pair of ra and uis called the Hankel singular value. It is evident 

that ra has infinite many singular values due to the existence of infinite many eigenvalues associated with the 
differential operator A. The Hankel singular values and the corresponding Schimdt pairs can not be easily 
constructed by the integral operator theory. And we will develop the realization technique in which the matrices 
with rank infinite are used to represent these pairs and then calculate these singular values. 

4.2 Balanced Realization 
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Let ¢0 (.;) be expressed in terms of the bases {¢,(.;)}:1' 

(1)0 (.;)=:tv,¢,(.;)=(¢, ¢2 •• ·]V (41) 

The Hankel singular values can be computed with the aids of Lemma 1 and are the eigenvalues of an infinite 
matrix PQ, i.e. 

(42) 

And 

(43) 

where the matrices [B], [C] are given in Eqs.(16)(17). Assume for stable system, Re(),,) < 0, direct integration 

leads to 

(44) 

From engeneering point of view, the computation of Hankel singular values can be solved by Eqs.(42)-(44) with 
large number of terms in the matrixPQ instead of using infinite many terms. Now let the ordered Hankel singular 
values are organized as Er a, J. 
and T be an invertable matrix such that the new state x = [x1 x2 . • • ·] 1s related to the original state . 

x = [x1 x2 • • ·] by 

x=Tx 
where 

with the matrix V satisfYing 
Qvz PQu2V = VL2 

Hence the balanced realization (:A, B, E) of this system is 

A=Lli2VTQ'!2A(!ll2vr,ll2, B=LI/2VTQ'/2B, C=C(!ll2vr,ll2 

Therefore, the corresponding balanced state-space representation ofEq.(l) is 

4.3 Balsnced model truncation 

(45) 

(46) 

(47) 

Suppose the ordered Hankel singular values u 1,u2 ,-·· of the system G satisfY the conditionu" >> un+l for 

some n, then we can partition the states x in balanced realization corresponding to n as 

X= [xt (t) .. ·Xn (t) I :xn+l (t)·· ·f = [xa (t) I xb (t)] 
Then-vector xa contains the components to be retained, while the vector xb contains the components to be 

discarded. Now partition the matrices A, B and E conformably with x to obtain 

A= [~a ~b], lJ = [~b], E = [Ea Eb] (48) 
Aba Abb 

with Aaa E R"""' B. E w·m' E. E Rp•n. By omitting the states and dynamics associated with xb' we obtain the 

lower-order system 

y =C.xa 
(49) 

The n'h-order truncation of the balanced realization (fi,lf,E) is given by (Aaa,Ba,Ea) which is an approximated 

system for the orginal infinite dimensional system. 
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V. Dlustration Example 

Consider initial boundary value problem for temperature in a homogenous, isotropic rod with insulated sides 
as shown in Fig. I: 

8,p(t,~) = I 82;(1,~) + bl~\..lt) 
81 1f2 8~2 ~ '"~ 

(50.a) 

y(t)= £c(~);(t,~)t~ (50. b) 

The associated boundary condition and initial condition are 

8~~o) =O, 8~~I) =O, ;(o.~)=~(~) (50. c) 

~......_ ;(t,~) 

~ 
Isolated Isolated 

0 t--------:.;o------+-

Figure 1. Temperature distribution in a homogenous isotropic rod with insulated sides 

It is easy verified that the cooresponding differential operator A is self-adjoint, i.e. A• =A. And then the 

eigenvalues and eigenfunctions of A and A* are equal. It is noted that the eigenvalues are A.. = 1: = -n2 and 

the eigenfunctions are ;. =If/. = J2 cos(n1rq) and ; 0 = lf/0 = 1. 

Suppose that the point control and point observation are used. The actuator is placed at ~a i.e. 

b(q) = 8(.; - ~J and the sensor is placed at qs i.e. c(.;) = 8(.; - ~.) . 
Hence, the diffilsion P.D.E. state-space realization as follows. 

d r=:~:J r- 1 
- 4 

01=:~11=:;;;)} - = +2 00 
dt x3;(t) 

0 
-9 · .. x3;{t) cos(~1f.;0 ) 

(Sl.a) 

y(t) = ,12~~.) ~2><.) OO<(Jz~.) ···F~l] (Sl.b) 

The conditions of controllability and observability of this system are cos(n1f~0 ) * 0 and cos(n1r~,) * 0, 

n = I,2, · · ·, respectively. These conditions are equivalent to 

.;0 ,.;, ~ { q E (O,I]j.; = 2~;I ,n,m eN} 
This result means that for single direction heat conduction problem , if only one energy source is located at 
specified position and only one sensor is used to measure the temperature at certain location, the control of the 
whole range of temperature cannot be achived if the sensor and /or actuator are placed at .; = 2m -l/2n . 

The corresponding controllability gramian P and observability gramian Q are: 

cos2 (1f~0 ) cos(1f~0 )cos(21f~0 ) cos(1f~a)cos(31f~0 ) 
12 +12 

P = 2 cos(21f~0)COs(1f~0 ) 
22 t I2 

e +22 I2 +32 
cos(21f~0 )cos(21f~0 ) cos(21f~a )cos(31f~0 ) 

22 t22 22 +32 
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cos2 (1r~,) COS(7r~, )cos(21l"~,) cos(7r~,)cos(37r~,) 

12 +e 12 +22 e +32 

Q=2 
cos(21r~,)cos(1r~,) cos(27r~,) cos(27r;,} cos(27r~, )cos(37r~,) 

(52b) 
22 + 12 22 +22 22 +32 

Since the magnitude of the elements of P, Q is decreasing by I/n2 as the element position(i,j) increasing, the 

most effective terms of eigenvalues of PQ are first few term. Thus we can take the first finite I x I terms, say ~ 

andQ1 , to approximate P and Q. Let PQu = a 2u and P1Q1u1 = aiu1 , we have lim P1 = P, lim Q 1 = Q ,. In 
1---.oo 1 ...... oo 

general, we may take I= 10 or I= 50 to meet the requirement of accuracy. 

The balanced realization of this system can be solved using the approximated controllability gramian Pr and 

obsevability gramain Q1 as stated in previous section. Hence, the model reduction can also be performed. 

VI. Conclusion 

This paper deals with an analysis of diffusion.partial differential equation and offers a easy tool for infinite
dimensional system model reduction. Intead of using operator theory to compute the Hankel singular values, we 
develop an simple algorithm to compute these values through a matrix equation with infinite many components. In 
order to solve this problem in engineering sense, we can only use the first few terms of this equation without loss 
of significance. At the meanwhile, the balancing for finite dimensional system is briefly reviewed and more 
intuitive meaning has been discussed. As stated in our paper, we believe there may be some new design criterion 
of control system may be incurred in terms of controllability margin and observability margin. 
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