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1 Introduction 

The exact mathematical solution of many scientific problems is not feasible, and even when 
an exact solution can be found it may be difficult to interpret or inconvenient for numerical 
evaluation. An asymptotic solution may provide the insight we need however, and often 
enhances or complements any numerical computation that we might make. Thus the solution 
f sought may depend on some small parameter E say, such that 

J (c) rv go (f), f -tO 

(equivalent to limc-ro If( E) I g0( f) I = 1) defines the solution behaviour by reference to a known 
function g0 . vVe say that ".f is asymptotic to g0 " or "go is an asymptotic approximation for 
.f". Sometimes we can be more precise, and write f as an "asymptotic expansion" 

where {gi( c)} is a sequence of known functions such that lim:--+o I9H1 (E) I gj (E) I = 0 V j. How­
ever, the function f usually depends on another scalar or vector variable x (say) independent 
of E, so an asymptotic expansion may be invalid in certain regions - i.e. not uniformly valid 
(for all x). Such singular behaviour often arises when the domain of x is unbounded, or when 
the order or type of differential equation in f changes at the limit E = 0. There are various 
mathematical techniques to cope with singular behaviour, which can be an important feature 
to recognise and interpret in the mathematical sciences. 

Another useful area of asymptotic analysis allows us to approximate analytically difficult 
integrals. Over 200 years ago Laplace evaluated the integral 

F(A) = J: exp[-A.f(t)]g(t)dt (A > 0) 

in the large parameter limit (,\--+oo), when the known functions f and g are assumed suffi­
ciently smooth. Thus if .f has an absolute minimum at t 0 E( ex, (3), we have 

F(A) '"" g(to) exp[-A.f(to)] )../'~to), A-too. (1) 
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When A is purely imaginary, the analogous "method of stationary phase" produces a 
similar result. The "method of steepest descent" or "saddle point method", referring to a 
maximum or saddle point in the integrand, represents a generalisation to the complex plane 
originally due to Riemann. The essential idea is to deform the path of integration to avoid 
rapid oscillations of the integrand in the large parameter limit. 

2 Viscous Flow 

One of the earliest applications of asymptotic analysis arose in hydrodynamics. The velocity 
field for incompressible flow satisfies 'V ·v = 0, so in a spherical coordinate system Stokes 
(1843) introduced a "stream function" '¢(r, B) such that the related velocity components are 
Vr = '¢8 I ( r 2 sin B) and vo = -'¢r I ( r sin B), for axisymmetric incompressible flow (where the 
motion is the same in any plane through a common line). The corresponding Navier-Stokes 
equation for steady viscous flow is 

4 R 8 8 '¢o 2 
D '¢ = ~B ( '¢o-;;- - '¢r >:~B + 2 cot B'¢r - 2- )D '¢, (2) 

r s1n ur u r 

where R denotes the dimensionless Reynolds number and the differential operator 

The corresponding boundary conditions to be satisfied for flow past a sphere of unit radius 
are '¢(1, B) = '¢r(1, B) = 0 and '¢(r, B)-+~r2 sin2 Bas r-+oo. 

A straightforward perturbation expansion for "slow" flow (i.e. in the limit of small 
Reynolds number R--+0) is of form '¢ "' '¢0 + R'¢1 + .... Thus on substituting into equa­
tion (2), at zeroth order we obtain the solution originally found by Stokes (1843), which is 
uniformly valid; but when first-order terms (of order R) are included, the result 

1 2 1) . 2 [ 3 ( 2 1 1) . 2 . l '¢ "' 4(2r - 3r + ;: sm B + R- 32 2r - 3r + 1 - ;: + r 2 sm B cosO+ '¢1c (3) 

is not valid at large radial distances (r > R-1 ) from the sphere. In particular, the boundary 
condition as r-+oo is not satisfied (Whitehead 1889). 

We may derive another asymptotic solution valid for large distances by first scaling the 
independent variable. Thus on introducing p = Rr, the differential equation becomes 

(4) 

where 
2 82 sinO a 1 a 

D = ap2 + --p2 aB(sinBaB). 

The uniform validity of the earlier zeroth order approximation (Stokes' solution) allows us 
to infer that 
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as R-tO, which on substituting into (4) produces "Oseen's equation" 

( 2 a sin () a ) 2 D - cos ()- + --- D g1 = 0, 
ap p a8 

(5) 

which Oseen (1910) derived using physical arguments. Following Goldstein (1929), in equa­
tion (5) we may set D2g1 = <;bexp(tpcosB) so that (D 2 - ~)<;/> = 0, to obtain (as R-tO) 

~' "' 2~2 l sin2 8- 2~ (1 +cos B){l - exp[ -~p(l -cos 8)]}. 

Rewriting this result in terms of r and expanding the exponential, we have 

(6) 

Thus the "inner" asymptotic solution (3) and the "outer" asymptotic solution (6) match 
for intermediate values 1 « r « R- 1 provided 1/J1c "' ~r2 sin2 e, so the uniformly valid 
first-order expansion replacing them is 

1 2 1 ) . 2 () 3 [( 2 1) . 2 () ( 2 1 1 ) . 2 l 'ljJ "' - ( 2r - 31' + - Sill + - R 2r - 31' + - Sill - 2r - 3r + 1 - - + - sm () cos e . 
4 1' 32 r r r 2 

Perhaps the best known case where a governing differential equation reduces to an equa­
tion of lower order is the solution of the Navier-Stokes equation for steady flow past an 
obstacle in the limit of large Reynolds number ( R-'roo). In the context of otherwise uniform 
plane flow, we use a stream function 1/J ( x, y) in Cartesian coordinates to get 

(7) 

where \72 = a2 I ax2 + [)2 I ay2 • This form of the N a vier-Stokes equation is to be solved subject 
to z/>(x, F(:r)) = 0 and F'(x)1/;y(x, F(x)) + 1/Jx(x, F(x)) = 0 at the surface y = F(x) of any 
obstacle. In this case, an asymptotic expansion of form 1,b ,..._, 1/;0 + R- 11/;1 + .... (R-too) 
produces a third-order (rather than a fourth-order) differential equation to zeroth order: 
namely the equation 

a a 2 
( 1/Joy ~ - 1/Jox ~) v 1/Jo = 0, 

ux uy 

which describes idealised inviscid flow. In the neighbourhood of the obstacle (i.e. in the 
inner region often called the "boundary layer") where the term R- 1 \74 1/; is not small, Prandtl 
(1905) essentially adopted the original equation (7) to avoid this reduction of order, so that 
the viscous no-slip boundary condition 1/;(x,F(x)) = 0 may be satisfied. 

3 Seepage Flow to a Drain 

Although the traditional rice paddy in Asia exploits the natural wet conditions well, drainage 
methods may be important for both urban and rural land. In particular, rows of buried 
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drainage pipes may control the level of the local water table, or even drain ponded water. 
We can demonstrate the "m~thod of matched asymptotic expansions" in this context. 

Let us consider a horizontal row of hollow circular cylindrical pipes made of some non­
porous material, buried in the soil and equally spaced. Water seeps through the soil to small 
gaps between the pipes and hence drains away. We assume the soil is homogeneous so that 
Darcy's law is valid, and there exists an harmonic potential <jJ for the seepage velocity (see 
for example, Muskat 1937). Although the water table (or the soil surface) tends to be almost 
horizontal, if it is taken to be a plane the governing Laplace equation does not separate, so we 
avoid this difficulty by assuming it to be a circular cylinder of radius b coaxial with the drain 
of radius a. We shall see that the outer geometry is unimportant, for the flow is largely 
determined by the gaps. Thus in cylindrical polar coordinates, we have an axisymmetric 
boundary value problem in dimensionless independent variables: 

~~(r fJ<jy) + (}2
</J = 0 (.\1 < r < .\2, lzl < 1) 

r fJr fJr fJz 2 

subject to <jy(.\1, z) = Vo for lzl < £but </Yr(AI, z) = 0 for £ < lzl < 1, <jy(.\2, z) = 0, and 
¢2 ( r, ±1) = 0. If h denotes a characteristic horizontal length, the geometry is defined by 
.\1 = ajh, .\2 = bjh, and the dimensionless small gap width is z = djh = E « 1. 

The solution <jJ must be an even function of z, and it may be written (Sneyd & Hosking 
1976): 

</Y(r,z) = l< K(r,z,a)f(a)da, (8) 

where the kernel function is 

K(r, z, a)= ~.\dn(.\2/r) + _!__ E Tn(r) cos(mrz) cos(mra) 
2 rr n=l n 

(9) 

with 

an appropriate combination of modified Bessel functions. Note that the range of integration 
is restricted to across the gap where the flux function f( z) = -</Yr( .\1 , z) is non-zero, and 
this function is defined by the associated Fredholm integral equation 

(izl < t:). 

We are interested in how the ratio of the flux through the drain to the applied velocity 
potential Vo depends upon the geometry, so we may "normalise" the flux function such that 
f~, f (a )da = 1. An asymptotic solution for t«l can now be found by the method of matched 
asymptotic expansions. 

On introducing the scaled variable~= aft: and writing F(e) = tf(t:O, from equation (8) 
we have 

</Y(r, z) = j_1
1 K(r, z, c~)F(Od~, 

so expanding as a power series in f. we formally obtain the outer expansion valid far away 
from the gap: namely 
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since f~ 1 F(Od~ = f~<f(o:)do: = 1 and f~ 1 ~F(Od~ = 0. The infinite series (9) for K(r,z,O) 
diverges at the point r = )q, z = 0 in the centre of the gap between the pipes. For n» 1 we 
have 

Tn(r) ~ I~o(nrrr) ,...., -e-n,.(r->.1)[1- _1_(~ + ~) + O(n-2)], 
A1(nrr.Ar) r 8nrr r .\1 

on invoking well known asymptotic expansions of the modified Bessel functions for large 
arguments. Thus if we write 

and 

Rn(r) = Tn(r)- ~e-mr(r->.,)[1- l ( ~ + ~ )] y-; S(n-l)rr r .\1 
for n2:2, 

we have an explicit expression for the outer expansion: namely 

1 fil 1 3 -- -(-+-)Re{x+(l-x)ln(l-x)} 
8rr2 r r Ar 

(10) 

where x = exp[rr( iz + .\1 - r )], on using the formulas I:;~=l xn In = -ln(l - x) and 
L;~=2 xnl(n(n- 1)) = x + (1- x)ln(1- x). The singular behaviour near the gap (as 
r-+.\ 1 and z-+0) is confined to the last two terms in this expression. To obtain the inner 
expansion valid in the region near the gap, we introduce the scaled independent variables 
X = ( T - .Ar) I c, Z = z I c to rewrite the fundamental Laplace equation 

EP¢ e: 8¢ 82¢ 
8X2 + .\1 + t:X [)X + 8Z2 = O. 

Thus assuming¢= c/Jo + Ecp1 + ... ,we have to solve (to zeroth order) 

subject to the inner boundary conditions ¢0 (0, Z) = V0 for IZI < 1 and c/Jox(O, Z) = 0 for 
IZI > 1. (The outer boundary conditions on the surfaces r = .\2 and z = 1 are typically 
ignored in the construction of the inner expansion.) It is convenient to use elliptic cylindrical 
coordinates ( u, v) defined by X = sinhusinv, Z = coshucosv to obtain the inner expansion 

(11) 

We now match over intermediate distances from the gap by expressing the outer expansion 
(10) in terms of the inner variables X and Z for comparison with the inner expansion (11) 
rewritten in terms of the outer variables r and z (this is sometimes called a "matching 
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principle"). Thus x =exp[7rf(iZ- X)]= 1 + 7rf(iZ- X)+ 0(f2), so near the gap we find 
(noting two terms in dnf cancel) 

For the inner expansion we have (r- >..1)/f "' eusinv and z/f "' eucosv, so that in terms of 
the outer variables 

(11') 

The inner and outer expansions therefore match over intermediate distances provided we 
identify 

1 1 2 1 1 00 1 
Vo = ->..dn(A.z/>..1) + -ln(-)- --+- L -Rn(>.t). 

2 71' 7l'f 271'2 A1 71' n=1 n 

The main interest in this problem is the so-called relative flow (Kirkham 1950) -i.e. 

R = >..1log(A.z/ >.1) 
2Vo , 

the ratio of the calculated flow to that for a corresponding completely open drain (when 
f = 1). Thus we have (for f«1) 

2 2 1 00 1 -1 
R={1+ >..l(A./A.)[ln(-)--2 \ +2:-Rn(>.1)]}, 

71' 1 n 2 1 7l'f 71' A1 n=1 n 

which proves to be a remarkably accurate formula (Sneyd & Hosking 1976). In the limit 
f--+0 we have R--t7rA.1ln(A.2/A.t)/[2ln(2/7rf)], when the so-called "total flow rate" 

271'2aVo 7l'VQ . 
Q, = ln(2/7rf) = ln(2/7rf) x(gap ctrcumference = 27ra) 

is governed only by the gap parameter f for a given applied potential Vo. 

4 Non-Ideal Plasma Instabilities 

The instability of magnetic confinement schemes has been a major problem in controlled 
thermonuclear fusion research for over thirty years. There are laboratory configurations 
designed to avoid ideal magnetohydrodynamic (MHD) instability, but residual non-ideal 
modes can be quite destructive. Their important feature is the relaxation of the ideal 
constraint that any plasma fluid element must move with the magnetic field, so consequently 
the system may shed additional potential energy. From the mathematician's viewpoint, the 
ideal theory is again a singular limit corresponding to reduction of order. The interesting 
seminal paper by Furth, Killeen & Rosenbluth (1963) identified three types of resistive 
instabilities ("resistive-g", "tearing" and "rippling" modes), associated with relaxation of 
the ideal constraint in thin boundary layers due to small but non-zero resistivity. The 
present author's first research paper showed that inclusion of the so-called Hall effect similarly 
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introduces new instabilities, corresponding to a differential equation of higher order than in 
the ideal MHD limit (Hosking 1965). There is now a very extensive !iterative that treats 
much more complex geometric configurations and other non-ideal plasma properties such as 
magneto-viscosity, but there is no space to discuss these intriguing matters further here. 

5 Moving Loads over Continuously-Supported Plates 

The asymptotic evaluation of integrals has often arisen in the mathematical theory for the 
response of a continuously-supported beam or plate due to a moving load. The beam or 
plate may represent a rail or road surface, an airport runway or a floating ice sheet in a cold 
region. The moving load might be a conventional vehicle, a landing aeroplane or a hovercraft. 
Moving loads on ice plates is the subject of a recent monograph by Squire, Hosking, Kerr & 
Langhorne (1996), where it is emphasised that the deflexion can be much greater when the 
load is moving than when it is stationary. Hovercraft exploiting this phenomenon are used 
as ice breakers on the St. Lawrence Seaway in Canada, but the safe operation of transport 
systems of course usually means avoiding any fracture. 

The accepted mathematical model involves. a thin plate equation for the vertical deflexion 
ry(x, y, t): namely 

4 82ry 
D\1 ry+phat2 =p-f(x,y,t) 

or its visco-elastic counterpart (Squire et al. 1996). Here \12 = 82/ 8x2 + 82/ 8y2 as before, 
D is the effective flexural rigidity of the plate, p and h are the plate density and thickness, 
p is the pressure exerted by the underlying foundation on the plate, and f(x, y, t) is the 
downward forcing function on the plate due to the moving load. For example, in the context 
of a floating ice sheet when the underlying foundation is water of density Pw, from Bernoulli's 
equation for incompressible irrotational flow we have 

81> 
p = -pw( at )z=O - pgry, 

where 1> denotes the velocity potentical and g the gravitational acceleration. 
Using a Fourier transform 

we immediately obtain the deflexion due to a load moving in the x-direction with uniform 
speed V: namely 

(12) 

where F(k1 , k2) is the Fourier transform of the loading function f(x, y, t) = F(x- Vt, y) = 
F(X,y), and B(k1 ,k2) = Dk4 + pg- ph'V2k1 2 - (pV2k1 2 /k)coth(kH) with wavenumber 

k = Jki + k~ and h' =ph/ Pw· Note that B(kt, k2) = 0 is just the dispersion relation with 
w replaced by Vk1 as required for a steady wave pattern, since the component of the lqad 
velocity normal to any wave crest (Vktfk) must equal the crest phase speed (w/k). 

59 



Generally, one would not expect to evaluate the integral in equation (12) exactly, but 
since it is of considerable interest to predict the deflexion some distance away from a localised 
(point) load we can exploit asymptotic methods. After first integrating with respect to k1 

by contour integration, we seek asymptotic approximations for the integral 

(13) 

arising due to the pole at k1(k2 ) associated with the point on the wavenumber curve Ck 
defined in the real (kt, k2)-plane by B(kt, k2 ) = 0 (see Lighthill1978). 

For most directions away from the load, we deform the path of integration in (13) to pass 
through saddle points in the complex plane, where we have truncated Taylor representations 
ofform k1(k2) = k0 + k~(k20)(k- k20 )2 /2 and get stationary phase approximations analogous 
to the Laplace integral asymptotic approximation (1): namely 

"7(X,y) ,..., - F(k10,k2o)[(aBjan)otl ~e-i(ktX+k2Y+e), 
v~ 

where r = yfX2 + y2 -+ oo, K:0=:Jk~(k20 )J denotes the small curvature on Ck at P0 (k10 , k20), 

a 1 an denotes differentiation normal to c k in the sense of increasing w, and e is a phase factor 
equalling 1r /4 if Ck is convex to the n-direction at Po and 1r otherwise (Davys, Hosking & 
Sneyd 1985). There are variations in the neighbourhood of a caustic associated with a point 
of inflexion on ck (where k~ (k2) = k~(k2) = 0), and in the neighbourhood of a "supercaustic" 
corresponding to when two caustics just merge (where k~(k2 ) = knk2) = kt(k2) = 0). All 
of this enables us to ascertain preferred directions of energy propagation corresponding to 
the caustics (or supercaustics), and to produce wave patterns that are notably dependent 
on the load speed (Davys et al. 1985; see also Squire et al. 1996). 

More recently, research attention has shifted to the time-dependent response due to 
an impulsive-started load, to further examine the marked resonant response at so-called 
critical load speed. In this case, we consider the Fourier double integral (Nugroho, private 
communication 1996): 

(X ) = -~ joo joo tanh(kH) -i(ktX+k2z){ 1- eillltt 1- e-i\112t }dk dk 
"7 ' y' t 8 2 (k) e ,y, + ,y, 1 2 7r p -00 -00 c 'I' 1 'I' 2 

(14) 

where \11 1 = kc- k1 V and \11 2 = kc + k1 V (k = Jkr + k~), the coordinates (X = x- Vt, y) 
are again centred at the point load that instantaneously moves with constant speed V, and 
t > 0 denotes the time. We can also derive a corresponding integral for the time-dependent 
deflexion under the centre of a uniform circular load of radius R (Wang & Hosking 1996): 

"7(t) = _ 7r:~ fooo tanh(k:~:1 (kR) l sin(kcs)J0(kV s)dsdk. (15) 

The asymptotic evaluation of the integrals in equation (14) or (15) as t-+oo predicts that 
at all but one load speed a steady state is approached, more quickly than the earlier one­
dimensional (line load) time-dependent theory suggested (Schulkes & Sneyd 1988, Squire et 
al. 1996); but that at the traditional critical load speed V = Cmin (the minimum wave phase 
speed) there is a resonant response, where the deflexion grows continuously as Int. 

60 



6 Summary 

Asymptotic analysis can often provide valuable insight in the mathematical sciences. Singu­
lar mathematical behaviour, which often arises when a solution domain is infinite or when 
the order or type of a governing equation changes in some limit, is commonly associated with 
the mathematical description of important scientific phenomena. Thus when an asymptotic 
expansion is not uniformly valid, a more complete description may be constructed by judi­
cious scaling, or by the matching of more than one asymptotic expansion. Another useful 
area of asymptotic analysis is the approximation of integrals, when some parameter is large 
or small. Several applications have been presented in this paper. 

Recently, asymptotic expansions that include small transcendental terms have become 
the subject of considerable research, variously referred to as "asymptotics beyond all orders" 
or "superasymptotics" and "hyperasymptotics". These mathematical developments relate 
to the "Stokes phenomenon", where there is an abrupt change in the coefficients of otherwise 
exponentially small terms in compound asymptotic expansions, across certain rays in the 
complex plane (see for example, Paris and Wood 1995). This is an example of feedback into 
modern analysis from the work of an outstanding scientist, who (in the words of G H Hardy) 
"was primarily a mathematical physicist" but "also a most acute pure mathematician". And 
no doubt there will be further applications of this new asymptotics involving transcendental 
terms, and indeed other developments in areas such as the asymptotic evaluation of multiple 
integrals, in the splendid tradition of creative interaction between "pure" and "applied" 
mathematics. 

[This paper is a modified and up-dated version of Report Number 9 of the then Depart­
ment of Mathematics (now the Department of Mathematics & Statistics) at James Cook 
University of North Queensland, written by the author in June 1988.] 
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