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This note will complement our recent works in [9], [10], and [11] on Lusin properties of
functions. Let D be a Lebesgue measurable set in R" and k a nonnegative integer. A real
measurable function u defined on D is said to have the Lusin property of order k if for any
€ > 0 there is a C*-function g on R" such that {{z € D : u(z) # g(2)}| < ¢, where we use
the notation |A| to denote the Lebesgue measure of a set A in R™. Unless explicitly stated
otherwise a function defined on a measurable subset D of R® will be assumed to be real
measurable and finite almost everywhere on D. A classical theorem of Lusin states that
measurable functions which are finite almost everywhere has the Lusin property of order
zero, while Whitney shows in [15] that functions which are totally differentiable almost
everywhere have the Lusin property of order 1.

We now describe characterizations given in [9] of functions which have Lusin property of
order k. A function u defined on D is said to have an approzimate (k—1)-Taylor polynomial
at z if there is a polynomial p(z;y) centered at z and of degree at most k — 1 such that

y—rz ly — 2|

while v will be said to be approzimately differentiable of order k at z if there is a polynomial
p(z;y) centered at z and of degree at most k such that

aplim “¥) p(a,:c;y)l _o.
v=e |y -z
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It is shown in [9] that each of the following two statements is equivalent to the statement
that u has the Lusin property of order k on D:

(1) u has an approximate (k — 1)-Taylor polynomial at almost every point of D;
(2) u is approximately differentiable of order k at almost every point of D.

For a nonnegative integer k and a real number p > 1, a function u defined on an open
subset D of R™ is said to have the strong (k,p)-Lusin property on D if there is a postive
constant C' such that for any € > 0 there is a C¥-function g defined on D with ||g|[x,,.p0 < C
such that if we let E = {z € D : u(z) # g(z)} then |E| < € and ||g||k,p;E < €, where for a
measurable subset S of D

lgllkpss = I1D%gllze(s),

la| <k

We refer to [16, p.2] for the standard notations concerning the multi-index o which appears
in the preceding formula. It is clear that if a function u has the strong (k, p)-Lusin property
on D then u € W} (D). On the other hand, we have shown in [8] that if D is a Lipschitz

domain, then functions of the Sobolev space W:(D) have the strong (k, p)-Lusin property.

We remark here that the strong (1,1)-Lusin property for u € WF(D) is a consequence
of a more general result of Michael [12] in connection with the theory of non-parametric
surface area: Let u be a function of bounded variation with compact support on R"™, then
for each € > 0, there is a Lipschitz function g on R" such that [{z € D : u(z) # g(z)}| < €
and |Var(u) — Var(g)| < €, where Var(f) denotes the total variation of a function f.

We now turn to some recent ramifications of the strong (k,p)-Lusin property. For a
function u defined on an open set D the maximal function of u, Mu, is defined by

1
Mu(z) := Sup———— lu(y)ldy, = € R™,
>0 IB(CC,T')l B(z,r)nD (

where B(x,r) is the ball with center 2 and radius r. For properties of fnaximal functions
we refer to [14] and [16]. We introduce also a modified maximal function of u, M;u, which
is defined by

1
Myu(z) := Sup ——— lu(y)ldy, = € D.
o<r<1|B(2,7)| JB(z,r)nD

If u is integrable on every bounded measurable subset of D, then, for r > 0, Mju(z) <
Mov(z) for z € B(0,r)ND with v being the function which coincides with v on B(0,7+41)ND
and vanishes outside. Since Myv is finite almost everywhere on R™, Mju is finite almost
everywhere on B(0,7) N D. Thus Mju is finite almost everywhere on D. The Sobolev space
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W:(D) will always be understood with D an open subset of R". We shall denote by W} (D)
the space of all those functions which are integrable together with all their generalized partial
derivatives up to order k on every bounded measurable subset of D. For u € W (D), the
generalized partial derivatives D%u, || < k, will sometimes be written as uq. If u € WF(D),
then for almost all # € D,uq(2) is defined for all @ with |a| < k. For a real function u
defined on D and A > 0,¢ > 0 let

p(w;A) ==z € R™ : Ju(z)] > A};
uw¥(t) := Sup{A: p(N) >t}

The function u* is called the non-increasing rearrangement of u. It is well known that (see,
for example, [16, p.26]):

(1) m(u; u™(t)) <t

Now we assume that there is L > 0 such that |B(z,r)| < L|B(z,r) N D| for any = € D
and 0 < r < 1, that is, D is of type A in the sense of Campanato[2], although we do not
assume D to be bounded. We show in effect the following Lusin type theorem in [11]:

Theorem 1. There is a positive constant C' = C(n,k,L) such that for u € W[(D) and
t >0, there exist uy € C*(R") and closed subset Fy of D so that

i) ue(x) = D%uy(z) for x € Fy,|a| < k; and

i) (lusllwe < C( 3 Miua)*(2).
o<k

As is shown in [11], it follows from Theorem 1 that the Sobolev space W¥(D), 1 < p < 400,
is an interpolation space between the Sobolev spaces Wi (D) and Wk (D). This result is
first given in [3] under more restrictive condition on D. We also indicate in [11] that the
strong (k,p)-Lusin property of functions in W: (D) is a consequence of Theorem 1. We
remark here that from the proof of the strong (k, p)-Lusin property of functions in sz (D)
by using Theorem 1, the C'*-function g in the definition of the strong (k, p)-Lusin property
is defined actually on R™ and hence this implies that C*(D) is dense in W: (D) in the case
that D is a domain of type A. Hence Theorem 1 is an useful form of Lusin property and
it is desirable to establish similar results for other function spaces. For an arbitrary open
subset D of R"™ we consider the space Lo(D) of functions u such that
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lim [{z € D : Ju(z)] 2 A} =0

and its subspaces L? (D), p > 0, which consists of all those functions u for which there is a
constant C' > 0 such that

Hz € D:u(z)] 2 A} < CA7P.

For functions u € L% (D) we denote by N,(u) the nonnegative number such that N,(u)?
is the smallest number C in the preceding definition. It is easy to see that Lo(D) consists
exactly of those functions u for which u*(t) < oo for t > 0 and that

(2) u'(t) < Np(u)t™/?

for u € L? (D), hence u* € L2 (Ry) and Ny(u*) < Ny(u) for u € L2 (D). Corresponding to
Theorem 1 is the following theorem for Lo(D):

Theorem 2. For u € Lo(D) and t > 0 there exist closed subset Fy of D and continuous
function u; defined on R™ such that

) [D\ Fy| < 2t;

11) u(z) = uy(x) for z € Fy; and

i) el o < u(2).

Since the proof for Theorem 2 is a simplified version of the proof for Theorem 3 in the
following, we omit its proof. From Theorem 2 and (2) we have

Corollary 1. In order for a function u defined on D to be in LE (D) it is necessary and
sufficient that there 1s a constant C' > 0 such that for each t > 0, there is a continuous
function g defined on R™ with ||g||pe <t so that |{z € D : u(z) # g(x)}| < Ct~P.

Using Theorem 2 'we can give an interesting proof of the following corollary which does not
seem to have been stated explicitly:

10
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Corollary 2. Let u € LP(D),p > 1 and let ¢ > 0. Then there is a continuous function g
defined on R™ such that |[{z € D : u(z) # g(z)}| < € and |lu — g||L»(p) <.

Proof. For t > 0 choose u; and F; as in Theorem 2. Then
lu = ullLe(py < llullze(p\ry + lluellze(o\Foys

but we have from Theorem 2

luello(oyry < 20w (@F]7 = [2¢(Jul?)* (8)]/P < [2/0 ([ul?)*(s)ds]'/7,

hence, since [; (|u[P)*(s)ds = Hu]|’£p(D) < 0o, we complete the proof by choosing g to be uy
for a sufficiently small ¢.

We introduce in [10] the spaces @Q%,p > 1 of functions defined on R™ and study their
Lusin-type properties. Some of the results in [10] will be extended to more general spaces
in the light of Theorem 1. We still denote by D an open set in R™. For a function u defined
on D and z € D, let

1
u;z) = Sup—-—"— u(y) — u(z)|dy;
q(u; ) RATIER] B(x,r)ﬁDl (y) — u(z)|dy

q(u;x) is called the mazimal mean steepness of u at z. As we have argued in [10] for the
case D = R™, g(u;-) is measurable. For 0 < p < oo denote by Q2 (D) the space of functions
u defined on D such that ¢(u;-) € L% (D), where we understand by L9 (D) the space Lo(D)
when p = 0. For u € QP (D) define a function a, by

O(u(l') = Iu(.’l))l + q(u,:r), S D7
and for convenience, L%, (D) N QF,(D) will be denoted by LQ? (D); while Q2 (R") and
LQ? (R™) will be denoted by QF and LQP respectively. In [10] Q2 are defined for p > 1,

but this restriction on p is not necessary. In what follows we assume again that D is of type
A in the sense of Campanato[2].

We now state and prove a theorem that complements Theorem 1 when k = 1:

Theorem 3. There 1s a constant C > 0 depending only on n and L such that for u €

LQ% (D) and t > 0 there ezist closed subset Fy of D and Lipschitz function u; defined on
R™ so that

2. ug(z) = u(z) for ¢ € Fi; and

11
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8. NluellLip < Cay(t),
where

jua(z) = wily)|

ug||Lip = ||uel|zee + Sup
” t“ ip ” ” v lfﬂ—y|

Proof. For u € LQ% (D) and t > 0, let W; = {z € D : ay,(z) < ai(t)}, then |D\ Wy| <t by
(1). For z,y € Wy, by letting r = |z — y|, we have

(3) lu(z) —u(y)| < 2{Ju(2)| + [u(y)[}z - y| < 4oy (B)lz —yl,

if r >1/2; while if r < 1/2, we have

1
lu(z) —u(y)| = B@r) A D] Jaenon lu(y) — u(z)|dz
oy Ju(y) — u(a)|dz

|B(.’L‘,T’)| B(z,r)NnD
1

— u(z) — u(y)|dz

B2 Jnyannn 2 ) }

< Llrg(u; ) + 2" 'rq(u;y)] < 2" Lol (t)|z — yl.

<L {rq(u;x) + 2"

The last inequality and (3) show that if we choose a closed subset F; of Wy such that
|D \ Fy| < 2t, then we complete the proof by letting C' = 22"*t?L = 2"+3[ because then

llulr ||Lip < Ceaf(t) and u|F: can be extended to be a Lipschitz function u, defined on R™
such that ||usl|zip = ||u|F, || Lip-

It follows then from Theorem 3 and (2) the corollary:

Corollary 3. There is a constant C' > 0 depending only on n,L and p > 0 such that for

uw € LQL (D) and X > 0 there exist closed subset F\ of D and Lipschitz function uy defined
on R"™ so that

1. |D\ Fx| < CNp(u)? + Np(q(us-))PIA7P;
2. ux(z) = u(x) for x € Fy; and
3. Nluallzip < A

If a domain D is minimally smooth in the sense of Stein [14], then there is a constant
C > 0 depending only on D such that every function u € W} (D) can be extended to

12
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be a function @ with [[@|lw; < Cllullwi(p); from this and the well-known fact that if
u € L'(D) N BV (D) then there is a sequence g in C!(D) such that klim lv — grllzr(py =0
—co

and I.Eim“ng“Ll(D) = Var(u), it follows that if v € L'(D) N BV (D), then u € LQL (D)
—o0
and Nj(q(u;+)) < CVar(u) (see [10]). Thus we have

Corollary 4. Let D be a minimally smooth domain. Then there is a constant C > 0

depending only on D such that for v € L*(D) N BV (D) and )\ > 0 there exist closed subset
Fy of D and Lipschitz function uy defined on R™ so that

1. |D\ Fa| < CllullpvpyA ™
2. ux(z) = u(z) for x € Fy; and
3. ]|u>\||L,~p < A

We point out in concluding our note that Lusin-type properties of functions have various
kind of applications. For some of the applications we refer to [1], [4], [5], [6], [7], [9], and
[11].
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