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This note will complement our recent works in [9), [10), and [11) on Lusin properties of 
functions. Let D be a Lebesgue measurable set in Rn and k a nonnegative integer. A real 
measurable function u defined on D is said to have the Lusin property of order k if for any 
E > 0 there is a Ck-function g on Rn such that l{x ED : u(x) -=/=- g(x)}l < E, where we use 
the notation IAI to denote the Lebesgue measure of a set A in Rn. Unless explicitly stated 
otherwise a function defined on a measurable subset D of Rn will be assumed to be real 
measurable and finite almost everywhere on D. A classical theorem of Lusin states that 
measurable functions which are finite almost everywhere has the Lusin property of order 
zero, while Whitney shows in [15) that functions ,which are totally differentiable almost 
everywhere have the Lusin property of order 1. 

We now describe characterizations given in [9) of functions which have Lusin property of 
order k. A function u defined on D is said to have an approximate ( k- 1)- Taylor polynomial 
at x if there is a polynomial p( x; y) centered at x and of degree at most k - 1 such that 

l . lu(y)- p(x;y)! 
ap zmsup I lk < +oo; 

y-+x Y- X 

while u will be said to be approximately differentiable of order k at x if there is a polynomial 
p(x; y) centered at x and of degree at most k such that 

l . lu(y)- p(x;y)!- 0 
ap zm I lk - . 

y-+x y- X 
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It is shown in [9] that each of the following two statements is equivalent to the statement 
that u has the Lusin property of order k on D: 

( 1) u has an approximate ( k - 1 )-Taylor polynomial at almost every point of D; 

(2) u is approximately differentiable of order k at almost every point of D. 

For a nonnegative integer k and a real number p ;::: 1, a function u defined on an open 
subset D of Rn is said to have the strong (k,p)-Lusin property on D if there is a postive 
constant C such that for any E > 0 there is a Ck-function g defined on D with ll9llk,p;D :::; C 
such that if we let E = {x E D : u(x) #- g(x)} then lEI < E and ll9llk,p;E < E, where for a 
measurable subset S of D 

ll9llk,p;S := L IID"'giiLP(S), 
iai:Sk 

We refer to [16, p.2] for the standard notations concerning the multi-index a which appears 
in the preceding formula. It is clear that if a function u has the strong ( k, p)-Lusin property 
on D then u E w;(D). On the other hand, we have shown in [8] that if D is a Lipschitz 
domain, then functions of the Sobolev space w;(D) have the strong (k,p)-Lusin property. 

We remark here that the strong (1, 1)-Lusin property for u E W1k(D) is a consequence 
of a more general result of Michael [12] in connection with the theory of non-parametric 
surface area: Let u be a function of bounded variation with compact support on Rn, then 
for each E > 0, there is a Lipschitz function g on Rn such that l{x ED: u(x) #- g(x)}l < E 

and 1Var(u)- Var(g)l < E, where Var(f) denotes the total variation of a function f. 

We now turn to some recent ramifications of the strong (k,p)-Lusin property. For a 
function u defined on an open set D the maximal function of 1L, M u, is defined by 

Mu(x) :=Sup I ( 1 )I { lu(y)ldy, x ERn, 
r>O B x, I J B(x,r)nD 

where B(x, r) is the ball with center x and radius r. For properties of maximal functions 
we refer to [14] and [16]. We introduce also a modified maximal function of u, M 1 u, which 
is defined by 

M1u(x) := S'Up I 1 )I { I'U(Y)Idy, xED. 
o<r:'Ol B(x, r J B(x,r)nD 

If u is integrable on every bounded measurable subset of D, then, for r > 0, M 1u(x) ::=; 
M0 v(x) for x E B(O, r)nD with v being the function which coincides with u on B(O, r+1)nD 
and vanishes outside. Since Mov is finite almost everywhere on Rn, M 1 u is finite almost 
everywhere on B(O, r) n D. Thus M 1 u is finite almost everywhere on D. The Sobolev space 
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Wpk(D) will always be understood with Dan open subset of Rn. We shall denote by Wbk(D) 
the space of all those functions which are integrable together with all their generalized partial 
derivatives up to order k on every bounded measurable subset of D. For u E Wbk(D), the 
generalized partial derivatives D 01 ·u, Ia I ::;: k, will sometimes be written as U01 • If u E TiVbk(D), 
then for almost all x E D, u 01 ( x) is defined for all a with I a I ::;: k. For a real function u 
defined on D and ), 2:': 0, t 2:': 0 let 

~t(u; >.) := l{x ERn: lu(x)l >..\}I; 

u*(t) :=Sup{..\: ~t(.A) > t}. 

The function u* is called the non-increasing rearrangement of u. It is well known that (see, 
for example, [16, p.26]): 

(1) ~t(u;u*(t))::;: t. 

Now we assume that there is L > 0 such that IB(x,r)l ::;: LIB(x,r) n Dl for any xED 
and 0 < r ::;: 1, that is, D is of type A in the sense of Campanato[2], although we do not 
assumeD to be bounded. We show in effect the follc~wing Lusin type theorem in [11]: 

Theorem L There is a positive constant C = C(n,k,L) such that for u E Wbk(D) and 
t > 0, there exist UtE Ck(Rn) and closed s·ubset Ft of D so that 

i) I D \ Ft I ::;: 2t; 

ii) u,(:r) = D 01 ut(x) for x EFt, lal::;: k; and 

iii) llutllwk ::;: C( I: Mlua)*(t). 
co ial::=;k 

As is shown in [11], it follows from Theorem 1 that the Sobolev space w;(D), 1 < p < +oo, 
is an interpolation space between the Sobolev spaces W1k(D) and W~(D). This result is 
first given in [3] under more restrictive condition on D. We also indicate in [11] that the 
strong (k,p)-Lusin property of functions in w;(D) is a consequence of Theorem 1. We 
remark here that from the proof of the strong (k,p )-Lusin property of functions in WPk (D) 
by using Theorem 1, the Ck-function gin the definition of the strong (k,p)-Lusin property 
is defined actually on Rn and hence this implies that Ck(D) is dense in w;(D) in the case 
that D is a domain of type A. Hence Theorem 1 is an useful form of Lusin property and 
it is desirable to establish similar results for other function spaces. For an arbitrary open 
subset D of Rn we consider the space L0 (D) of functions u such that 
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lim j{x ED: ju(x)j2:: >.}j = 0 
>.-+oo 

and its subspaces L~(D),p > 0, which consists of all those functions u for which there is a 
constant C 2:: 0 such that 

j{x ED: ju(x)j2:: >.}j :S C>.-P. 

For functions u E L~(D) we denote by Np(u) the nonnegative number such that Np(u)P 
is the smallest number C in the preceding definition. It is easy to see that L 0 (D) consists 
exactly of those functions u for which u*(t) < oo fort> 0 and that 

(2) 

for u E £~ (D), hence u * E L~ ( R+) and N p ( u *) ::; N P ( u) for u E £~ (D). Corresponding to 
Theorem 1 is the following theorem for L0 (D): 

Theorem 2. For u E Lo(D) and t > 0 there exist closed subset Ft of D and continuous 
fnnction Ut defined on Rn such that 

i) ID \ Ftl ::; 2t; 

ii) u(x) = Ut(x) for x EFt; and 

iii) llntllu, ::; u*(t). 

Since the proof for Theorem 2 is a simplified version of the proof for Theorem 3 in the 
following, we omit its proof. From Theorem 2 and (2) we have 

Corollary 1. In order for a function u defined on D to be in L~(D) it is necessary and 
sn.fficient that there is a constant C > 0 such that for each t > 0, there is a continuous 
fnnction g defined on Rn with 1jgf!Loo ::; t so that j{x ED: u(x) -=J. g(x)}j::; CrP. 

Using Theorem 2·we can give an interesting proof of the following corollary which does not 
seem to have been stated explicitly: 
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Corollary 2. Let u E LP(D),p ~ 1 and let E > 0. Then there is a continuous function g 
defined on Rn such that l{x ED: u(x) i- g(x)}l:::; E and l[u- giiLP(D):::; E. 

Proof. Fort > 0 choose Ut and Ft as in Theorem 2. Then 

but we have from Theorem 2 
•t 

llut[ILP(D\Ftl:::; [2tu*(t)Pp!P = [2t(luiP)*(t)] 11P:::; [21 (luiP)*(s)dsPIP, 

hence, since f0
00 (1uiP)*(s)ds = [[u[[~P(D) < oo, we complete the proof by choosing g to be Ut 

for a sufficiently small t. 

We introduce in [10] the spaces Qfv,p ~ 1 of functions defined on Rn and study their 
Lusin-type properties. Some of the results in [10] will be extended to more general spaces 
in the light of Theorem 1. We still denote by D an open set in Rn. For a function u defined 
on D and x E D, let 

q(u;x)=SupiB/ )I { [u(y)-u(x)ldy; 
r>O x,r JB(x,r)nD 

q(u;x) is called the maximal mean steepness of u at x. As we have argued in [10] for the 
caseD= Rn, q(u; ·)is measurable. For 0:::; p < oo denote by Qfv(D) the space of functions 
u defined on D such that q(u; ·) E Lfv(D), where we understand by L~(D) the space L0 (D) 
when p = 0. For u E Qfv(D) define a function au by 

au(x) = [u(x)l + q(u; x), xED, 

and for convenience, Lfv(D) n Qfv(D) will be denoted by LQfv(D); while Qfv(Rn) and 
LQfv(Rn) will be denoted by Qfv and LQfv respectively. In [10] Qfv are defined for p ~ 1, 
but this restriction on pis not necessary. In what follows we assume again that D is of type 
A in the sense of Campanato[2]. 

We now state and prove a theorem that complements Theorem 1 when k = 1: 

Theorem 3. There is a constant C > 0 depending only on n and L such that for u E 
LQ~(D) and t > 0 there exist closed subset Ft of D and Lipschitz function Ut defined on 
Rn so that 

1. ID \ Ft I :::; 2t; 

2. Ut(x) = u(x) for x E Ft; and 
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where 

Proof. For u E LQ?v(D) and t > 0, let Wt ={xED: au(x)::; a:(t)}, then ID \ Wtl::; t by 
(1). For x, y E Wt, by letting r = lx- yl, we have 

(3) lu(x)- u(y)l::; 2{lu(x)l + lu(y)l}lx- Yl::; 4a:(t)lx- Yl, 

if r 2:: 1/2; while if r ::; 1/2, we have 

lu(x)- u(y)l = IB( \ Dl [ lu(y)- u(x)ldz 
x,r n JB(x,r)nD 

::; LIB( 1 )I { lu(y)- u(x)ldz 
x, r JB(x,r)nD 

::; L {rq(u; x) + 2n IB( 1
2 )I [ lu(z)- u(y)ldz} 

y, r J B(y,2r)nD 

::; L[rq(u; x) + 2n+1rq(u; y)] ::; 2n+Z La:(t)lx- Yl· 

The last inequality and (3) show that if we choose a closed subset Ft of Wt such that 
ID \ Ftl ::; 2t, then we complete the proof by letting C = 22n+2 L = 2n+3 L, because then 
lluiF, II Lip ::; Ca:(t) and uiFt can be extended to be a Lipschitz function Ut defined on Rn 
such that llutiiLip = lluiF, II Lip· 

It follows then from Theorem 3 and (2) the corollary: 

Corollary 3. There is a constant C > 0 depending only on n, L and p > 0 such that for 
u E LQf,(D) and.\ > 0 there exist closed subset F>-. of D and Lipschitz function U>-. defined 
on R" so that 

1. ID \ F>-.1::; C[Np(u)P + Np(q(u; ·))P].\-P; 

2. U,\(x) = u(x) for x E F,\; and 

3. llu"IILip ::; .\. 

If a domain D is minimally smooth in the sense of Stein [14], then there is a constant 
C > 0 depending only on D such that every function u E Wl(D) can be extended to 
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be a function u with llullw; :::; Cllullw{(D); from this and the well-known fact that if 
u E U(D) n BV(D) then there is a sequence gk in C1 (D) such that lim llu- gkii£1(D) = 0 

k--tCX> 

and LimiiDgkiiL'(D) = Var(u), it follows that if tt E L 1 (D) n BV(D), then u E LQ1 (D) 
k-<roo w 

and N 1 (q(u; ·)):::; CVar(u) (see [10]). Thus we have 

Corollary 4. Let D be a minimally smooth domain. Then there is a constant C > 0 
depending only on D such that for u E L 1(D) n BV(D) and A> 0 there exist closed subset 
F>. of D and Lipschitz function U>-. defined on Rn so that 

1. ID \ F\1 :S ClluiiBV(D)A -l; 

2. U>-.(x) = u(x) for x E F\; and 

3. llu>--IILip :::; -\. 

We point out in concluding our note that Lusin-type properties of functions have various 
kind of applications. For some of the applications we refer to [1], [4], [5], [6], [7], [9], and 
[11]. 
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