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THE POINCARE-BERTRAND FORMULA 

FOR THE HILBERT TRANSFORM 

Susumu Okada 

Abstract. The Poincare-Bertrand formula for the finite Hilbert transform will 
be proved by applying the properties of Chebyshev polynomial functions. That 
formulation will then be extended to the Hilbert transform both for the entire 
real line and the one-dimensional torus. 

1. INTRODUCTION AND PRELIMINARIES 

Singular integral equations with Cauchy kernel play an important role in 

many fields of physics and engineering, including aerodynamics, elasticity, 

transport theory and so on, (see, for example, [3], [11] and [14]). 

In [19, Chapter IV] F.G. Tricomi has demonstrated the usefulness of the 

Poincare-Bertrand formula for the finite Hilbert transform in solving those 

equations. 

To be more precise, let H denote the Hilbert transform on the real line IR 

and let ..\ denote the Lebesgue measure in IR. Let p and q be positive numbers 

h h -1 -1 sue t at p + q = l. Applying the Sokhotski-Plemelj formula, E.R. Love 

[9, Corollary] has shown that the identity 

(1.1) H(ffig + gHf) = (Hf)(Hg)- fg 

holds ,\-almost everywhere for every f E JfP(;\) and g E oZ"q(,\). 

The identity (1.1) is known as the Poincare-Bertrand formula having its 

origin in [6] and [13]. A brief history for this formula has been written in [9]. 

By expressing (1.1) in terms of an $ 1(>.)-valued bilinear map, an 

alternative proof has been given by R.G. Rooney [16], under a stronger 

. -1 -1 assumptwn: p + q < 1. 

1980 Mathematics Subject Classification (Amer. Math. Soc.) (1985 Revision). 
Primary 44Al5, 47B38; Secondary 46E30. 
The research was supported by a grant from the Commonwealth of Australia 
through the Australian Research Council. 



172 

The principal aim of this note is to present a real analysis proof of the 

Poincare-Bertrand formula for the Hilbert transform H, without using the 

Sokhotski-Plemelj formula; see section 2 {Theorem 2.9). It is essential in the 

proof there that the identity {1.1) can be rewritten by using an ..2"0(..\.)-valued 

bilinear map. 

The main interests of G.H. Hardy [6] and H. Poincare [13] appear to 

have been in the finite Hilbert transform rather than H. Accordingly, that 

formula for the finite Hilbert transform will be established first by considering 

Chebyshev polynomial functions {Theorem 2.7). This will then be applied to 

prove Theorem 2.9. 

Section 3 provides the Poincare-Bertrand formula for the Hilbert 

transform on the one-dimensional torus T {Theorem 3.4). That formula has 

been applied to solve those singular integral equations with Hilbert kernel, by 

D. Elliott in [4]. 

Let p, be a Radon measure in a non-empty, locally compact Hausdorff 

space n. Those functions which differ only on a p,-null set will be identified. 

The linear space of complex valued, p,-measurable functions on n is 

denoted by .Z0(p,). 

Let 1 $ p < oo. Let .zP(p,) denote the set of all functions f E .Z0(p,) 

such that lfiP is p,-integrable. By the Minkowski inequality, the set .zP(p,) is 

a linear subspace of .Z0(p,), and .zP(p,) will be equipped with the usual 

.zP -seminorm 

f ~--~[J lfiPdp,r/p • 

n 
Let % {f!) denote the set of all complex valued, continuous functions on n with 

compact support. Then %(!1) is a dense linear subspace of the seminormed 

space .zP(p,) ( cf. [1, Definition 4.3.2]). 
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The indefinite integral fp, of a function f E .:t1(p,) with respect to the 

Radon measure J.t is the set function defined by 

(fp,)(E) = f f dp, 
E 

for every Borel subset E of n. The set function fp, is also a Radon measure 

inn. 

A linear operator A: .:t1(p,) -1 .:t0(p,) is said to be of weak type (1, 1) if 

there exists a constant K > 0 such that 

E:J.t({w En: IAf(w)l > E: }) sK[f lfl dp,)] 
n 

for every e: > 0 and every f E .:t1(p,). It is clear that the natural inclusion 

map from .:t1(p,) into .:t0(p,) is of weak type (1, 1 ). 

2. THE POINCARE-BERTRAND FORMULA FOR THE HILBERT 

TRANSFORM ON It 

(2.1) 

Let f be a function belonging to the set 

U{.:tP(A) : 1 $ p < oo} , 
where A is the Lebesgue measure in the real line IR. Then the Cauchy principal 

value 

Hf(t) = 1 im [ft-E: + foo ] 7r(}:h dA( r) 
dO -oo t+e: 

exists for A-almost every t E IR and the function Hf thus defined is 

A-measurable in IR (see, for example, [2, Theorem 8.1.6]). The resulting linear 

operator H from the subspace (2.1) of the space .:t0(A) into .:t0(A) will be 

called the Hilbert transform on IR. 

The restriction of H to the subspace .:t1(A) of (2.1) is denoted by HI" 

LEMMA 2.1. The linear operator H1: .:t1(A) -1 .:t0(A) is of weak type (1, 1)._ 

Proof. See, for example, [2, Theorem 8.1.5] or [17, Lemma V.2.8]. o 
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M. Riesz proved the following in [15, VII]. 

LEMMA 2.2. Let 1 < p < oo. Then Hf E ...t'P(>,) for every f E ...t'P(,\) and the 

...t'P(,\)-valued linear operator f H Hf, f E ...t'P(..\), is continuous. 

Let n = 1,2,... . Let >.. denote the restriction of the Lebesgue measure 
n 

,\ to the open interval ] -n, n [ ; that is, ,\ (E) = >..(E) for every Lebesgue 
n 

measurable subset E of ]-n, n[. The space ...t'0(..\ ) will always be equipped 
n 

with the topology of convergence in measure. Recall that a sequence of 

functions f E ...t'0(..\ ), m = 1,2, ... , converges to zero in measure if and only if 
m n 

1 im .A ({t E J-n, n[: If (t)l > e: }) = 0 
n m m-+oo 

for every e: > 0. Define a linear surjection P : $ 0(>.) -+ $ 0(,\ ) by 
n n 

P nf(t) = f(t) , 

for every f E ...t'0 (.A.). 

t E ]-n, n[ , 

An immediate consequence of Lemma 2.1 is the following. 

LEMMA 2.3. Let linear operator P nH1: ...t'1(>..) -+ ...t'0(\) is continuous for 

every n = 1,2, .... 

The natural extension Jf of a function f E ...t' 1(.\) to !R is the function 

which coincides with f on J-1, 1 [ and vanishes outside of ]-1, 1 [ ; then 

Jf E ...t'1(..\). The resulting linear operator J: ...t'1(\) -+ ...t'1(>.) is a continuous 

injection. 

The finite Hilbert transform is the linear operator R: ...t'\\) -+ ...t'0(>..1) 

defined by R = P 1H1J. Then R is continuous because so are P 1H1 and J. 

Let x denote the identity function on ]-1, 1 [ , that is 

x(t)=t, tE]-1,1[. 

Let 1 < p < oo. Let a E ]-1, p-1 [ and (J E ]-1, p-1[. The function 

p on ]-1, 1 [ , defined by 

(2.2) p = (1 - x)o:(l + xl, 
is \-integrable. The indefinite integral p>.. 1, which is a Radon measure in the 



175 

locally compact space ]-1, 1 [, satisfies .t'P(p,\1) c .t'\.A1) by the HOlder 

inequality. The following result is due to B.V. Khvedelidze [8] (see, for 

example, [5, Lemma L4.2] or [10, Theorem II.3. 7]). 

LEMMA 2.4. Let 1 < p < oo. Suppose that a and (3 are numbers within the 

open interval ]-1, p-1[ and that pis the function defined by (2.2). Then 

R( .t'P(P\)) C .t'P(P\) 

and the restriction of R to the space .t'P(p,\1) becomes a continuous linear 

operator with values in .t'P(P\) itself. 

Suppose that 1 < p < oo. Let q = pj(p-1). Let a and (3 be numbers 

within ]-1, p-1 [ and let p be as in (2.2). Let B(p;a,(J) denote the bilinear 

map, whose domain is the product space 

(2.3) 

and codomain the space .t'0(\), defined by 

(2.4) B(p;o:,(J)(f,g) = R(fRg + gRf) - (Rf)(Rg) + fg 

for every element (f,g) of the product space (2.3). Then B(p;a,(J) is 

continuous, because so are R: .t'1(.A1) -; .t'0(.A1) and the .t'1(.A1)-valued 

bilinear map which assigns the function fg to each element (f,g) of (2.3). 

In order to consider the case when p = 2, let 

w = j l-x2 • 

Let IN0 denote the set of all non-negative integers. The Chebyshev 

polynomial functions of the first kind, T , n E IN0, and of the second kind, U , 
n n 

n E IN0, are defined by 

Tn(cos ~) =cos n~ and Un(cos ~) = si~f~'t {) 

for every ~ E J 0, 1r[ , respectively. The addition formulae for the sine and 

cosine functions lead to the following identities for all n E IN0 and m E IN0, 

with the understanding that U _1 = 0: 



(2.5) 

(2.6) 

(2.7) 

LEMMA 2.5. 
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2T T = T + T · 
n m n+m Jn-mJ ' 

2(1 - x 2)U U = T I I - T + +2 ; and n m n-m n m 

U T +TU =U . 
n-1 m+l n m n+m 

The linear spans of the sets 

{T n/w: n E IN0} and {U n w: n E IN0} 

are dense subsets of the seminormed spaces ..t'2(w\) and ..t'2(1/w)\) 

respectively. 

Proof. See, for example, [18, Theorem 3.1.5]. 0 

LEMMA 2.6. If n and m are non-negative integers, then 

(2.8) B(2;2-l,2-1)(Tn/w, Umw) = 0. 

Proof. It is clear that the identities 

(2.9) R(Tn/w) = Un-l' n E IN0 ; and 

(2.10) R(Un w) = -Tn+l' n E IN0 , 

hold (see, for example, [19, p.l74 and pp.l80-181]). It follows, from (2.5), 

(2.6), (2.9) and (2.10), that 

(2.11) 2R((Tn/w)R(Umw)) = -Un+m- UJn-m-lJ-l; and 

(2.12) 2R((Umw)R(Tn/w)) = -Un+m + UJn-m-lJ-1 

for all n, m E IN0. Moreover, by (2. 7), (2.9) and (2.10), we obtain 

(2.13) -R(T jw)R(U w) + (T /w)(U w) = U 1T 1 + T U = U + n ' m n m n- m+ n m n m 

for all n, mE IN0. Therefore (2.8) follows from (2.11), (2.12) and (2.13). o 

Since B(2;2-1,2-1) is continuous, it follows from Lemmas 2.5 and 2.6 

that 

(2.14) 

In other words, the identity 

B(2;2-1,2-1)(f,g) = 0 

holds \-almost everywhere for every element (f,g) of the product space 

(2.15) ..t'2(w;\1) x .$'2((1/w)\) . 

We are now ready to present the Poincare-Bertrand formula for the 
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finite Hilbert transform. 

THEOREM 2.7. Let 1 < p < OJ and let q = p/(p-1). Suppose that o: and fJ 

are numbers within the open interval ]-1, p -l [ and that p is the function given 

by (2.2). Then 

(2.16) B(p; o:,(J) = 0 ; 

that is, the Poincare-Bertrand formula 

R(fRg + gRf) = (Rf)(Rg) - fg 

holds >..1-almost everywhere for every f E ..tP(P\) and g E .t'q((l/P)\)· 

Proof. Let ( cp, '1/J) be an element of the subspace 

(2.17) %(]-1, 1[) X %(]-1, 1[) 

of the space (2.3). Then (2.14) implies that 

B(p;o:,(J)(cp,'I/J) = B(2;2-1,2-1)(cp,'I/J) = 0 

\-almost everywhere because ( cp, 1/J) belongs to the space (2.15). Consequently 

the bilinear map B(p;o:,(J) from (2.3) into ..t0(\) vanishes on the dense 

subspace (2.17) of (2.3). Thus (2.16) holds. 0 

To prove the Poincare-Bertrand formula for the Hilbert transform on IR, 

let 1 < p < OJ and let q = p/(p-1). Define a bilinear map C, from the 

product space 

(2.18) 

into the space ..t0(>..), by 

C(f,g) = H(fHg + gHf) - (Hf)(Hg) + fg 

for every member (f,g) of (2.18). 

LEMMA 2.8. Suppose that f E ..tP(J...) and g E .t'q(.A) are functions vanishing 

outside some closed interval [-m, m], m = 1,2,... Then 

P C(f,g) = 0 
n 

,\ -almost everywhere for every n = 1,2, ... 
n 

Proof. Let n be an integer such that n ~ m. Define functions fn E ..tP(\) 

and gn E .t'q(.A1) by 
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f (t) = f(nt) and g (t) = g(nt), t E ]-1, 1 [ , 
n n 

respectively. Then 

(P nHf)(t) = (Rfn)(t/n) and (P nHg)(t) = (Rgn)(t/n) 

and hence 

P H(fHg + gHf)(t) = R(f Rg + g Rf )(t/n), n n n n n 

for >. -almost every t E ] -n, n [ . It then follows from Theorem 2. 7 that 
n 

P C(f,g)(t) = B(p;O,O)(f ,g )(t/n) = 0 n n n 

for >. -almost every t E ] -n, n [ . 
n 

If n is a positive integer such that n < m, then 

P C(f,g) = P P C(f,g) = 0 
n n m 

>. -almost everywhere because P = P P . 
n n n m 

0 

THEOREM 2.9. Let 1 < p < oo and let q = pf(p-1). Then C = 0; namely, 

the Poincare-Bertrand formula 

H(fHg + gHf) = (Hf)(Hg) - fg 

holds >..-almost everywhere for every f E .z'P(>.) and g E .z'q(>.). 

Proof. Let n = 1,2, .... Then the bilinear map P C from the product space 
n 

(2.18) into the space .2'0 (>.. ) is continuous by Lemmas 2.2 and 2.3. By 
n 

Lemma 2.8, the map P C vanishes on the dense subspace .% (IR) x .% (IR) of the 
n 

product space (2.18). Thus P C = 0. Since n is arbitrary, we obtain C = 0. o 
n 

3. THE POINCARE-BERTRAND FORMULA FOR THE HILBERT 

TRANSFORM ON lf. 
Throughout this section, the complex number ,pf is denoted by i. 

Let v be the normalized Haar measure in the one-flimensional torus 

The Lebesgue measure in the interval ]-1r, 1r] will be denoted by >. . Then 7f 

(21r)v({eit: t E ]a, b]}) = >.7f(]a, b]) = b- a 

whenever -1r ~ a s b $ 1r . 
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Let f be a function belonging to the space .2'1(v). Then the Cauchy 

principal value 

Sf(eit) = l1r lim [ft-e + f'lr] f(eir)cot I:i-d.-\'lr(r) 
e;lO -'lr t+E 

exists for .,\ 1r -almost every t E ] -1r, 1r] , and the so-defined function Sf is 

v-measurable in T (see, for example, [2, Theorem 9.1.1]). 

The .2'0(v)-valued linear operator S: f H Sf, f E .2'1(v), is called the 

Hilbert transform on T· The Hilbert transform S is of weak type (1, 1) (see, 

for example, [2, Proposition 9.1.2]). 

LEMMA 3.1. The linear operatorS: .2'1(v) ---+ .2'0(v) is continuous. 

Proof follows from the fact that the measure v is finite. 0 

The proof of the following result which is parallel to Lemma 2.2 can be 

found, for example, in [2, Proposition 9.1.3]. 

LEMMA 3.2. Let 1 < p < oo. Then Sf E ..t'P(v) for every f E ..t'P(v) and the 

..t'P(v)-valued linear operator f H Sf, f E ..t'P(v), is continuous. 

Let z denote the identity function on T. Let sgn m = m/ I m I for 

every non-zero integer m and sgn 0 = 0. 

The proof of the identity 

(3.1) eimr cot ~ d.-\'lr( r) = 2m(sgn m), 

for every integer m, can be found, for example, in [2, Proposition 9.1.4], while 

it can be derived also from [10, Lemma II.l.l]. 

LEMMA 3.3. If m is an integer, then 

S(zm) = i(sgn m)zm . 

Proof. The assertion follows from (3.1), because eim(r+t) = eimreimt for all 

r E ]-1r, 1r] and t E ]-1r, 1r] and because cot(u + 1r) = cot u whenever sin u f. 0, 

u E IR. o 

Let 1 < p < oo and let q = pf(p-1). Define a bilinear map D(p), from 
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the product space 

(3.2) 

into the space .Z'0(v), by 

D(p)(f,g) = S(fSg + gSf)- (Sf)(Sg) + fg- [Lf dv] [Lg dv] 

for every element (f,g) of (3.2). Then D(p) is continuous by Lemmas 3.1 and 

3.2. It follows from Lemma 3.3 that 

(3.3) D(p)(zm,zn) = 0, (m, n = 0, ±1, ±2, ... ). 

We now claim that 

(3.4) D(2) = 0. 

In fact, it is well known in the theory of Fourier series that the set 

{zm: m = 0, ±1, ±2, ... } is dense in the seminormed space .Z'2(v). So, the 

continuity of D(2) and (3.3) jointly imply (3.4). 

The following theorem gives the Poincare-Bertrand formula for the 

Hilbert transform S on T . 
THEOREM 3.4. Let 1 < p < oo and let q = pf(p-1). Then 

(3.4) D(p) = 0; 

that is, the Poincare-Bertrand formula 

S(fSg + gSf) = (Sf)(Sg)- fg + [Lf dv] [Lg dv] 

holds v-almost everywhere for every f E .z'P(v) and g E .Z'q(v). 

Proof. Since the linear span of the set {zm: m = 0, ±1, ±2, ... } is a dense 

subset of the seminormed spaces .,tP(v) and .Z'q(11) (see, for example, [7, 

Theorem II.1.5]) the relationship (3.3) implies the desired identity (3.4). o 

The author would like to thank Professor David Elliott for many 

valuable discussions, in particular for his observation about the 

Poincare-Bertrand formula on T . Thanks are also due to Werner Ricker 

and Jo Ward for useful information of Fourier series. 
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