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Abstract. The essence of an approach to the boundedness of
singular integral operators based on several parameterized classes
of new conditions one of which includes, in particular, Hörmander
condition and its known variations is exposed. Most of the at-
tention is paid to the comparison with known results in the same
settings. The feature of dependence from some parameters be-
ing integer is revealed. As some of applications, the existence of
functional calculus and variants of Littlewood-Paley-type decom-
positions in its terms without any requirements of smoothness or
absolute value bounds of the kernels of the corresponding holomor-
phic semigroups is shown.

1. Introduction

The main goal of this note is to display the idea of a unified point of
view on sufficient conditions formulated in the style of the Hörmander
one for the boundedness of singular integral operators and to motivate
its usefullness by means of comparison with known close results (in-
cluding the theory of Calderón-Zygmund operators). In particular, the
here introduced AD -classes of singular integral operators extend and
generalize Calderón-Zygmund operators and closely related operators
possessing H∞ -calculus. In line of this main purpose, formulations of
assertions under consideration are partly included also in more general
forms. We consider also the definitions of AD -classes in reduced forms
while the complete ones are represented in [22]. The same source con-
tains results on boundedness of singular integral operators (SIO) from
one smooth function space to another (corresponding to the ”upper
case” in the sense of Section 3 below) not included in this note too.

The theory of singular integral operators has a half-century back-
ground of intensive development. The main ingredient — decompo-
sition lemma — appeared in 1952 thanks to A.P. Calderón and A.
Zygmund (see [6]). In 1960, L. Hörmander (see [14])introduced his
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“Cancellation condition”, and, since that time, the notion of singu-
lar integral operator (SIO) is understood as follows. A SIO T is an
integral operator defined, in a sense, by means of the kernel K , s.t.
T ∈ L(Lp0 , Lp0) :

Tf(x) = p.v.

∫
K(x, y)f(y)dy.

The Hörmander condition states that for any y, z ∈ Rn , and some
C > 0 ∫

|x−z|≥2|y−z|
|K(x, y)−K(x, z)|dx ≤ CH < +∞. (class H)

Every SIO satisfying (H) (from the class H ) is bounded (admits an
extention) from Lp to Lp, 1 < p < ∞ , from H1 to L1 and from L1

to L1,∞ (weak-L1 ). In addition, the adjoint operator is bounded from
L∞ to BMO .

Presented in this note results with the same statements as just
mentioned are discussed in the section 3. One can point out that
another condition weaker then H was presented by X. Duong and
A. McIntosh (1999) in [9], and our approach permits to weaken it in
the same settings (see AAD -condition in [22]).

Nowadays the following definition of Calderón-Zygmund operator
(CZO) is the most commonly accepted.

A CZO is a SIO T satisfying for some 0 < δ < 1 :

a) |K(x, y)| < C/|x− y|n;

b) |K(x, y)−K(x, z)| ≤ C|y− z|δ|x− z|−(n+δ) for |x− z| ≥ 2|y− z|
We are not imposing absolute value conditions like a) at all but

one of the introduced here AD -classess contains conditions which
are equivalent , or weaker then the above mentioned ones. Namely,
ADx(L1,∞, 0, 0, 0) is equivalent to the Hörmander integral condition,
and ADx(L∞,∞, δ, δ, δ) in def. 2.5 is weaker then property b) of
Calderón-Zygmund operator with another one.

In 1972, C.L. Fefferman, E.M. Stein (see [12]) proved (particularly)
H1 − L1 and L∞ − BMO -boundedness of Calderón-Zygmund opera-
tors.

Let us pay more attention to the Hp -theory of SIOs.
R. Coifman (see [7]) obtained (1974) Hp−Hp boundedness of CZO

for the case of one dimension. In 1986, J. Alvarez and M. Milman (see
[3]) established Hp−Hp -boundedness excluding the limiting cases (i.e.
p > n/(n + δ), 0 < δ < 1 ). More precisely their assertion reads as
follows: a CZO T satisfying the orthogonality condition T ?P0 = 0 is
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bounded on Hp . Here the orthogonality condition T ?PN = 0 means∫
xαTa = 0 for any |α| ≤ N, and a ∈ C∞0 orthogonal to PN .
Extension of this result to 0 < p < 1 was pointed out by several

authors: δ -CZO satisfying T ?P[δ] is bounded on Hp for 0 < p ≤ 1 .
Next we recall the definition of δ -CZO.

Let s = 1 for δ ∈ N , and s = {δ} otherwise. Let T be a SIO, then
it is δ -CZO if it satisfies

a) |K(x, y)| < C/|x− y|n;

b) |Dα
yK(x, y)−Dα

yK(x, z)| ≤ C|y−z|s|x−z|−(n+|α|+s) for |x−z| ≥
2|y − z|, |α| = [δ] .

Similarly to the case of CZOs, some of the presented AD -conditions
(for example, ADx(∞, L∞, l∞, δ, δ, δ) ) in this note are weaker then con-
dition b) of the δ -CZOs. We provide a direct analog of the Hörmander
condition in this case too (e.g. ADx(u, Lq, l∞, δ, δ, δ), u, q ∈ [1,∞) ).

One should add that J. Alvarez (1992) (see [2]) showed the lack of
Hp − Lp (and Hp −Hp ) boundedness for p = n/(n+ δ) . In 1994, D.
Fan (see [10]), exploiting Littlewood-Paley-theory approach, considered
the limiting case for a convolution δ -CZO T , that is, he demonstrated
that, under the above conditions, T is bounded from Hp to Hp,∞ .

R. Fefferman and F. Soria (1987) (see [13]) proved H1,∞ − L1,∞ -
boundedness for a convolution SIO T satisfying the following Dini
condition:∫ 1/2

0

Γ(t)dt/t <∞, where Γ(t) = sup
h 6=0

∫
|x|>2|h|/δ

|K(x− h)−K(x)|dx.

In 1988 (publ. 1991), using a similar approach, H. Liu (see [15])
investigated boundedness properties of a convolution SIO (in partic-
ular, a CZO) in the setting of homogeneous groups and obtained the
following results:

a) Hp = Hp,∞ -boundedness for CZO (without condition a) ), if
n/(n+ 1) < p < 1 ;

b) Hp,∞ − Lp,∞ -boundedness, if n/(n + 1) < p ≤ 1 , for SIO T
satisfying ∫ 1/2

0

Γ(t)p| log t|tnp−1−ndt <∞, where

Γ(t) = sup
h 6=0

∫
|h|/δ<|x|<4|h|/δ

|K(x− h)−K(x)|dx;

c) Hp,∞ −Hp,∞ -boundedness, if n/(n + 1) < p < 1 , for a ω -CZO
(without a) -cond.), that is for a SIO T satisfying

|K(x− y)−K(x)| < C|x|−nω(|y|/|x|), |x| > 2|y|,
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where ω is a nondecreasing function with∫ 1/2

0

tn−n/p−1| log t|2/p+εω(t)dt < +∞ for some ε > 0.

But, for ω(t) = ts , one needs s > n/p− n , i.e. a nonlimiting case.
The theorems in the 5th section contain extensions or additions (in-

cluding the case 0 < p ≤ n/(n+1) ) to most of these results concerning
the Hp -theory (the additions to the rest and complete proofs are in
[22]).

It is interesting to point out the “off-diagonal” case of the Calderón-
Zygmund-Hörmander result on boundedness of a SIO proved in 1961
by J.T. Schwartz (see [20] and an extension due to H. Triebel [21]):
for 1 < p0 ≤ r0 < ∞, 1 ≤ q , 1 + 1/r0 = 1/p0 + 1/q , suppose that a
convolution operator T with kernel K is bounded from Lp to Lr

and satisfies

∫
|x|>2|y|

|K(x− y)−K(x)|qdx ≤ C.

Then T is bounded from Lp to Lr for 1 < p ≤ p0 , 1+1/r = 1/p+1/q
and from L1 to Lq,∞ . But this (“off-diagonal”) setting of the SIO
theory has not attracted much attention since that time even in spite of
the work ([17], 1963) of P.I. Lizorkin on (Lp, Lq) -multipliers theorem.
All the general forms of the assertion of this note include the “off-
diagonal” case.

Some other positive features of our approach to the boundedness of
SIO are the following: a) cases of operators sending Hardy-Lorentz
space to both Hardy-Lorentz and Lorentz space or, acting between
spaces of smooth functions are covered; b) a new effect of the de-
pendence from some parameters being integer (in particular, the case
n/p ∈ N (in isotropic situation) for H -space theory) has been ob-
served; c) in some cases parameters of the “target” space are shown to
be optimal; d) the case 0 < p ≤ n/(n+1) for the H−H -boundedness
does not require smoothness assumptions; e) some obtained sufficient
conditions of boundedness of a SIO under consideration have stronger
known analogs but the other do not; f) the approach admits consid-
eration an anisotropically SIO in the sense of [5](1966); g) the proofs
of the results analogous to classical ones are no more complicated then
their counterparts.

The section 4 is devoted to some applications of the considered here
and in [22] general forms of SIO boundedness assertions to questions
connected with functional calculus. There we consider the class of
operators with the kernels of their holomorphic semigroups satisfying
Poisson-like AD -estimates introduced in this note and providing, in



SINGULAR INTEGRAL OPERATORS 5

this terms, sufficient conditions for the existence of a functional calculus
of some operators in Hardy and other function spaces, extending results
of D. Albrecht, X. Duong and A. McIntosh (1995) (see [1, 8]). For
the limiting values of parameters, the norm estimate (for the bounded
extension) of the form

‖φ(T )‖L(X,Y ) ≤ C‖φ‖H∞

is proved for X being a Hardy space and Y — a Hardy-Marcinkiewicz,
so that X 6= Y .

Another application is a continuous, in the sense of [19] (1972), form
of Littlewood-Paley theorem in term of the above mentioned functional
calculus. It should be noted that classical approach to this theorem
relied on the properties of Hilbert transforms even in weighted multiple
(product) case (see [18]) (1967). Instead, in this note we are following
the approach of direct application of vector-valued SIO boundedness
results used by O.V. Besov (1984) in [4] to extend Littlewood-Paley
inequality to the Lp -spaces with mixed norm of functions periodic in
some directions and by X. Duong (1990) to extend the existence of
H∞ -functional calculus on L2 to one in Lp, p 6= 2 .

The author is pleased to thank O.V. Besov for formulating the gen-
eral problem to extend classical Hörmander SIO boundedness result
to Hp(Lp) spaces with p < 1 several years ago, A. McIntosh and
A. Sikora for formulating the problem to obtain a Littlewood-Paley
type characterization of Hardy spaces in terms of functional calculus
and A. McIntosh with T. ter Elst for their comments improving the
manuscript of this paper. This work was conducted in The Center for
Mathematics and its Applications of The Australian National Univer-
sity.

2. Definitions and Designations.

Assume N0 = N∪{0}. For a set E , n ∈ N let En be the Cartesian
product. Let A be a Banach space and denote by ‖ · |A‖ = ‖ · ‖A

the norm in space A . For t ∈ (0,∞] let lt be a (quasi)normed

space of sequences with finite (quasi)norm ‖{α}|lt‖ = (
∑

i |αi|t)1/t
for

t 6= ∞ , or ‖{α}|l∞‖ = supi |αi| ; Assume also designation lt,log for the
(quasi)normed space of sequences with the finite norm ‖{α}|lt,log‖ =
‖{β}|lt‖, where βj =

∑
i≥j |αi| . For an measurable subset G of Rn ,

let X(G,A) be a function space of all (strongly) measurable functions
f : G→ A with some quasiseminorm ‖ · |X(G,A)‖ . In particular, for
p, q ∈ (0,∞] let Lp,q(G,A) be the Bochner-Lebesgue-Lorentz space of
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all (strongly) measurable functions f : G → A with the finite norm
‖f |Lp,q(G,A)‖ = ‖‖f‖A|Lp,q(G)‖ .

Let Q0 := [−1, 1]n , Qt(z) := z + tQ0 for t > 0, z ∈ Rn . Let Pλ(A)
be the space of polynomials {

∑
|α|≤λ cαx

α : cα ∈ A} .

Definition 2.1. For u ∈ [1,∞], t > 0, λ ≥ 0, x ∈ Rn, f ∈ L1,loc(Rn, A),
we shall refer to the following local approximation functional by means
of polynomials as to the D− functional:

Du(t, x, f, λ, A) = t−n/u‖f − Pt,x,λf |Lu(Qt(x), A)‖,
where Pt,x,λ : Lu(Qt(x)) → Pλ(A) is a surjective projector. For sim-
plicity, we shall understood Du(t, x, f, λ) to be Du(t, x, f, λ, A) , if
A = R,C . If function f depends also from the two (vector) variables
x, y , f = f(x, y) , and f|x=w(y) := f(w, y) then

Dy
u(t, z, f(w, ·), λ, A) = Du(t, z, f|x=w, λ, A).

Let C∞0 (G) be the space of infinitely differentiable and compactly
supported in the open set G functions.

Define the local maximal functional on a function f by

M(t, x, f) := sup{|t−nϕ(·/t) ∗ f |(y) : |y − x| ≤ $t, ϕ ∈ C∞0 (Q0)}.

Definition 2.2. For p, q ∈ (0,∞] , let Hp,q(Rn, A) be a completion of
quasinormed space of locally summable A -valued functions f with a
finite quasinorm

‖f |Hp,q(Rn, A)‖ :=

∥∥∥∥sup
t>0

M(t, ·, f) |Lp,q(Rn)

∥∥∥∥ .
Remark 2.3. It will be used that Hp,q(Rn, A) = Lp,q(Rn, A) for p > 1 .

Throughout the article we shall deal with particular cases of the
following one. For ϕ ∈ C∞0 , b > 1 , χQ0 ≤ ϕ ≤ χbQ0 , let

(Tf)(x) :=

∫
K(x, y)f(y)dy := lim

ε→0

∫
K(x, y)f(y)ϕ(ε(y − x))dy,

where be a singular integral operator. Moreover, the kernel K : Rn ×
Rn → R(C) is measurable and such that for almost every x ∈ Rn

the function K(x, ·) ∈ Lloc
1 (Rn \ {x}) . We shall also assume that the

operator T is bounded from Lθ0 into Lθ1 for some θ0, θ1 ∈ (0,∞) ,
and to be in the union of the following classes.

Remark 2.4. More general case of operator-valued kernels correspond-
ing operators T defined on vector-valued functions in the settings, par-
ticularly, of the section 5 is considered in [22] and used in the section
(4) .
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Definition 2.5. Assume λ0, λ1, γ ∈ [−n,∞) , u, q, q1 ∈ (0,∞] , γ ≥ 0 ,
δ > 0, b > 1 . Let X := X(N0) be a (quasi)(semi)normed space of
sequences, Ew

q,q1,λ1
(Rn) be the weighted Lorentz space with the norm

‖f |Ew
q,q1λ1

(Rn)‖ =
∥∥∥f(·)| · −w|λ1+n/q′ |Lq,q1(Rn)

∥∥∥ ,
and ∆i(r, w) = Qδrbi+1(w)\Qδrbi(w), i ∈ N . Then it will be understood
that:
a) T ∈ ADx(u, Lq, X, λ0, λ1, γ) , or
b) T ∈ ADx(Lq, u,X, λ0, λ1, γ) , if, correspondingly, the sequence

µi(r, w) := ‖r−λ0Dy
u(r, w,K(·, y)χ∆i

(·), γ)|Ew
q,q,λ1

(Rn)‖, i ∈ N0, or

µi(r, w) := r−λ0Dy
u(r, w,K(·, y)χ∆i

(·), γ, Ew
q,q,λ1

(Rn)), i ∈ N0,

is bounded in X by a constant C > 0 uniformly in r > 0, w ∈ Rn ;
c) T ∈ ADx(u, Lq,q1 , λ0, λ1, γ) , or
d) T ∈ ADx(Lq,q1 , u, λ0, λ1, γ) , if, correspondingly, the function

µ(r, w) := ‖r−λ0Dy
u(r, w,K(·, y)| ·−w|λ1+n/q′ , γ)|Lq,q1(Rn \Qrδ(w))‖, or

µ(r, w) := r−λ0Dy
u(r, w,K(·, y)χRn\Qrδ(w)(·), γ, Ew

q,q1λ1
(Rn)),

is bounded by a constant C > 0 uniformly in r > 0, w ∈ Rn .
The infimum of constants C in each case will be designated by means

of CAD for the corresponding AD -condition.

Remark 2.6. It can be noted that the definitions of AD -classes have
and equivalent continuous forms, which means also their independence
from the parameter b > 1 .

Definition 2.7. Let γ0, γ1 ≥ 0 . An operator T will be assumed form
the class ORTx(γ0, γ1) if

∫
πTφ = 0 for all π ∈ Pγ1 and φ ∈ C∞0 ,

such that
∫
φπ = 0 for each π ∈ Pγ0 .

Definition 2.8. For Ω ⊂ C let {T (z)}z∈Ω be a family of integral
operators with the corresponding C -valued kernels {Kz}z∈Ω , Kz =
Kz(x, y) , x, y ∈ Rn . We shall assume that the family {T (z)}z∈Ω

satisfies Poisson-type ADx -estimates with parameters u ∈ [1,∞], λ ≥
0 on the domain Ω if for some ε,m ∈ (0,∞) and any w, x ∈ Rn, z ∈
Ω, r ∈ (0,∞)

Du(r, w,Kz(x, ·), λ) ≤ C

(
r

|z|m

)λ

|z|−mn

(
1 +

|x− w|
|z|m

)−(n+λ+ε)

,

T (z) ∈ ORTx(λ, λ).
And Kz(x, y) is understood satisfying Poisson-type ADy -estimate

if KI
z (x, y) = Kz(y, x) satisfies Poisson-type ADx -estimate.
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Definition 2.9. We shall understood operator T defined by the kernel
K(x, y) to be in ADy -class, or ORTy(γ0, γ1) -class if, and only if, the
corresponding operator T I defined by the kernel KI(x, y) = K(y, x)
is in the corresponding ADx -class, or, correspondingly, ORTx(γ0, γ1) -
class.

3. Counterparts of Known (Clasical) Results.

For the sake of simplicity, we shall only consider in this section AD -
classes with q = 1 , X = l1 and λ0 = λ1 = γ = 0 .

Remark 3.1. In spite of the relation

ADx(u, L1, 0, 0, 0) = ADx(u, L1, l1, 0, 0, 0) ⊂

⊂ ADx(L1, u, l1, 0, 0, 0) ⊂ ADx(L1, u, 0, 0, 0),

not coinciding AD -classes will be discussed in the proofs separately to
demonstrate the approach in more general cases.

Let us point out that the class of operators satisfying Hörmander
condition H is equal to the class ADx(L1,∞, l1, 0, 0, 0) . We shall
show the inclusion H ⊂ ADx(L1,∞, l1, 0, 0, 0) . The opposite one was
pointed out to the author by A. McIntosh . Indeed, the corresponding
kernels should have a uniformly bounded for any z ∈ Rn , r > 0
quantity

A(r, z) = inf
c(x)

sup
{y:|y−z|≤r}

∫
|x−z|≥2r

|K(x, y)− c(x)|dx.

And, supposing, for fixed z, r , c(x) to be equal to K(x, z) , we can
note that

A(r, z) ≤ sup
{y:|y−z|≤r}

∫
|x−z|≥2r

|K(x, y)−K(x, z)|dx ≤

≤ sup
y

∫
|x−z|≥2|y−z|

|K(x, y)−K(x, z)|dx ≤ CH < +∞,

where CH is the constant in Hörmander condition (class H ).

3.1. Lower “Summability” Case.

Theorem 3.2. For p0 ∈ (1,∞] , u ∈ [1,∞] , let T be a SIO from
ADx(L1, u, l1, 0, 0, 0)∪ADx(L1, u, 0, 0, 0)∪ADx(u, L1, 0, 0, 0) , bounded
from Lp0 into itself. Then,
a) T ∈ L(Lp,q(Rn)) for p ∈ (1, p0] , q ∈ (0,∞] ;
b) T ∈ L(L1(Rn), L1,∞(Rn)) if u = ∞ ;
c) T ∈ L(H1(Rn), L1(Rn)) .
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Proof of the Theorem 3.2. We suppose that kernel K(x, y) corre-
sponds to the operator T . One should note that part a) of the the-
orem is a consequence of both b) and c) in view of the interpolation
properties of the scale of Hardy-Lebesgue spaces (see [11]). To the first,
let us recall that the statements of the parts b) and c) are implied as
in classical approach) by the estimate∫

Rn\Qrδ(z)

|Ta|dx ≤ CAD, (1)

where r > 0, z ∈ Rn and a is a (1, L∞, 0) -, or a (1, 1, 0) -atom in the
case of the part c) , or b) correspondingly. Indeed, in the case c) , the
atomic decomposition result for H1 (see [7, 16]) permits us to prove
the boundedness of T on (1,∞, 0) -atoms only, what follows from (1)
and ∫

Qrδ(z)

|Ta|dx ≤ (rδ)n/p′0‖Ta‖p0 ≤ δn/p′0‖T |L(Lp0)‖,

where a is an (1,∞, 0) -atom. In the case b) , for a function f ∈ L1

and λ > 0 , Calderón-Zygmund decomposition of a set Ωλ := {x :
Mf > λ} =

⋃
i∈NQi , where the set {δQi} possess finite intersection

property and C|Ωλ| ≥
∑

i |Qi| , provides representation

f = f0 + Cλ
∑

i

|Qi|ai, where ai is a (1, 1, 0)− atom (2)

and ‖f0|L∞‖ ≤ Cλ . Therefore, Chebyshev inequality, (1) and just
mentioned properties imply

λ{|Tf0| > cλ} ≤ Cλ1−p0‖Tf0‖p0
p0
≤ C‖T |L(Lp0)‖p0‖f |L1‖,

λ{|Tf1| > cλ} ≤ Cλ

(
| ∪i δQi|+

∑
|Qi|

∫
Rn\δQi

|Tai|
)
≤

≤ Cλ|Ωλ| ≤ C‖f |L1‖. (3)

To obtain the formula (1) suppose g(x) to be a function minimizing
functionals

inf
c

∫
Qr(z)

|K(x, y)− c|udy (4)

at a.e. x if T ∈ ADx(u, L1, l1, 0, 0, 0) , or minimizing the functional∫
Qr(z)

(∫
Rn\Qrδ(z)

|K(x, y)− c(x)|dx
)u

dy, (5)
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if T ∈ ADx(L1,1, u, 0, 0, 0) , or g(x) =
∑

i gi(x) , where functions
{gi(x)}i∈N to minimize functionals

inf
c(x)

(∫
Qr(z)

(∫
Qr2iδ(z)\Qr2i−1δ(z)

|K(x, y)− c(x)|dx

)u

dy

)1/u

(6)

correspondingly if T ∈ ADy(L1, u, l1, 0, 0, 0) . In view of Minkowski
inequality, it follows from (4) , (5) , or (6) that, correspondingly, for an
arbitrarily (1, 1, 0) -(part b) ), or (1,∞, 0) -atom with support Qr(z) ,
one has due to the Hölder and Minkowski inequalities, Fubini theorem
and the orthogonality of atom a to constants:∫

Rn\Qrδ(z)

|Ta|dx ≤

≤ Q =

∫
Rn\Qrδ(z)

∣∣∣∣∫ (K(x, y)− g(x))a(y)dy

∣∣∣∣ dx ≤
≤
∫

Rn\Qrδ(z)

r−n/u

(
inf
c

∫
Qr(z)

|K(x, y)− c|udy
)1/u

dx ≤ CAD, (7)

Q ≤
∫

Qr(z)

∫
Rn\Qrδ(z)

|K(x, y)− g(x)|dx|a(y)|dy ≤

≤ inf
c
r−n/u

(∫
Qr(z)

(∫
Rn\Qrδ(z)

|K(x, y)− c(x)|dx
)u

dy

)1/u

≤ CAD, (8)

Q ≤
∑
i∈N

∫
Qr(z)

∫
Q2irδ(z)\Q

2(i−1)rδ
(z)

|K(x, y)− gi(x)|dx|a(y)|dy ≤

≤
∑
i∈N

inf
c
r−n/u

(∫
Qr(z)

(∫
Q2irδ(z)\Q

2(i−1)rδ
(z)

|K(x, y)− c(x)|dx

)u

dy

)1/u

≤ CAD. (9)

In this manner, estimates (7− 9) motivate (1) .

3.2. Upper “Summability” Case. The next theorem can be derived
from the previous one by means of duality considerations but such
approach will not work definitely, in particular, in the case of vector-
valued functions, or will require additional duality results to consider
scales other than H1−Lp−BMO . Thus, proof provided does not rely
on duality.

Theorem 3.3. For p0 ∈ (1,∞] , u ∈ [1,∞) , let T be a SIO from
ADy(L1, u, l1, 0, 0, 0)∪ADy(L1, u, 0, 0, 0)∪ADy(u, L1, 0, 0, 0) , bounded
from Lp0 into itself. Then,
a) T ∈ L(Lp,q(Rn)) for p ∈ [p0,∞) , q ∈ (0,∞] ;
b) T ∈ L(L∞(Rn), BMO(Rn)) .
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Proof of the Theorem 3.3. We suppose that kernel K(x, y) corre-
sponds to the operator T . One should note that we need to prove the
part b) only because the part a) follows from it with the aid of the
real interpolation method.

Let us fix Qr(z) ⊂ Rn , f ∈ L∞ and use representation f = f0 +f1 ,
f0 = χQrδ(z) , where δ is a constant in the definition of the corre-
sponding ADy -classes. Then the definition of D -functional and Lp0 -
boundedness of T and restriction operator f −→ f0 imply

Dp0(r, z, Tf0, 0) ≤ r−n/p0‖Tf0|Lp0(Rn)‖ ≤ r−n/p0‖T |L(Lp0)‖×
×‖f0|Lp0(Rn)‖ ≤ ‖T |L(Lp0)‖‖f0|L∞(Rn)‖ ≤ ‖T |L(Lp0)‖‖f |L∞(Rn)‖.

(1)
Now suppose g(y) to be a function minimizing functionals

inf
c

∫
Qr(z)

|K(x, y)− c|udx (2)

at a.e. y if T ∈ ADy(u, L1, l1, 0, 0, 0) , or minimizing the functional∫
Qr(z)

(∫
Rn\Qrδ(z)

|K(x, y)− c(y)|dy
)u

dx, (3)

if T ∈ ADy(L1,1, u, 0, 0, 0) , or g(y) =
∑

i gi(y) , where the functions
{gi(y)}i∈N to minimize functionals

inf
c(y)

(∫
Qr(z)

(∫
Qr2iδ(z)\Qr2i−1δ(z)

|K(x, y)− c(y)|dy

)u

dx

)1/u

(4)

correspondingly if T ∈ ADy(L1, u, l1, 0, 0, 0) . In view of Minkowski
inequality, it follows from (2) , or (3) , or (4) that, correspondingly,

Du(r, z, Tf1, 0) ≤ r−n/u

(∫ (∫
Rn\Qrδ(z)

|(K(x, y)− g(y))f1(y)|dy)
)u

dx

)1/u

=

= Q ≤
∫

Rn\Qrδ(z)

(∫
Qr(z)

|K(x, y)− g(y)|udx
)1/u

‖f |L∞dy, or (5)

Q ≤
(∫ (∫

Rn\Qrδ(z)

|K(x, y)− g(y)|dy
)u

dx

)1/u

, or (6)

Q ≤

∑
i

(∫
Qr(z)

(∫
Qr2iδ(z)\Qr2i−1δ(z)

|K(x, y)− c(y)|dy

)u

dx

)1/u
 ‖f |L∞‖. (7)

Eventually formulas (1) and one of (5, 6, 7) imply

D1(r, z, Tf, 0) ≤ (CAD + ‖T |L(Lp0)‖)‖f |L∞‖.
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4. Applications

4.1. Functional Calculus and Littlewood-Paley-type Theorems.
In this section we have A = B = C . All the definitions and notations
regarding functional calculus are understood as in the article [1] due
to David Albrecht, Xuan Duong and Alan McIntosh , including the
following definitions.

For 0 ≤ ω < µ < π let Sω+ := {z ∈ C| | arg z| ≤ ω} ∪ {0} , S0
µ+ :=

{z ∈ C| | arg z| < µ} , space H(S0
µ+) be the space of all holomorphic

functions on S0
µ+ endowed with the L∞(S0

µ+) -norm, containing sub-

space Ψ(S0
µ+) := {ψ|ψ ∈ H(S0

µ+),∃s > 0, |ψ(z)| ≤ C|z|s(1 + |z|2s)−1} .
A closed in L2(Rn) operator T is said to be of type Sω+ if σ(T ) ⊂ Sω+

and for any µ > ω there exist Cµ such that

|z|‖(T − zI)−1|L(L2(Rn), L2(Rn))‖ ≤ Cµ, z 6∈ Sω+.

Theorem 4.1. Assume q ∈ (0,∞] , r ∈ (0,∞]n . Let T be a one-
one operator of type Sω+ in L2(Rn) , ω ∈ [0, π/2) , having a bounded
functional calculus in L2(Rn) for all f ∈ H∞(S0

µ+) for some µ > ω .
Assume that for some λ,m, ε > 0 , [v0, µ] ∈ (ω, π/2) and all z ∈
S0

(π/2−µ) , the kernel Kz(x, y) of holomorphic semigroup e−zT associ-
ated with T satisfies:
a) Poisson-type ADx -estimate with u = 1 ;
b) Poisson-type ADy -estimate with u = 1 ;
c) both Poisson-type ADx - and ADy -estimates with u = 2 .
Then, correspondingly, for f ∈ H∞(S0

ν) for all ν > µ , f(T ) can be
extended to be in:

a)
⋃

p∈((1+λ/n)−1,2]

L(Hp,q(Rn), Hp,q(Rn))with ‖f(T )|L(Hp,q, Hp,q)‖≤C‖f |L∞‖ and

L(Hp0(Rn), Hp0,∞(Rn))with ‖f(T )|L(Hp0(Rn), Hp0,∞(Rn))‖ ≤ C‖f |L∞‖
for p0 = (1 + λ/n)−1 , λ 6∈ Z ;

b)
⋃

p∈[2,∞)

L(Lp,q(Rn), Lp,q(Rn)) with ‖f(T )|L(Lp,q, Lp,q)‖ ≤ C‖f |L∞‖

and
⋃

γ∈[0,λ),T∈ORT y(γ,γ)

L(Xγ, Xγ) with ‖f(T )|L(Xγ, Xγ)‖ ≤ C‖f |L∞‖;

for Xγ ∈
{
bγr,q(Rn), lγr,q(Rn)

}
;

c) if, in addition, functional Ψν0(f) =
∫

Γν0

|f(ζ)|
|ζ| |dζ| is finite for

some Γν0 = Θ(t)te(π−ν0)/2 + (Θ(t) − 1)te(ν0−π)/2, t ∈ R , then the fol-
lowing Littlewood-Paley-type estimates is true: for γ ∈ [0, λ) , T ∈



SINGULAR INTEGRAL OPERATORS 13

ORT y(γ, γ) , p ∈ ((1 + λ/n)−1,∞) and

X(Rn) ∈
{
Hp(Rn), bγ∞,∞(Rn), bγr,q(Rn), lγr,q(Rn)

}∥∥∥f(tT )g|X(Rn, L2, dt
t
(R+))

∥∥∥ � (‖f |L∞‖+ Ψν0(f)) ‖g |X(Rn)‖ .

Partial proof of the Theorem 4.1.We shall discuss only the proofs of
the assertions concerning Hardy-Lorentz spaces (”Lower case”). Full
proof contained in [22].

Theorem D from [1] supplies an opportunity to consider only func-
tions f from the class Ψ(S0

µ+) in all the parts of the theorem thanks
to some limiting procedure.

By the theorem 5.1 and the existence of H∞ -calculus of operator
T in L2 , it is sufficient to estimate only the constants CAD from the
definitions of the appropriate AD -classes. For this purpose we shall
use the following representation of the operator f(T ) and its kernel,
obtained by Xuan Duong (see [8]):

f(T ) =

∫
Γν0

e−zTn(z)dz, n(z) =

∫
Γ0

ezζf(ζ)dζ, (1)

Γν0 = Θ(t)te(π−ν0)/2+(Θ(t)−1)te(ν0−π)/2,Γ0 = Θ(t)teν0+(Θ(t)−1)te−ν0 ,

t ∈ R, Kf (x, y) =

∫
Γ0

kz(x, y)n(z)dz, |n(z)| ≤ c|z|−1‖f‖∞.

Now using subadditivity of D -functional we have in the case a) for a
function f with ‖f |L∞‖ ≤ 1

Du(r, w,Kf (x, ·), λ) ≤ C

∫
Γν0

(
r

|z|m

)λ

|z|−mn

(
1 +

|x− w|
|z|m

)−(n+λ+ε)

|dz|/|z| ≤

≤ Crλ|x− w|−(n+λ). (2)

Hence f(T ) ∈ ADx(1, L∞, l∞, λ, λ, λ) and

ADx(u, L∞, lt,log, γ, γ, λ), γ ∈ [0, λ), t ∈ (0,∞].

uniformly by f . It means the desirable estimate CAD(f) ≤ C‖f |L∞‖ .
It is left to apply the part c) of the theorem 5.1.

To prove part c) let us fix a (nonzero) function f ‖f |H∞‖ +
Ψν0(f) ≤ 1 , satisfying the conditions of c) , and such that for z ∈ Γ0∫ ∞

0

f 2(tz)
dt

t
= cI > 0. (3)

Now we can define operators Λ : g(x) → {(f(tT )g)(x)}t∈R+ ,

Λ−1 : {h(t, x)}t∈R+ → C−1
I

∫
t∈R+

f(tT )h(t, x)
dt

t
,
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which define an isomorphism between L2(Rn) and L2(Rn, L2, dt
t
(R+))

because of the theorem F from [1]. Hence, analogously to the deriva-
tion of the formula (2) , subadditivity of the D -functional, Minkowski
inequality and finiteness of Ψν0(f) imply both for kf = Kf and for
kf = KI

f

Du(r, w, kf (x, ·), λ, L2, dt
t
(R+)) ≤ C

∫
Γν0

∥∥∥(r|z · |−m
)λ |z · |−mn×

×
(
1 + |x− w||z · |−m

)−(n+λ+ε)
∣∣∣L2, dt

t

∥∥∥ |n(z)| · |dz| ≤

≤ Crλ|x− w|−(n+λ). (4)

It means that
Λ,Λ−1 ∈ ADx(1, L∞, l∞, λ, λ, λ) ∩ ADy(1, L∞, l∞, λ, λ, λ) . Thus the
proof of the part c) is finished exactly as ones of the parts a), b) .

5. Examples of the Formulations of Main Results in a
More General Form.

In this section we shall present two theorems which are, in turn,
simplified extracts from the first two main theorems in [22].

Theorem 5.1. Let T be a singular integral operator with kernel K(x, y)
satisfying condition T ∈ ORTx(γ, λ1) , λ1 ∈ [−n,∞) , λ0, γ ≥ 0 and
bounded from Lθ0(Rn) into Lθ1(Rn) , t, θ0 ∈ (0,∞], θ1 ∈ [1,∞] ;
let also λ0 − λ1 = n(1/θ0 − 1/θ1) , pi = (1 + λi/n)−1, i = 0, 1 ,
u, q ∈ [1,∞] , q0, q1 ∈ (0,∞] , q > p1 , θ0 > p0 , and K(x, y) sat-
isfies condition T ∈ ADx(u, Lq, X, λ0, λ1, γ)∪ADx(Lq, u,X, λ0, λ1, γ) .
Then for 1/v1 − 1/v0 = 1/θ1 − 1/θ0 operator T is also bounded with
its norm bounded from above by C(CAD + ‖T |L(Lθ0 , Lθ1)‖) in the fol-
lowing situations. Assuming min{1, t, p1} ≥ q0 ≥ p0 and the space
X = lt,log for λ1 ∈ Z , or X = lt for λ1 6∈ Z
a) T ∈ L(Hp0,q0(Rn), Hp1,t(Rn)) ∩ L(Hv0,s(Rn), Hv1,s(Rn)) for v0 ∈
(p0, θ0), s ∈ (0,∞] ;
b) T ∈ L(Hv0,w0(Rn), Hv1,s(Rn)) for v1 < q, s ∈ [v0,∞] , v1 ≤ w0 ≤
min(v1, s, 1) , and either for θ0 > 1, v0 ∈ (p0, 1] , or θ0 ≤ 1, v0 ∈
(p0, θ0) ;
c) in particular, for λ0 = λ1, θ0 = θ1 > 1 , s ∈ (0,∞]
T ∈ L(Hp0(Rn), Hp0,t(Rn))

⋂
p∈(p0,1] L(Hp,s(Rn), Hp,s(Rn))

⋂⋂
p∈(1,θ0] L(Lp,s(Rn), Lp,sRn).

Theorem 5.2. Let T be a singular integral operator with kernel K(x, y)
bounded from Lθ0(Rn) into Lθ1(Rn) , t, θ0, θ1 ∈ (0,∞] ; let also λ0 ≥
0 , λ1 ∈ [−n,∞) , λ0 − λ1 = n(1/θ0 − 1/θ1) , finite γ ≥ 0 , pi =
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(1 + λi/n)−1, i = 0, 1 , u, q ∈ [1,∞] , q ≥ p1 , θ0 > p0. Then for
1/v1 − 1/v0 = 1/θ1 − 1/θ0 operator T ∈ ADx(u, Lq,t, λ0, λ1, γ) ∪
ADx(Lq,t, u, λ0, λ1, γ) : is also bounded with its norm bounded from
above by C(CAD + ‖T |L(Lθ0 , Lθ1)‖) in the following situations. As-
suming min{1, t, p1} ≥ q0 ≥ p0 and K(x, y) satisfying condition
a) T ∈ L(Hp0,q0(Rn), Lp1,t(Rn)) ∩ L(Hv0,s(Rn), Lv1,s(Rn)) for v0 ∈
(p0, θ0), s ∈ (0,∞] ;
b) T ∈ L(Hv0,w0(Rn), Lv1,s(Rn)) for v1 ≤ q, s ∈ [v0,∞] , v0 ≤ w0 ≤
min(v1, s, 1) , and either for θ0 > 1, v0 ∈ (p0, 1] , or θ0 ≤ 1, v0 ∈
(p0, θ0) ;
c) in particular, for λ0 = λ1, θ0 = θ1 , s ∈ (0,∞]
T ∈ L(Hp0(Rn), Lp0,t(Rn))

⋂
p∈(p0,θ0] L(Hp,s(Rn), Lp,s(Rn)).

d) Assuming u = ∞ and either v1 = p1 > 1 , or v1 = p1 = t = 1 , or
under the conditions of part b) with , γ = 0 , v0 = 1 ,

T ∈ L(L1(Rn, A), Lv1,∞(Rn, B)), where 1− 1/v1 = 1/θ0 − 1/θ1.

Remark 5.3. It is proved in [22] that the limiting cases of the theorems
5.1, 5.2 cannot be improved in the sense of reducing the value of the
parameter t of the “target” space Hp1,t provide n/p1 6∈ N , or the
space L(p1, t) , correspondingly.
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