Commutator estimates in the operator L^p -spaces.

Denis Potapov and Fyodor Sukochev

Abstract

We consider commutator estimates in non-commutative (operator) L^p -spaces associated with general semi-finite von Neumann algebra. We discuss the difficulties which appear when one considers commutators with an unbounded operator in non-commutative L^p -spaces with $p \neq \infty$. We explain those difficulties using the example of the classical differentiation operator. MSC (2000): 46L52, 47B47. Received 31 July 2006 / Accepted 2 November 2006.

1 Introduction

Let us consider the spaces $L^p := L^p(\mathbb{R})$, $1 \leq p \leq \infty$, i.e. the spaces of all Lebesgue measurable functions with integrable p-th power, if $1 \leq p < \infty$ and which are essentially bounded, if $p = \infty$.

Let us fix a Lipschitz function $f : \mathbb{R} \to \mathbb{C}$, i.e. a function for which there exists a constant $c_f > 0$, such that

$$|f(t_1) - f(t_2)| \le c_f |t_1 - t_2|, t_1, t_2 \in \mathbb{R}.$$

Let us take $x \in L^{\infty}$. We denote by $\frac{1}{i} \frac{dx}{dt}$ (or x') the derivative of x, taken in the sense of tempered distributions. Let us recall that the chain rule says that, for every Lipschitz function f,

$$\frac{1}{i}\frac{d}{dt}(f(x)) = f'(x) \cdot \frac{1}{i}\frac{dx}{dt},\tag{1.1}$$

where f' is the derivative of the tempered distribution f. If $\frac{1}{i}\frac{dx}{dt} \in L^p$ for some $1 \le p \le \infty$, then the latter identity implies that $\frac{1}{i}\frac{d}{dt}(f(x)) \in L^p$ as well

and

$$\left\| \frac{1}{i} \frac{d}{dt} (f(x)) \right\|_{L^p} \le c_f \left\| \frac{1}{i} \frac{dx}{dt} \right\|_{L^p},$$

where c_f is the Lipschitz constant of the function f. The latter relation may serve as a criterion for a function f to be Lipschitz. Indeed, let us introduce the following definition.

A function $f: \mathbb{R} \to \mathbb{C}$ is called *p*-Lipschitz, for some $1 \leq p \leq \infty$, if and only if there is a constant $c_{f,p}$ such that

$$\left\| \frac{1}{i} \frac{d}{dt} (f(x)) \right\|_{L^p} \le c_{f,p} \left\| \frac{1}{i} \frac{dx}{dt} \right\|_{L^p}$$

$$\tag{1.2}$$

for every $x \in L^{\infty}$ such that $\frac{1}{i} \frac{dx}{dt} \in L^{p,1}$

In the classical (function) case we have the following result.

Theorem 1.1. Let $f : \mathbb{R} \to \mathbb{C}$ be a function. The following statements are equivalent:

- a. the function f is Lipschitz;
- b. the function f is p-Lipschitz, for some $1 \le p \le \infty$;
- c. the function f is p-Lipschitz, for every $1 \le p \le \infty$.

Proof. The proof uses a standard argument based on integration by parts and using an approximation identity. We leave details to the reader. \Box

We now introduce the class of p-Lipschitz functions in the general (operator) setting.

Let \mathcal{M} be a semi-finite von Neumann algebra acting on a Hilbert space \mathcal{H} and equipped with normal semi-finite faithful (n.s.f.) trace τ . We denote the operator norm by $\|\cdot\|$. Let $\tilde{\mathcal{M}}$ stands for the collection of all τ -measurable operators, i.e. the collection of all linear operators $x: \mathcal{D}(x) \mapsto \mathcal{H}$ affiliated

¹The latter inequality supposed to be read as follows. If $x \in L^{\infty}$ and the derivative $\frac{1}{i} \frac{dx}{dt}$ is a function in L^p , then the composition f(x) is a tempered distribution such that the derivative $\frac{1}{i} \frac{d}{dt} (f(x))$ is a function in L^p and the inequality (1.2) holds.

with \mathcal{M} such that for every $\epsilon > 0$ there is a projection $p_{\epsilon} \in \mathcal{M}$ with $\tau(\mathbf{1} - p_{\epsilon}) < \epsilon$ and $p_{\epsilon}(\mathcal{H}) \subseteq \mathcal{D}(x)$. The class $\tilde{\mathcal{M}}$ is a *-algebra. Furthermore, there is a topology on the algebra $\tilde{\mathcal{M}}$, which is called the measure topology. This topology is defined by the collection of neighborhoods of the origin $\{N_{\epsilon,\delta}\}_{\epsilon,\delta>0}$, where $N_{\epsilon,\delta}$ consists of all linear operators $x:\mathcal{D}(x)\mapsto \mathcal{H}$ affiliated with \mathcal{M} such that there is a projection $p_{\epsilon}\in\mathcal{M}$ for which $\tau(\mathbf{1}-p_{\epsilon})<\epsilon$ and $||xp||\leq \delta$. The class $\tilde{\mathcal{M}}$ equipped with the measure topology is a complete topological algebra. We refer the reader to [19, 12, 15] for more details.

We now construct the non-commutative L^p -spaces $\mathcal{L}^p := L^p(\mathcal{M}, \tau)$, $1 \le p \le \infty$, see [10] and references therein. Indeed, the space \mathcal{L}^p , is defined by

$$\mathcal{L}^p := \{ x \in \tilde{\mathcal{M}} : \|x\|_{\mathcal{L}^p} < \infty \}$$

where

$$||x||_{\mathcal{L}^p} := \tau \left((x^* x)^{\frac{p}{2}} \right)^{\frac{1}{p}}, \text{ when } p < \infty,$$
$$||x||_{\mathcal{L}^\infty} := ||x||, \ x \in \tilde{\mathcal{M}}.$$

The spaces \mathcal{L}^p resemble their classical counterparts. The spaces \mathcal{L}^{∞} coincides with \mathcal{M} and the space \mathcal{L}^1 is the predual of the algebra \mathcal{M} . Furthermore, the Hölder inequality is valid in the spaces \mathcal{L}^p , that is

$$||xy||_{\mathcal{L}^p} \le ||x||_{\mathcal{L}^q} ||y||_{\mathcal{L}^s}, \quad \frac{1}{p} = \frac{1}{q} + \frac{1}{s}, \quad 1 \le p, q, s \le \infty.$$
 (1.3)

Remark 1.1. Let us mention two basic examples of the above construction.

a. The algebra of all complex $n \times n$ -matrices acting on the sequence space ℓ_n^2 which is usually denoted by $B(\ell_n^2)$ equipped with the standard trace $Tr, n \in \mathbb{N}$. The algebra of τ -measurable operators coincides with $B(\ell_n^2)$ in this case. The space \mathcal{L}^p , $1 \leq p \leq \infty$ consists of all $n \times n$ -matrices and the norm $\|\cdot\|_{\mathcal{L}^p}$ is given by the p-th Schatten-von Neumann norm, i.e. $\|x\|_{\mathcal{L}^p} = \|s(x)\|_{\ell^p}$, where s(x) is the sequence of singular values of the operator x counted with multiplicities, see [13].

b. The algebra $\mathcal{M} = L^{\infty}$ acting on the space L^2 , where every function $x \in L^{\infty}$ is considered as a multiplication operator, i.e.

$$x(\xi) := x \cdot \xi, \ \xi \in L^2.$$

The trace τ on the algebra L^{∞} is given by Lebesgue integration. The algebra $\tilde{\mathcal{M}}$ consists of all Lebesgue measurable functions which are bounded except on a set of finite measure. The spaces \mathcal{L}^p turn into the classical L^p -spaces $L^p(\mathbb{R})$.

Let us fix a linear self-adjoint operator $D: \mathcal{D}(D) \mapsto \mathcal{H}$ (not necessary affiliated with \mathcal{M}) such that

- **(D1)** $e^{itD} x e^{-itD} \in \mathcal{L}^{\infty}$, whenever $x \in \mathcal{L}^{\infty}$, $t \in \mathbb{R}$;
- **(D2)** $\tau(e^{itD} x e^{-itD}) = \tau(x)$, whenever $x \in \mathcal{L}^1 \cap \mathcal{L}^{\infty}$.

Let us recall that the subspace $\mathscr{D} \subseteq \mathscr{D}(D)$ is called *a core* of the operator D if and only if the closure $\overline{(D|_{\mathscr{D}})}$ coincides with D.

Definition 1.1. Let $x \in \mathcal{M}$. We say that the commutator [D, x] is defined and belongs to \mathcal{L}^p , for some $1 \leq p \leq \infty$ if and only if there is a core $\mathscr{D} \subseteq \mathscr{D}(D)$ of the operator D such that $x(\mathscr{D}) \subseteq \mathscr{D}(D)$ and the operator Dx - xD, initially defined on \mathscr{D} , is closable, in which case the closure $\overline{Dx - xD}$ belongs to \mathcal{L}^p . In this case, the symbol [D, x] stands for the closure $\overline{Dx - xD}$.

In the case $p = \infty$, we have the following observation.

Lemma 1.1 ([5, Proposition 3.2.55]). Let $D : \mathcal{D}(D) \mapsto \mathcal{H}$ be a self-adjoint linear operator and $x \in \mathcal{M}$. If [D, x] is bounded, then $x(\mathcal{D}(D)) \subseteq \mathcal{D}(D)$.

The relation $x(\mathcal{D}(D)) \subseteq \mathcal{D}(D)$ in the cases $1 \leq p < \infty$ may fail as it is shown in the example with the differentiation operator below. On the other hand, the weaker relation $x(\mathcal{D}) \subseteq \mathcal{D}(D)$ for some core $\mathcal{D} \subseteq \mathcal{D}(D)$ is much easier to attack and, more importantly, is sufficient for the applications we study; see Theorems 3.2, 3.3 and 3.4.

By analogy with the beginning of the section, we introduce the following definition.

Definition 1.2. A function $f : \mathbb{R} \to \mathbb{C}$ is called p-Lipschitz for some $1 \le p \le \infty$ (with respect to the couple (\mathcal{M}, τ) and the operator D) if and only if there is a constant $c_{f,p}$ such that $[D, f(x)] \in \mathcal{L}^p$ and

$$||[D, f(x)]||_{\mathcal{L}^p} \le c_{f,p} ||[D, x]||_{\mathcal{L}^p},$$

for every $x = x^* \in \mathcal{M}$ such that $[D, x] \in \mathcal{L}^p$.

The present note is concerned with the following problem.

Problem 1.1. Which the function $f : \mathbb{R} \to \mathbb{C}$ is p-Lipschitz?

Similar problems have been under considerable investigation over a long period. We refer the reader to the works [7, 14, 1, 2, 3, 4, 10, 8, 20, 17].

In this note, we shall show some sufficient criteria for a function to be p-Lipschitz stated in terms of (scalar) smoothness properties of this function. The main results, Theorems 3.2, 3.3 and 3.4, are essentially proved in [16]. The purpose of the present note is to give an additional insight in the matter and explain some interesting points about the construction of commutators in the non-commutative L^p -spaces with respect to atomless algebras using the example of the classical differentiation operator.

2 Commutators with the differentiation operator $\frac{1}{i}\frac{d}{dt}$

In the present section, we fix $\mathcal{M} = L^{\infty}$ (see Remark 1.1) and $\tau(\cdot) = \int (\cdot) dt$. Let us consider the operator $D := \frac{1}{i} \frac{d}{dt} : \mathcal{D}(D) \mapsto L^2$ with the domain given by

$$\mathscr{D}(D) := \left\{ \xi \in L^2 : \frac{1}{i} \frac{d\xi}{dt} \in L^2 \right\}.$$

The operator D is self-adjoint and the unitary group $\{e^{itD}\}_{t\in\mathbb{R}}$ is given by the translations, i.e.

$$e^{itD}(\xi)(s) = \xi(s+t), \quad s \in \mathbb{R}.$$
 (2.1)

Consequently,

$$(e^{itD}xe^{-itD}\xi)(s) = (xe^{-itD}\xi)(s+t) = x(s+t)(e^{-itD}\xi)(s+t)$$
$$= x(s+t)\xi(s), \quad \xi \in L^2, \ t, s \in \mathbb{R}.$$

Therefore, for every $x \in L^{\infty}$, the operator $e^{itD}xe^{-itD}$ is a multiplication operator on L^2 induced by the translated function $x(\cdot + t) \in L^{\infty}$. The latter readily yields the fact that the operator D satisfies (D1)–(D2).

Let $x \in L^{\infty}$ be such that $[D, x] \in L^p$, $1 \leq p \leq \infty$. By Definition 1.1, there is a core $\mathscr{D} \subseteq \mathscr{D}(D)$ such that $x(\mathscr{D}) \subseteq \mathscr{D}(D)$ and

$$(Dx - xD)(\xi) = \frac{1}{i} \frac{d}{dt} (x \cdot \xi) - x \cdot \frac{1}{i} \frac{d\xi}{dt} = \frac{1}{i} \frac{dx}{dt} \cdot \xi, \quad \xi \in \mathscr{D}. \tag{2.2}$$

Thus, if the derivative $\frac{1}{i}\frac{dx}{dt}$ is a function, then the operator Dx - xD acts as a multiplication operator on \mathscr{D} . Clearly, Dx - xD is closable and the closure $\overline{Dx - xD} \in L^p$ if and only if $\frac{1}{i}\frac{dx}{dt} \in L^p$.

In other words, by Definition 1.1, the operator [D, x] belongs to L^p , $1 \le p \le \infty$, for a given $x \in L^{\infty}$ if and only if there is a core $\mathscr{D} \subseteq \mathscr{D}(D)$ such that

$$x(\mathcal{D}) \subseteq \mathcal{D}(D) \text{ and } \frac{1}{i} \frac{dx}{dt} \in L^p.$$
 (2.3)

Furthermore, let us note that the inclusion $x(\mathcal{D}) \subseteq \mathcal{D}(D)$ means that for every function $\xi \in \mathcal{D}$, the function $x \cdot \xi$ is differentiable and

$$\frac{1}{i}\frac{d}{dt}(x\cdot\xi)\in L^2. \tag{2.4}$$

Since $x \cdot \frac{1}{i} \frac{d\xi}{dt} \in L^2$, for every $\xi \in \mathcal{D}(D)$, $x \in L^{\infty}$, it follows from the last identity in (2.2) that (2.4) is equivalent to $\frac{1}{i} \frac{dx}{dt} \cdot \xi \in L^2$. The latter means that, if $\mathcal{D} \subseteq \mathcal{D}(D)$ is a core, then

$$x(\mathcal{D}) \subseteq \mathcal{D}(D) \iff \frac{1}{i} \frac{dx}{dt}(\mathcal{D}) \subseteq L^2.$$
 (2.5)

Thus, we can restate (2.3) as $[D, x] \in L^p$, $1 \le p \le \infty$ for a given $x \in L^\infty$ if and only if there exists a core $\mathscr{D} \subseteq \mathscr{D}(D)$ such that

$$\frac{1}{i}\frac{dx}{dt}(\mathscr{D}) \subseteq L^2 \text{ and } \frac{1}{i}\frac{dx}{dt} \in L^p.$$
 (2.6)

Thus, in general, a verification of the statement $[D, x] \in L^p$, $1 \le p < \infty$ consists of two steps whose nature is quite different. A verification of the condition $\frac{1}{i}\frac{dx}{dt} \in L^p$ is carried out in the literature almost exclusively via methods related to Banach space geometry (Schur multipliers, double operator integrals, vector-valued Fourier multipliers [9, 6, 11, 10]). However, the first condition in (2.6) has an operator-theoretical nature and does not correspond to the methods listed above. We outline an approach to this problem when $D = \frac{1}{i}\frac{d}{dt}$.

Let us first consider $[D, x] \in L^p$ when $2 \le p < \infty$. We shall show that in the present setting, the required core \mathscr{D} appears very naturally due to the fact that the underlying Hilbert space L^2 possesses the additional Banach structure induced by the L^p -scale. Indeed, let us set

$$\mathscr{D} := \mathscr{D}(D) \cap L^q$$
, where $\frac{1}{2} = \frac{1}{p} + \frac{1}{q}$. (2.7)

Clearly, the Hölder inequality implies that (2.6) holds for the subset \mathscr{D} and any $x \in L^{\infty}$ such that $\frac{1}{i} \frac{dx}{dt} \in L^p$. We shall verify that \mathscr{D} is a core of D in Theorem 3.3 below. What we would like to emphasize is that the core \mathscr{D} is found purely by a Banach space construction. Thus, we see that in the case $2 \le p < \infty$, we have

$$[D,x] \in L^p \iff \frac{1}{i} \frac{dx}{dt} \in L^p.$$

Finally, we comment on the case $1 \leq p < 2$. Here, the problem of finding the core \mathscr{D} satisfying the first condition in (2.6) cannot be resolved by a purely Banach space approach as in (2.7) above. Indeed, let $C(\mathbb{R})$ be the class of all continuous functions on \mathbb{R} . We note that $\mathscr{D}(D) \subseteq C(\mathbb{R})$, [18, Theorem 2, p. 124]. If we now consider the function $x \in L^{\infty}$ such that

$$\frac{1}{i}\frac{dx}{dt} \in L^p$$
, but $\frac{1}{i}\frac{dx}{dt} \not\in L^2_{loc}$,

then

$$\frac{1}{i}\frac{dx}{dt} \cdot \xi \notin L^2$$
, for every $\xi \in \mathscr{D}(D)$, $\xi \not\equiv 0$.

That means that despite the fact that the derivative $\frac{1}{i}\frac{dx}{dt}$ exists in the sense of tempered distributions and belongs to L^p , there is no core such that the commutator [D, x] may be defined according to Definition 1.1.

3 Main result

As we have seen in the example with the operator $D = \frac{1}{i} \frac{d}{dt}$, a meaningful resolution of Problem 1.1 requires locating a core \mathscr{D} of the operator D satisfying the first condition in (2.5). As we indicated in that example, a possible candidate on the role of such \mathscr{D} is the space

$$\mathscr{D}(D) \cap \mathcal{L}^1 \cap \mathcal{L}^{\infty}$$
.

Unfortunately, in general, the domain $\mathcal{D}(D) \subseteq \mathcal{H}$ may have an empty intersection with the space $\mathcal{L}^1 \cap \mathcal{L}^{\infty}$. We shall show below that this is not the case when \mathcal{M} is taken in the left regular representation (see Theorem 3.3).

3.1 The left regular representation

Let \mathcal{M} be a semi-finite von Neumann algebra equipped with n.s.f. trace τ and let $\mathcal{L}^p := L^p(\mathcal{M}, \tau)$, $1 \leq p \leq \infty$ be the corresponding non-commutative L^p -spaces.

Let us consider the mapping $L: \mathcal{M} \mapsto B(\mathcal{L}^2)$, given by $L(x) := L_x$, $x \in \mathcal{M}$, where the operator $L_x \in B(\mathcal{L}^2)$ is given by

$$L_x(\xi) := x \cdot \xi, \quad \xi \in \mathcal{L}^2.$$

The image $\mathcal{M}_L := L(\mathcal{M})$ is a von Neumann algebra acting on \mathcal{L}^2 . The mapping L is a *-isomorphism between the algebras \mathcal{M} and \mathcal{M}_L . The algebra \mathcal{M}_L is equipped with n.s.f trace $\tau_L := \tau \circ L^{-1}$. With this definition of τ_L , the mapping L becomes a trace preserving *-isomorphism. Consequently, it extends to a *-homeomorphism between topological *-algebras $\tilde{\mathcal{M}}$ and $\tilde{\mathcal{M}}_L := (\mathcal{M}_L)^{\sim}$. We shall denote the latter extension by L also. Alternatively, the mapping $L: \tilde{\mathcal{M}} \mapsto \tilde{\mathcal{M}}_L$ is given by $L(x) = L_x$, where $L_x: \mathcal{D}(L_x) \mapsto \mathcal{L}^2$ is an

operator given by

$$\mathscr{D}(L_x) = \{ \xi \in \mathcal{L}^2 : x \cdot \xi \in \mathcal{L}^2 \} \text{ and } L_x(\xi) = x \cdot \xi, \ \xi \in \mathscr{D}(L_x).$$

Since the mapping $L: \tilde{\mathcal{M}} \mapsto \tilde{\mathcal{M}}_L$ is trace preserving, its restriction to the space \mathcal{L}^p becomes an isometry between the spaces \mathcal{L}^p and $\mathcal{L}^p_L := L^p(\mathcal{M}_L, \tau_L)$, for every $1 \leq p \leq \infty$.

3.1.1 Approximation of the commutator [D, x]

In the present section we shall consider the construction of an approximation of the commutator [D, x] by means of the corresponding unitary group $\{e^{itD}\}_{t\in\mathbb{R}}$.

For illustration, let us again consider the example of the differentiation operator. If $x \in L^{\infty}(\mathbb{R})$ and $D = \frac{1}{i} \frac{d}{dt}$, then we have the well known relations

$$x(t+s) - x(s) = i \int_0^t \frac{1}{i} \frac{dx}{dt} (s+\tau) d\tau, \quad t, s \in \mathbb{R}, \tag{3.1}$$

$$\frac{1}{i}\frac{dx}{dt}(s) = \lim_{t \to 0} \frac{x(s+t) - x(s)}{it}.$$
(3.2)

An operator version of (3.1) and (3.2), in the case $p = \infty$ may be found in [5, Section 3.2.5]

Theorem 3.1. Let $D: \mathcal{D}(D) \mapsto \mathcal{H}$ be a self-adjoint linear operator, satisfying (D1)–(D2) and let $x \in \mathcal{M}$. If $[D, x] \in \mathcal{L}^{\infty}$, then

a.
$$e^{itD}xe^{-itD} - x = i \int_0^t e^{isD}[D, x]e^{-isD} ds, \ t \in \mathbb{R};$$

b.
$$\left\| \frac{e^{itD}xe^{-itD} - x}{t} \right\|_{\mathcal{L}^{\infty}} \le \|[D, x]\|_{\mathcal{L}^{\infty}};$$

$$c. \lim_{t\to 0}\frac{e^{itD}xe^{-itD}-x}{t}=i[D,x];$$

where the integral and the limit converge with respect to the weak operator topology.

The natural framework to deal with the commutator $[D, x] \in \mathcal{L}^p$ when $p < \infty$ is the setting of the left regular representation. Thus, from now on, we consider the algebra \mathcal{M}_L with the n.s.f. trace τ_L . We denote by $\mathcal{L}_L^p := L^p(\mathcal{M}_L, \tau_L)$, $1 \le p \le \infty$ the corresponding non-commutative L^p -space.

We shall discuss the extension of Theorem 3.1 to the spaces \mathcal{L}_L^p , $1 \leq p < \infty$.

To explain the next step, let us note that the proof of Theorem 3.1 crucially depends on the fact that the domain $\mathcal{D}(D)$ where the commutator [D,x], initially defined, according to Definition 1.1 and Lemma 1.1, is invariant with respect to the group $\{e^{itD}\}_{t\in\mathbb{R}}$. On the other hand, the core \mathcal{D} in Definition 1.1 lacks this invariance when $p < \infty$. We now extend Definition 1.1.

Definition 3.1. Let $x \in \mathcal{M}_L$ and let $D : \mathcal{D}(D) \mapsto \mathcal{L}^2$ be a linear self-adjoint operator. We shall say that the commutator [D, x] is defined and belongs to \mathcal{L}_L^p , for some $1 \leq p \leq \infty$ if and only if

- a. there is a core $\mathscr{D} \subseteq \mathcal{L}^1 \cap \mathcal{L}^{\infty}$ of the operator D such that $e^{itD}(\mathscr{D}) \subseteq \mathscr{D}$, for every $t \in \mathbb{R}$, and $x(\mathscr{D}) \subseteq \mathscr{D}(D)$;
- b. the operator Dx xD, initially defined on \mathcal{D} , is closable;
- c. the closure $\overline{Dx xD}$ belongs to \mathcal{L}^p . In this case, the symbol [D, x] stands for the closure $\overline{Dx xD}$.

The next result provides an extension of Theorem 3.1 over the spaces \mathcal{L}_L^p , $1 \leq p < \infty$.

Theorem 3.2. Let $D: \mathcal{D}(D) \mapsto \mathcal{L}^2$ be a self-adjoint linear operator, satisfying (D1)–(D2) and let $x \in \mathcal{M}_L$. If $[D,x] \in \mathcal{L}_L^p$, for some $1 \leq p < \infty$, then

a.
$$e^{itD}xe^{-itD} - x = i \int_0^t e^{isD}[D, x]e^{-isD} ds, t \in \mathbb{R};$$

b.
$$\left\| \frac{e^{itD}xe^{-itD} - x}{t} \right\|_{\mathcal{L}_L^p} \le \|[D, x]\|_{\mathcal{L}_L^p};$$

c.
$$\lim_{t\to 0} \frac{e^{itD}xe^{-itD} - x}{t} = i[D, x];$$

where the integral and the limit converge with respect to the norm topology in \mathcal{L}_L^p .

3.1.2 Commutator estimates

Let us recall that we have fixed the pair (\mathcal{M}, τ) and we consider the left regular representation (\mathcal{M}_L, τ_L) . Let $D : \mathcal{D}(D) \mapsto \mathcal{L}^2$ be a linear self-adjoint operator satisfying (D1)–(D2).

Let us again consider the subspace

$$\mathscr{D}_0(D) := \mathscr{D}(D) \cap \mathcal{L}^1 \cap \mathcal{L}^\infty \subseteq \mathcal{L}^2. \tag{3.3}$$

Unfortunately, in general case when the operator D is not affiliated with the algebra \mathcal{M}_L , there is no hope to expect that the latter subspace will be a core of the operator D. To single out the class of operators D for which the subspace $\mathcal{D}_0(D)$ is a core let us introduce the assumption

(D3) the unitary group $\{e^{itD}\}_{t\in\mathbb{R}}$ is a $\sigma(\mathcal{L}^1\cap\mathcal{L}^\infty,\mathcal{L}^1+\mathcal{L}^\infty)$ -continuous group of contractions in the space $\mathcal{L}^1\cap\mathcal{L}^\infty$.

If $D = \frac{1}{i} \frac{d}{dt}$, then the assumption (D3) is clearly satisfied, since $\{e^{itD}\}_{t \in \mathbb{R}}$ is a group of translations, see (2.1). Also, if D is affiliated with \mathcal{M}_L , then (D3) holds, due to the fact that $e^{itD} = L(u_t)$, for every $t \in \mathbb{R}$, where $\{u_t\}_{t \in \mathbb{R}} \subseteq \mathcal{M}$ is a group of unitaries.

Theorem 3.3. If $D : \mathcal{D}(D) \mapsto \mathcal{L}^2$ is a linear self-adjoint operator satisfying (D1)–(D3), then the subspace $\mathcal{D}_0(D)$ is a core of the operator D.

To state the main result, let us first recall that a Borel function $f: \mathbb{R} \mapsto \mathbb{C}$ is called of bounded β -variation, $1 \leq \beta < \infty$ if and only if

$$||f||_{V_{\beta}} := \sup \left[\sum_{j=-\infty}^{+\infty} |f(t_j) - f(t_{j+1})|^{\beta} \right]^{\frac{1}{\beta}} < \infty,$$
 (3.4)

where the supremum is taken over all possible increasing two-sided sequences $\{t_j\}_{j=-\infty}^{+\infty} \subseteq \mathbb{R}$. V_{β} will stand for the class of all functions of bounded β -variation, $1 \leq \beta < \infty$. The class V_{β} is equipped with the norm $\|\cdot\|_{V_{\beta}}$ defined in (3.4). We also define V_{∞} to be the collection of all bounded Borel functions equipped with the uniform norm.

Let us next state the main result of the text. Its proof consists of a combination of the technique developed in [8] with the approach explained above. In the special case $\mathcal{M}=B(\mathcal{H})$, the result which follows gives an alternative (and simpler) proof of [4, Example III]. Let us note that the result distinguishes two different cases p<2 and $p\geq 2$ as discussed in the example of Section 2.

Theorem 3.4. Let $D: \mathcal{D}(D) \mapsto \mathcal{L}^2$ be a linear self-adjoint operator satisfying (D1)–(D3) and let $x = x^* \in \mathcal{M}_L$. Let a function $f: \mathbb{R} \mapsto \mathbb{C}$ be such that $f' \in V_\beta$ for some $1 \leq \beta \leq \infty$.

a. For every $2 \leq p < \frac{2\beta}{\beta-1}$ there is a constant c'_p such that if $[D, x] \in \mathcal{L}^p_L$, then $[D, f(x)] \in \mathcal{L}^p_L$ and

$$||[D, f(x)]||_{\mathcal{L}_{L}^{p}} \le c'_{p} ||f'||_{V_{\beta}} ||[D, x]||_{\mathcal{L}_{L}^{p}}.$$

b. For every $\frac{2\beta}{\beta+1} there is a constant <math>c_p''$ such that if $[D,x] \in \mathcal{L}_L^p \cap \mathcal{L}_L^2$, then $[D,f(x)] \in \mathcal{L}_L^p \cap \mathcal{L}_L^2$ and

$$||[D, f(x)]||_{\mathcal{L}_I^p} \le c_p'' ||f'||_{V_\beta} ||[D, x]||_{\mathcal{L}_I^p}.$$

Now we state the answer to Problem 1.1 in the setting of the left regular representation.

Theorem 3.5. Any function $f : \mathbb{R} \mapsto \mathbb{C}$ such that $f' \in V_{\beta}$, for some $1 \leq \beta \leq \infty$ is p-Lipschitz for every $2 \leq p < \frac{2\beta}{\beta-1}$, with respect to any operator $D : \mathcal{D}(D) \mapsto \mathcal{L}^2$ and every semi-finite von Neumann algebra (\mathcal{M}_L, τ_L) .

References

- [1] M. S. Birman and M. Z. Solomyak, *Double stieltjes operator integrals*, Problemy Mat. Fiz. (1966), no. 1, 33–67, *Russian*.
- [2] _____, Double stieltjes operator integrals, II, Problemy Mat. Fiz. (1967), no. 2, 26–60, Russian.
- [3] _____, Double stieltjes operator integrals, III, Problemy Mat. Fiz. (1973), no. 6, 27–53, Russian.
- [4] _____, Operator integration, perturbations, and commutators, J. Soviet Math. (1989), no. 1, 129–148.
- [5] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics. 1, second ed., Texts and Monographs in Physics, Springer-Verlag, New York, 1987.
- [6] P. Clément, B. de Pagter, F. A. Sukochev, and H. Witvliet, *Schauder decomposition and multiplier theorems*, Studia Math. **138** (2000), no. 2, 135–163.
- [7] E. B. Davies, Lipschitz continuity of functions of operators in the Schatten classes, J. London Math. Soc. (2) 37 (1988), no. 1, 148–157.
- [8] B. de Pagter and F. A. Sukochev, Differentiation of operator functions in non-commutative L_p -spaces, J. Funct. Anal. **212** (2004), no. 1, 28–75.
- [9] B. de Pagter, F. A. Sukochev, and H. Witvliet, Unconditional decompositions and Schur-type multipliers, Recent advances in operator theory (Groningen, 1998), Oper. Theory Adv. Appl., vol. 124, Birkhäuser, Basel, 2001, pp. 505– 525.
- [10] B. de Pagter, H. Witvliet, and F. A. Sukochev, *Double operator integrals*, J. Funct. Anal. **192** (2002), no. 1, 52–111.
- [11] P. G. Dodds, T. K. Dodds, B. de Pagter, and F. A. Sukochev, *Lipschitz* continuity of the absolute value and Riesz projections in symmetric operator spaces, J. Funct. Anal. **148** (1997), no. 1, 28–69.
- [12] T. Fack and H. Kosaki, Generalized s-numbers of τ -measurable operators, Pacific J. Math. 123 (1986), no. 2, 269–300.
- [13] I. C. Gohberg and M. G. Kreĭn, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Izdat. "Nauka", Moscow, 1965.

- [14] A. McIntosh, Functions and derivations of C*-algebras, J. Funct. Anal. 30 (1978), no. 2, 264–275.
- [15] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103–116.
- [16] D. S. Potapov and F. A. Sukochev, *Lipschitz and commutator estimates in symmetric operator spaces*, to appear in J. Oper. Theory.
- [17] ______, Non-quantum differentiable C^1 -functions in the spaces with trivial Boyd indices, preprint.
- [18] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.
- [19] Ş. Strătilă and L. Zsidó, *Lectures on von Neumann algebras*, Editura Academiei, Bucharest, 1979.
- [20] W. van Ackooij, B. de Pagter, and F. A. Sukochev, *Domains of infinitesimal generators of automorphism flows*, J. Funct. Anal. **218** (2005), no. 2, 409–424.

Denis Potapov, School of Informatics and Engineering, Flinders University of South Australia, Bedfork Park, 5042, Adelaide, SA, Australia. denis.potapov@flinders.edu.au

Fyodor Sukochev, School of Informatics and Engineering, Flinders University of South Australia, Bedfork Park, 5042, Adelaide, SA, Australia. sukochev@infoeng.flinders.edu.au