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Abstract. We review our recent results on monodromies at infinity of poly-
nomial maps and A-hypergeometric functions. By using the theory of mixed
Hodge modules, we introduce motivic global Milnor fibers of polynomial maps
which encode the information of their monodromies at infinity into mixed
Hodge structures with finite group actions. The numbers of the Jordan blocks
in the monodromy at infinity of the polynomial will be described by its Newton
polyhedron at infinity.

1. Introduction

After two fundamental papers Broughton [Br] and Siersma-Tibăr [SiT1], many
mathematicians studied the global behavior of polynomial maps f : Cn −→ C. For
a polynomial map f : Cn −→ C, there exists a finite subset B ⊂ C such that the
restriction

Cn \ f−1(B) −→ C \B (1.1)

of f is a locally trivial fibration. We denote by Bf the smallest subset B ⊂ C
satisfying this condition. Let CR = {x ∈ C | |x| = R} (R % 0) be a sufficiently
large circle in C such that Bf ⊂ {x ∈ C | |x| < R}. Then by restricting the locally
trivial fibration Cn \ f−1(Bf ) −→ C \Bf to CR we obtain a geometric monodromy
automorphism Φ∞

f : f−1(R)
∼−→ f−1(R) and the linear maps

Φ∞
j : Hj(f−1(R);C) ∼−→ Hj(f−1(R);C) (j = 0, 1, . . .) (1.2)

induced by it. We call Φ∞
j the (cohomological) monodromies at infinity of f . The

monodromies at infinity Φ∞
j are especially important, because after a basic result

[NN] of Neumann-Norbury, Dimca-Némethi [DiN] proved that the monodromy
representations

π1(C \Bf , c) −→ Aut(Hj(f−1(c);C)) (c ∈ C \Bf ) (1.3)

are completely determined by Φ∞
j . Many results on their eigenvalues (i.e. the

semisimple parts) were obtained by Gusein-Zade-Luengo-Melle-Hernández [GuLM1],
[GuLM2], Libgober-Sperber [LS], Garćıa-López-Némethi [LN1], Siersma-Tibăr
[SiT2] and [MT3] etc. Moreover some important progress on the study of their
nilpotent parts was made by Garćıa-López-Némethi [LN2] and Dimca-Saito [DiS]
etc. However, to the best of our knowledge, the nilpotent parts have not been fully
understood yet. In [MT4], following the construction of motivic Milnor fibers in
Denef-Loeser [DeL1] and [DeL2], we introduced motivic reincarnations of global
(Milnor) fibers of polynomial maps and gave some methods for the calculations of
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142 MONODROMIES AT INFINITY AND A-HYPERGEOMETRIC FUNCTIONS

their mixed Hodge numbers. Since these mixed Hodge numbers carry the informa-
tion of the nilpotent part of the monodromy at infinity of the polynomial f , we can
determine its Jordan normal form. In particular, in [MT4] we could describe the
numbers of Jordan blocks in the monodromy at infinity of f in terms of its New-
ton polyhedron at infinity. From now on, we shall briefly introduce this result in
[MT4]. Assume that the polynomial f is convenient and non-degenerate at infinity
(see Definition 3.3). Note that the second condition is satisfied by generic polyno-
mials f(x) ∈ C[x1, x2, . . . , xn]. Under these two mild conditions, Broughton [Br]
proved that there exists a strong concentration Hj(f−1(R);C) " 0 (j #= 0, n−1) of
the cohomology groups of the generic fiber f−1(R) (R % 0) of f . Since Φ∞

0 = idC
is trivial, Φ∞

n−1 is the only non-trivial monodromy at infinity of f . As in [LS] we
call the convex hull of {0} and the Newton polytope NP (f) of f in Rn the Newton
polyhedron at infinity of f and denote it by Γ∞(f). Let q1, . . . , ql (resp. γ1, . . . , γl′)
be the 0-dimensional (resp. 1-dimensional) faces of Γ∞(f) such that qi ∈ Int(Rn

+)
(resp. the relative interior rel.int(γi) of γi is contained in Int(Rn

+)). For each qi
(resp. γi), denote by di > 0 (resp. ei > 0) the lattice distance dist(qi, 0) (resp.
dist(γi, 0)) of it from the origin 0 ∈ Rn. For 1 ≤ i ≤ l′, let ∆i be the convex hull of
{0} ' γi in Rn. Then for λ ∈ C \ {1} and 1 ≤ i ≤ l′ such that λei = 1 we set

n(λ)i = #{v ∈ Zn ∩ rel.int(∆i) | height(v, γi) = k}
+#{v ∈ Zn ∩ rel.int(∆i) | height(v, γi) = ei − k}, (1.4)

where k is the smallest positive integer satisfying λ = ζkei (ζei := exp(2π
√
−1/ei))

and for v ∈ Zn ∩ rel.int(∆i) we denote by height(v, γi) the lattice height of v from
the base γi of ∆i. Then in [MT4] we obtained the following result which describes
the numbers of the Jordan blocks for each eigenvalue λ #= 1 in Φ∞

n−1. Recall that
by the monodromy theorem the sizes of such Jordan blocks are bounded by n.

Theorem 1.1. ([MT4, Theorem 5.4]) Let f ∈ C[x1, . . . , xn] be as above. Then
for any λ ∈ C∗ \ {1} we have

(i) The number of the Jordan blocks for the eigenvalue λ with the maximal
possible size n in Φ∞

n−1 : H
n−1(f−1(R);C) ∼−→ Hn−1(f−1(R);C) (R % 0)

is equal to #{qi | λdi = 1}.
(ii) The number of the Jordan blocks for the eigenvalue λ with size n − 1 in

Φ∞
n−1 is equal to

∑
i : λei=1 n(λ)i.

Roughly speaking, Theorem 1.1 says that the nilpotent part of the monodromy at
infinity Φ∞

n−1 is determined by the convexity of the hypersurface ∂Γ∞(f)∩ Int(Rn
+)

in Int(Rn
+). Thus Theorem 1.1 generalizes the well-known fact that the mon-

odromies of quasi-homogeneous polynomials are semisimple. Moreover in [MT4]
we gave also a general algorithm for computing the numbers of Jordan blocks with
smaller sizes. See Sections 2 and 4 for the details.

This paper is organized as follows. In Section 2, after recalling some basic
definitions we introduce some generalizations in [MT4, Section 2] and [ET] of the
results in Danilov-Khovanskii [DaK] which will be used later. In Section 3, we
recall some basic definitions and results on monodromies at infinity and review our
new proof in [MT3] of Libgober-Sperber’s theorem [LS] on the semisimple parts of
monodromies at infinity. In Section 4, we introduce our above-mentioned results on
the nilpotent parts of monodromies at infinity in [MT4, Sections 4 and 5]. Some
deep results in Sabbah [S1] and [S2] will be used to justify our arguments. In
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Section 4, we will introduce also our global analogue [MT4, Theorem 5.11] of the
Steenbrink conjecture proved by Varchenko-Khovanskii [VK] and Saito [So2]. In
Section 5, applying our methods to local Milnor monodromies we introduce our
results in [MT4, Section 7] and [ET]. Following the recent results in [ET], we
will discuss the nilpotent parts of local monodromies over complete intersection
subvarieties in Cn. These methods in singularity theory can be applied also to the
study of analytic monodromies at infinity. Namely in [T2] we obtained a formula for
the eigenvalues of the monodromy automorphisms of A-hypergeometric functions
(see Gelfand-Kapranov-Zelevinsky [GeKZ1] and Section 6 etc. for the details)
defined by the analytic continuations along large loops contained in complex lines
parallel to the coordinate axes. In Section 6, we will show how such a result in
analysis can be proved by a method of toric compactifications.

Acknowledgement: The author would like to express his hearty gratitude to Pro-
fessors Esterov, Matsui, Sabbah and Schürmann for their very fruitful discussions
with him.

2. Preliminary notions and results

In this section, we introduce basic notions and results which will be used in
this paper. In this paper, we essentially follow the terminology of [Di], [HTT] and
[KS] etc. For example, for a topological space X we denote by Db(X) the derived
category whose objects are bounded complexes of sheaves of CX -modules on X.

Definition 2.1. Let X be an algebraic variety over C.

(i) We say that a sheaf F on X is constructible if there exists a stratification
X =

⊔
α Xα of X such that F|Xα is a locally constant sheaf of finite rank

for any α.
(ii) We say that an object F of Db(X) is constructible if the cohomology sheaf

Hj(F) of F is constructible for any j ∈ Z. We denote by Db
c(X) the full

subcategory of Db(X) consisting of constructible objects F .

Recall that for any morphism f : X −→ Y of algebraic varieties over C there
exists a functor

Rf∗ : D
b(X) −→ Db(Y ) (2.1)

of direct images. This functor preserves the constructibility and we obtain also a
functor

Rf∗ : D
b
c(X) −→ Db

c(Y ). (2.2)

For other basic operations Rf!, f−1, f ! etc. in derived categories, see [KS] for the
detail.

Definition 2.2. Let X be an algebraic variety over C and G an abelian group.
Then we say a G-valued function ρ : X −→ G on X is constructible if there exists
a stratification X =

⊔
α Xα of X such that ρ|Xα is constant for any α. We denote

by CFG(X) the abelian group of G-valued constructible functions on X.

Let C(t)∗ = C(t) \ {0} be the multiplicative group of the function field C(t) of
the scheme C. In this paper, we consider CFG(X) only for G = Z or C(t)∗. For a
G-valued constructible function ρ : X −→ G, we take a stratification X =

⊔
α Xα of
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X such that ρ|Xα is constant for any α as above. Denoting the Euler characteristic
of Xα by χ(Xα), we set

∫

X
ρ :=

∑

α

χ(Xα) · ρ(xα) ∈ G, (2.3)

where xα is a reference point in Xα. Then we can easily show that
∫
X ρ ∈ G does

not depend on the choice of the stratification X =
⊔

α Xα of X. Hence we obtain
a homomorphism ∫

X
: CFG(X) −→ G (2.4)

of abelian groups. For ρ ∈ CFG(X), we call
∫
X ρ ∈ G the topological (Euler)

integral of ρ over X. More generally, for any morphism f : X −→ Y of algebraic
varieties over C and ρ ∈ CFG(X), we define the push-forward

∫
f ρ ∈ CFG(Y ) of ρ

by (∫

f
ρ

)
(y) :=

∫

f−1(y)
ρ (2.5)

for y ∈ Y . This defines a homomorphism
∫

f
: CFG(X) −→ CFG(Y ) (2.6)

of abelian groups. Among various operations in derived categories, the following
nearby cycle functor introduced by Deligne will be frequently used in this paper
(see [Di, Section 4.2] for an excellent survey of this subject).

Definition 2.3. Let f : X −→ C be a non-constant regular function on an
algebraic variety X over C. Set X0 := {x ∈ X | f(x) = 0} ⊂ X and let iX : X0 ↪−→
X, jX : X \X0 ↪−→ X be inclusions. Let p : C̃∗ −→ C∗ be the universal covering of

C∗ = C \ {0} (C̃∗ % C) and consider the Cartesian square

X̃ \X0

pX

C̃∗

p!

X \X0
f

C∗.

(2.7)

Then for F ∈ Db
c(X) we set

ψf (F) := i−1
X R(jX ◦ pX)∗(jX ◦ pX)−1F ∈ Db(X0) (2.8)

and call it the nearby cycle of F .

Since the nearby cycle functor preserves the constructibility, in the above situ-
ation we obtain a functor

ψf : D
b
c(X) −→ Db

c(X0). (2.9)

As we see in the next proposition, the nearby cycle functor ψf generalizes the
classical notion of Milnor fibers. First, let us recall the definition of Milnor fibers
and Milnor monodromies over singular varieties (see for example [T1] for a review
on this subject). Let X be a subvariety of Cm and f : X −→ C a non-constant
regular function on X. Namely we assume that there exists a polynomial function
f̃ : Cm −→ C on Cm such that f̃ |X = f . For simplicity, assume also that the origin
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0 ∈ Cm is contained in X0 = {x ∈ X | f(x) = 0}. Then the following lemma is
well-known.

Lemma 2.4. ([Le, Theorem 1.1]) For sufficiently small ε > 0, there exists
η0 > 0 with 0 < η0 " ε such that for 0 < ∀η < η0 the restriction of f :

X ∩B(0; ε) ∩ f̃−1(D(0; η) \ {0}) −→ D(0; η) \ {0} (2.10)

is a topological fiber bundle over the punctured disk D(0; η) \ {0} := {z ∈ C | 0 <
|z| < η}, where B(0; ε) is the open ball in Cm with radius ε centered at the origin.

Definition 2.5. A fiber of the above fibration is called the Milnor fiber of the
function f : X −→ C at 0 ∈ X and we denote it by F0.

Proposition 2.6. ([Di, Proposition 4.2.2]) There exists a natural isomorphism

Hj(F0;C) ' Hj(ψf (CX))0 (2.11)

for any j ∈ Z.

By this proposition, we can study the cohomology groups Hj(F0;C) of the
Milnor fiber F0 by using sheaf theory. Recall also that in the above situation, as in
the same way as the case of polynomial functions over Cn (see [Mi]), we can define
the Milnor monodromy operators

Φj,0 : H
j(F0;C)

∼−→ Hj(F0;C) (j = 0, 1, . . .) (2.12)

and the zeta-function

ζf,0(t) :=
∞∏

j=0

det(id−tΦj,0)
(−1)j (2.13)

associated with it. Since the above product is in fact finite, ζf,0(t) is a rational
function of t and its degree in t is the topological Euler characteristic χ(F0) of the
Milnor fiber F0. Similarly, also for any y ∈ X0 = {x ∈ X | f(x) = 0} we can define
Fy and ζf,y(t) ∈ C(t)∗. This classical notion of Milnor monodromy zeta functions
can be also generalized as follows.

Definition 2.7. Let f : X −→ C be a non-constant regular function on X and
F ∈ Db

c(X). Set X0 := {x ∈ X | f(x) = 0}. Then there exists a monodromy
automorphism

Φ(F) : ψf (F)
∼−→ ψf (F) (2.14)

of ψf (F) in Db
c(X0) associated with a generator of the group Deck(C̃∗,C∗) ' Z

of the deck transformations of p : C̃∗ −→ C∗ in the diagram (2.7). We define a
C(t)∗-valued constructible function ζf (F) : X0 −→ C(t)∗ on X0 by

ζf,x(F)(t) :=
∏

j∈Z

det (id−tΦ(F)j,x)
(−1)j (2.15)

for x ∈ X0, where Φ(F)j,x : (Hj(ψf (F)))x
∼−→ (Hj(ψf (F)))x is the stalk at x ∈ X0

of the sheaf homomorphism

Φ(F)j : H
j(ψf (F))

∼−→ Hj(ψf (F)) (2.16)

associated with Φ(F).

The following propositions will play crucial roles in the proof of our theorems.
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Proposition 2.8. ([Di, p.170-173]) Let π : Y −→ X be a proper morphism of
algebraic varieties over C and f : X −→ C a non-constant regular function on X.
Set g := f ◦ π : Y −→ C, X0 := {x ∈ X | f(x) = 0} and Y0 := {y ∈ Y | g(y) =
0} = π−1(X0). Then for any G ∈ Db

c(Y ) we have
∫

π|Y0

ζg(G) = ζf (Rπ∗G) (2.17)

in CFC(t)∗(X0), where
∫

π|Y0

: CFC(t)∗(Y0) −→ CFC(t)∗(X0) (2.18)

is the push-forward of C(t)∗-valued constructible functions by π|Y0 : Y0 −→ X0.

Proposition 2.9. ([MT2, Proposition 5.3]) Let L be a local system on (C∗)k

and j : (C∗)k ↪−→ Ck the inclusion. Let h : Ck −→ C be a function on Ck defined by
h(z) = zm1

1 zm2
2 · · · zmk

k ( %≡ 1) (mi ∈ Z≥0) for z ∈ Ck. If k ≥ 2, the monodromy zeta
function ζh,0(j!L)(t) (resp. ζh,0(Rj∗L)(t)) of j!L ∈ Db

c(C
k) (resp. Rj∗L ∈ Db

c(C
k))

at 0 ∈ Ck is 1 ∈ C(t)∗.

Note that the above proposition is a generalization of the famous A’Campo
lemma (see [AC] and [Ok2, Chapter I, Example (3.7)] etc.) to constructible
sheaves. By combining Proposition 2.9 with Proposition 2.8 for resolutions of sin-
gularities Y −→ X, we can now calculate the monodromy zeta function ζf (F) ∈
CFC(t)∗(X0) for any regular function f : X −→ C and F ∈ Db

c(X). Next we recall
Bernstein-Khovanskii-Kushnirenko’s theorem [Kh].

Definition 2.10. Let g(x) =
∑

v∈Zn avxv be a Laurent polynomial on (C∗)n

(av ∈ C).
(i) We call the convex hull of supp(g) := {v ∈ Zn | av %= 0} ⊂ Zn ⊂ Rn in

Rn the Newton polyhedron of g and denote it by NP (g).
(ii) For a vector u ∈ Rn, we set

Γ(g;u) :=

{
v ∈ NP (g)

∣∣∣∣ 〈u, v〉 = min
w∈NP (g)

〈u,w〉
}
, (2.19)

where for u = (u1, . . . , un) and v = (v1, . . . , vn) we set 〈u, v〉 =
∑n

i=1 uivi.
(iii) For a vector u ∈ Rn, we define the u-part of g by

gu(x) :=
∑

v∈Γ(g;u)

avx
v. (2.20)

Definition 2.11. Let g1, g2, . . . , gp be Laurent polynomials on (C∗)n. Then
we say that the subvariety Z∗ = {x ∈ (C∗)n | g1(x) = g2(x) = · · · = gp(x) = 0} of
(C∗)n is non-degenerate complete intersection if for any covector u ∈ Zn the p-form
dgu1 ∧ dgu2 ∧ · · · ∧ dgup does not vanish on {x ∈ (C∗)n | gu1 (x) = · · · = gup (x) = 0}.

Theorem 2.12 ([Kh]). Let g1, g2, . . . , gp be Laurent polynomials on (C∗)n.
Assume that the subvariety Z∗ = {x ∈ (C∗)n | g1(x) = g2(x) = · · · = gp(x) = 0} of
(C∗)n is non-degenerate complete intersection. Set ∆i := NP (gi) for i = 1, . . . , p.
Then we have

χ(Z∗) = (−1)n−p
∑

a1,...,ap≥1
a1+···+ap=n

VolZ(∆1, . . . ,∆1︸ ︷︷ ︸
a1-times

, . . . ,∆p, . . . ,∆p︸ ︷︷ ︸
ap-times

), (2.21)
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where VolZ(∆1, . . . ,∆1︸ ︷︷ ︸
a1-times

, . . . ,∆p, . . . ,∆p︸ ︷︷ ︸
ap-times

) ∈ Z is the normalized n-dimensional mixed

volume of ∆1, . . . ,∆1︸ ︷︷ ︸
a1-times

, . . . ,∆p, . . . ,∆p︸ ︷︷ ︸
ap-times

with respect to the lattice Zn ⊂ Rn.

Remark 2.13. Let Q1, Q2, . . . , Qn be integral polytopes in (Rn,Zn). Then
their normalized n-dimensional mixed volume VolZ(Q1, Q2, . . . , Qn) ∈ Z is given
by the formula

VolZ(Q1, Q2, . . . , Qn) =
1

n!

n∑

k=1

(−1)n−k






∑

I⊂{1,...,n}
!I=k

VolZ

(
∑

i∈I

Qi

)




, (2.22)

where VolZ( · ) ∈ Z is the normalized n-dimensional volume (i.e. the n! times the
usual volume).

Finally we shall introduce our recent results in [MT4, Section 2]. From now
on, let us fix an element τ = (τ1, . . . , τn) ∈ T := (C∗)n and let g be a Laurent
polynomial on (C∗)n such that Z∗ = {x ∈ (C∗)n | g(x) = 0} is non-degenerate and
stable by the automorphism lτ : (C∗)n

∼−→
τ×

(C∗)n induced by the multiplication by

τ . Set ∆ = NP (g) and for simplicity assume that dim∆ = n. Then there exists
β ∈ C such that l∗τg = g◦ lτ = βg. This implies that for any vertex v of ∆ = NP (g)
we have τv = τv1

1 · · · τvn
n = β. Moreover by the condition dim∆ = n we see that

τ1, τ2, . . . , τn are roots of unity. For p, q ≥ 0 and k ≥ 0, let hp,q(Hk
c (Z

∗;C)) be the
mixed Hodge number of Hk

c (Z
∗;C) and set

ep,q(Z∗) =
∑

k

(−1)khp,q(Hk
c (Z

∗;C)) (2.23)

as in [DaK]. The above automorphism of (C∗)n induces a morphism of mixed
Hodge structures l∗τ : H

k
c (Z

∗;C) ∼−→ Hk
c (Z

∗;C) and hence C-linear transformations
on the (p, q)-parts Hk

c (Z
∗;C)p,q of Hk

c (Z
∗;C). For α ∈ C, let hp,q(Hk

c (Z
∗;C))α be

the dimension of the α-eigenspaceHk
c (Z

∗;C)p,qα of this automorphism ofHk
c (Z

∗;C)p,q

and set
ep,q(Z∗)α =

∑

k

(−1)khp,q(Hk
c (Z

∗;C))α. (2.24)

Since we have lrτ = idZ∗ for r ' 0, these numbers are zero unless α is a root of
unity. Moreover we have

ep,q(Z∗) =
∑

α∈C

ep,q(Z∗)α, ep,q(Z∗)α = eq,p(Z∗)α. (2.25)

In this situation, along the lines of Danilov-Khovanskii [DaK] we can give an
algorithm for computing these numbers ep,q(Z∗)α as follows. First of all, as in
[DaK, Section 3] we obtain the following Lefschetz type theorem.

Proposition 2.14. ([MT4, Proposition 2.6]) For p, q ≥ 0 such that p + q >
n− 1, we have

ep,q(Z∗)α =

{
(−1)n+p+1

( n
p+1

)
(α = 1 and p = q),

0 (otherwise).
(2.26)
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For a vertex w of ∆, consider the translated polytope ∆w := ∆− w such that
0 ≺ ∆w and τv = 1 for any vertex v of ∆w. Then for α ∈ C and k ≥ 0 set

l∗(k∆)α = #{v ∈ Int(k∆w) ∩ Zn | τv = α} ∈ Z+ := Z≥0 (2.27)

and
l(k∆)α = #{v ∈ (k∆w) ∩ Zn | τv = α} ∈ Z+. (2.28)

We can easily see that these numbers l∗(k∆)α and l(k∆)α do not depend on the
choice of the vertex w of ∆. Next, define two formal power series Pα(∆; t) =∑

i≥0 φα,i(∆)ti and Qα(∆; t) =
∑

i≥0 ψα,i(∆)ti by

Pα(∆; t) = (1− t)n+1





∑

k≥0

l∗(k∆)αt
k




 (2.29)

and

Qα(∆; t) = (1− t)n+1





∑

k≥0

l(k∆)αt
k




 (2.30)

respectively. Then we can easily show that Pα(∆; t) is actually a polynomial as
in [DaK, Section 4.4]. Moreover as in Macdonald [M], we can easily prove that
for any α ∈ C∗ the function h∆,α(k) := l(k∆)α−1 of k ≥ 0 is a polynomial of
degree n with coefficients in Q. By a straightforward generalization of the Ehrhart
reciprocity proved by [M], we obtain also an equality

h∆,α(−k) = (−1)nl∗(k∆)α (2.31)

for k > 0. By an elementary computation, this implies that we have

φα,i(∆) = ψα−1,n+1−i(∆) (i ∈ Z). (2.32)

In particular, Qα(∆; t) =
∑

i≥0 ψα,i(∆)ti is a polynomial for any α ∈ C∗.

Theorem 2.15. ([MT4, Theorem 2.7]) In the situation as above, we have

∑

q

ep,q(Z∗)α =

{
(−1)p+n+1

( n
p+1

)
+ (−1)n+1φα,n−p(∆) (α = 1),

(−1)n+1φα,n−p(∆) (α &= 1)
(2.33)

(we used the convention
(a
b

)
= 0 (0 ≤ a < b) for binomial coefficients).

By Theorem 2.15, for α ∈ C the α-Euler characteristic
∑

p,q e
p,q(Z∗)α of Z∗

can be written as follows:

∑

p,q

ep,q(Z∗)α =

{
(−1)n+1{1 + φ1,0(∆) + · · ·+ φ1,n(∆)} (α = 1),

(−1)n+1{φα,0(∆) + · · ·+ φα,n(∆)} (α &= 1).
(2.34)

These numbers can be more beautifully described by the following recent result in
[ET]. By taking a vertex w of ∆ we define a finite subset Λ ⊂ C by Λ = {τv−w | v ∈
Zn}.

Theorem 2.16. ([ET]) In the situation as above, we have

∑

p,q

ep,q(Z∗)α =

{
(−1)n−1 1

"ΛVolZ(∆) (α ∈ Λ),

0 (α /∈ Λ),
(2.35)

where VolZ( · ) ∈ Z is the normalized n-dimensional volume with respect to the
lattice Zn.
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By Proposition 2.14 and Theorem 2.15, we obtain an algorithm to calculate the
numbers ep,q(Z∗)α of the non-degenerate hypersurface Z∗ ⊂ (C∗)n for any α ∈ C
as in [DaK, Section 5.2]. Indeed for a projective toric compactification X of (C∗)n

such that the closure Z∗ of Z∗ in X is smooth, the variety Z∗ is smooth projective
and hence there exists a perfect pairing

Hp,q(Z∗;C)α ×Hn−1−p,n−1−q(Z∗;C)α−1 −→ C (2.36)

for any p, q ≥ 0 and α ∈ C∗ (see for example [Vo, Section 5.3.2]). Therefore, we
obtain equalities ep,q(Z∗)α = en−1−p,n−1−q(Z∗)α−1 which are necessary to proceed
the algorithm in [DaK, Section 5.2]. We obtain also the following analogue of
[DaK, Proposition 5.8].

Proposition 2.17. ([MT4, Proposition 2.8]) For any α ∈ C and p > 0 we
have

ep,0(Z∗)α = e0,p(Z∗)α = (−1)n−1
∑

Γ≺∆
dimΓ=p+1

l∗(Γ)α. (2.37)

The following result is an analogue of [DaK, Corollary 5.10]. For α ∈ C, denote
by Π(∆)α the number of the lattice points v = (v1, . . . , vn) on the 1-skeleton of
∆w = ∆− w such that τv = α, where w is a vertex of ∆.

Proposition 2.18. ([MT4, Proposition 2.9]) In the situation as above, for
any α ∈ C∗ we have

e0,0(Z∗)α =

{
(−1)n−1 (Π(∆)1 − 1) (α = 1),

(−1)n−1Π(∆)α−1 (α '= 1).
(2.38)

For a vertex w of ∆, we define a closed convex cone Con(∆, w) by Con(∆, w) =
{r · (v − w) | r ∈ R+, v ∈ ∆} ⊂ Rn.

Definition 2.19. Let ∆ be an n-dimensional integral polytope in (Rn,Zn).

(i) (see [DaK, Section2.3]) We say that ∆ is prime if for any vertex w of ∆
the cone Con(∆, w) is generated by a basis of Rn.

(ii) We say that ∆ is pseudo-prime if for any 1-dimensional face γ ≺ ∆ the
number of the 2-dimensional faces γ′ ≺ ∆ such that γ ≺ γ′ is n− 1.

By definition, prime polytopes are pseudo-prime. Moreover any face of a
pseudo-prime polytope is again pseudo-prime. From now on, we assume that
∆ = NP (g) is pseudo-prime. Let Σ be the dual fan of ∆ and XΣ the toric va-
riety associated to it. Then except finite points XΣ is an orbifold and the closure
Z∗ of Z∗ in XΣ does not intersect such points by the non-degeneracy of g. Hence
Z∗ is an orbifold i.e. quasi-smooth in the sense of [DaK, Proposition 2.4]. In
particular, there exists a Poincaré duality isomorphism

[Hp,q(Z∗;C)α]∗ ) Hn−1−p,n−1−q(Z∗;C)α−1 (2.39)

for any α ∈ C∗ (see for example [Da1] and [HTT, Corollary 8.2.22]). Then by
slightly generalizing the arguments in [DaK] we obtain the following analogue of
[DaK, Section 5.5 and Theorem 5.6].
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Proposition 2.20. ([MT4, Proposition 2.13]) In the situation as above, for
any α ∈ C \ {1} and p, q ≥ 0, we have

ep,q(Z∗)α =






−
∑

Γ≺∆

(−1)dimΓφα,dimΓ−p(Γ) (p+ q = n− 1),

0 (otherwise),
(2.40)

ep,q(Z∗)α = (−1)n+p+q
∑

Γ≺∆
dimΓ=p+q+1

{
∑

Γ′≺Γ

(−1)dimΓ′

φα,dimΓ′−p(Γ
′)

}

.(2.41)

For α ∈ C \ {1} and a face Γ ≺ ∆, set φ̃α(Γ) =
∑dimΓ

i=0 φα,i(Γ). Then we can
rewrite Proposition 2.20 as follows.

Corollary 2.21. ([MT4, Corollary 2.15]) For any α ∈ C \ {1} and r ≥ 0,
we have

∑

p+q=r

ep,q(Z∗)α = (−1)n+r
∑

Γ≺∆
dimΓ=r+1

{
∑

Γ′≺Γ

(−1)dimΓ′

φ̃α(Γ
′)

}

. (2.42)

Note that by Theorem 2.16 the above integers φ̃α(Γ′) can be described by the
normalized volumes of Γ′.

3. Semisimple parts of monodromies at infinity

In this section, we introduce our previous results in [MT3]. By using the results
in Section 2, we obtained some results on the semisimple parts of monodromies
at infinity of polynomials on Cn studied by Gusein-Zade-Luengo-Melle-Hernández
[GuLM1], [GuLM2], Libgober-Sperber [LS], Garćıa-López-Némethi [LN1] and
Siersma-Tibăr [SiT1], [SiT2] etc. From now on, we denote Z≥0 by Z+.

Definition 3.1 ([LS]). Let f(x) =
∑

v∈Zn
+
avxv ∈ C[x1, x2, . . . , xn] (av ∈ C)

be a polynomial on Cn. We call the convex hull of {0}∪NP (f) in Rn the Newton
polygon of f at infinity and denote it by Γ∞(f).

For a subset S ⊂ {1, 2, . . . , n} of {1, 2, . . . , n}, let us set
RS := {v = (v1, v2, . . . , vn) ∈ Rn | vi = 0 for ∀i /∈ S}. (3.1)

We set also ΓS
∞(f) = Γ∞(f) ∩ RS .

Definition 3.2. ([MT3, Definition 3.2]) We say that a polynomial f(x) ∈
C[x1, x2, . . . , xn] on Cn satisfies the condition (∗) if ΓS

∞(f) = {0} or the dimension
of ΓS

∞(f) is maximal i.e. equal to #S for any subset S of {1, 2, . . . , n}.

Recall that a polynomial f(x) on Cn is called convenient if the dimension of
ΓS
∞(f) is equal to #S for any S ⊂ {1, 2, . . . , n}. So convenient polynomials on Cn

satisfy our condition (∗).

Definition 3.3 ([Ko]). We say that a polynomial f(x) =
∑

v∈Zn
+
avxv ∈

C[x1, x2, . . . , xn] (av ∈ C) on Cn is non-degenerate at infinity if for any face γ of
Γ∞(f) such that 0 /∈ γ the complex hypersurface

{x = (x1, x2, . . . , xn) ∈ (C∗)n | fγ(x) = 0} (3.2)

in (C∗)n is smooth and reduced, where we set fγ(x) =
∑

v∈γ∩Zn
+
avxv ∈ C[x1, x2, . . . , xn].
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Now let f(x) be a polynomial on Cn. Then it is well-known that there exists a
finite subset B ⊂ C of C such that the restriction

Cn \ f−1(B) −→ C \B (3.3)

of f is a locally trivial fibration. We denote by Bf the smallest subset B ⊂ C
satisfying this condition and call it the bifurcation set of f . We will be interested
in the study of the following monodromy zeta functions.

Definition 3.4. (i) Take a sufficiently large circle CR = {x ∈ C | |x| =
R} (R % 0) in C such that Bf ⊂ {x ∈ C | |x| < R}. By restricting the
locally trivial fibration Cn \ f−1(Bf ) −! C \ Bf to CR ⊂ C \ Bf , we
obtain the geometric monodromy at infinity

Φ∞
f : f−1(R)

∼−→ f−1(R) (3.4)

and the linear maps

Φ∞
j : Hj(f−1(R);C) ∼−→ Hj(f−1(R);C) (j = 0, 1, . . .) (3.5)

induced by it. Then we set

ζ∞f (t) :=
∞∏

j=0

det(id−tΦ∞
j )(−1)j ∈ C(t)∗. (3.6)

We call ζ∞f (t) the monodromy zeta function at infinity of f .
(ii) For a bifurcation point b ∈ Bf of f , take a small circle Cε(b) = {x ∈

C | |x − b| = ε} (0 < ε & 1) around b such that Bf ∩ {x ∈ C | |x − b| ≤
ε} = {b}. We denote by ζbf (t) ∈ C(t)∗ the zeta function associated with
the geometric monodromy

Φb
f : f

−1(b+ ε)
∼−→ f−1(b+ ε) (3.7)

obtained by the restriction of Cn \f−1(Bf ) −! C\Bf to Cε(b) ⊂ C\Bf .
We call ζbf (t) the monodromy zeta function of f along the fiber f−1(b).

To compute the monodromy zeta function ζbf (t) ∈ C(t)∗ of f along the fiber

f−1(b) of b ∈ Bf , it is very useful to consider first the following rational function

ζ̃bf (t) ∈ C(t)∗. Let f−1(b) =
⊔

α Zα be a stratification of f−1(b) = {f − b = 0} such
that the local monodromy zeta function ζf−b(t) of f is constant on each stratum Zα.
Denote the value of ζf−b(t) on Zα by ζα(t) ∈ C(t)∗. Then the following definition
does not depend on the stratification f−1(b) =

⊔
α Zα.

Definition 3.5. We set

ζ̃bf (t) :=

∫

f−1(b)
ζf−b(t) =

∏

α

{ζα(t)}χ(Zα) ∈ C(t)∗ (3.8)

and call it the finite part of ζbf (t).

To study the monodromies at infinity Φ∞
j , we often impose the following natural

condition.

Definition 3.6 ([Ko]). We say that f is tame at infinity if the gradient map
∂f : Cn −→ Cn of f is proper over a neighborhood of the origin 0 ∈ Cn.

The following result is fundamental in the study of monodromies at infinity.
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Theorem 3.7 (Broughton [Br] and Siersma-Tibăr [SiT1]). Assume that f is
tame at infinity. Then the generic fiber f−1(c) (c ∈ C) has the homotopy type of
the bouquet of (n− 1)-spheres. In particular, we have

Hj(f−1(c);C) = 0 (j #= 0, n− 1). (3.9)

By this theorem if f is tame at infinity Φ∞
n−1 is the only non-trivial mon-

odromy at infinity. For each subset S ⊂ {1, 2, . . . , n} such that ΓS
∞(f) ! {0}, let

{γS
1 , γ

S
2 , . . . , γ

S
n(S)} be the ("S − 1)-dimensional faces of ΓS

∞(f) satisfying the con-

dition 0 /∈ γS
i . For 1 ≤ i ≤ n(S), let uS

i ∈ (RS)∗ ∩ ZS be the unique non-zero
primitive vector which takes its maximum in ΓS

∞(f) exactly on γS
i and set

dSi := max
v∈ΓS

∞
(f)

〈uS
i , v〉 ∈ Z>0. (3.10)

We call dSi the lattice distance from γS
i to the origin 0 ∈ RS . For each face

γS
i ≺ ΓS

∞(f), let L(γS
i ) be the smallest affine linear subspace of Rn containing

γS
i and VolZ(γS

i ) ∈ Z>0 the normalized ("S − 1)-dimensional volume (i.e. the
("S − 1)! times the usual volume) of γS

i with respect to the lattice Zn ∩ L(γS
i ).

Theorem 3.8. Let f(x) ∈ C[x1, x2, . . . , xn] be a polynomial on Cn. Assume
that f satisfies the condition (∗) and is non-degenerate at infinity. Then we have

(i) (Libgober-Sperber [LS], [MT3, Theorem 3.1 (i)]) The monodromy zeta
function ζ∞f (t) at infinity of f is given by

ζ∞f (t) =
∏

S : ΓS
∞

(f)!{0}

ζ∞f,S(t), (3.11)

where for each subset S ⊂ {1, 2, . . . , n} such that ΓS
∞(f) ! {0} we set

ζ∞f,S(t) :=

n(S)∏

i=1

(1− td
S
i )(−1)!S−1VolZ(γ

S
i ). (3.12)

(ii) ([MT3, Theorem 3.1 (ii)]) Assume moreover that f is convenient. Then
for any bifurcation point b ∈ Bf of f we have

ζbf (t) = ζ̃bf (t). (3.13)

Note that Theorem 3.8 (i) was first proved by Libgober-Sperber [LS] for con-
venient polynomials. Here for the reader’s convenience, we briefly recall our new
proof in [MT3].

Proof. For the sake of simplicity, we assume that f is convenient. Let j : C ↪−→
P1 = C , {∞} be the compactification and set F := j!(Rf!CCn) ∈ Db

c(P
1). Take

a local coordinate h of P1 in a neighborhood of ∞ ∈ P1 such that ∞ = {h = 0}.
Then by the isomorphism Hj(f−1(R);C) . H2n−2−j

c (f−1(R);C) we see that

ζ∞f (t) = ζh,∞(F)(t) ∈ C(t)∗. (3.14)

Now let us consider Cn as a toric variety associated with the fan Σ0 in Rn formed
by the all faces of the first quadrant Rn

+ := (R≥0)n ⊂ Rn. Let T . (C∗)n be
the open dense torus in it. Then by the convenience of f , Σ0 is a subfan of the
dual fan Σ1 of Γ∞(f) and we can construct a smooth subdivision Σ of Σ1 without
subdividing the cones in Σ0. This implies that the toric variety XΣ associated with
Σ is a smooth compactification of Cn. Recall that T acts on XΣ and the T -orbits
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are parametrized by the cones in Σ. Now f can be extended to a meromorphic
function f̃ on XΣ, but f̃ has points of indeterminacy in general. From now on, we
will eliminate such points by blowing up XΣ. Let ρ1, . . . , ρm be the 1-dimensional
cones in Σ such that ρi !⊂ Rn

+. We call these cones the rays at infinity. Each
ray ρi at infinity corresponds to a smooth toric divisor Di in XΣ and the divisor
D := D1∪ · · ·∪Dm = XΣ\Cn in XΣ is normal crossing. Moreover f−1(c) intersects
DI :=

⋂
i∈I Di transversally for any non-empty subset I ⊂ {1, 2, . . . ,m} and c ∈ C.

To each ray ρi at infinity, we associate a positive integer ai defined by

ai = − min
v∈Γ∞(f)

〈ui, v〉, (3.15)

where ui ∈ Zn \ {0} is the (unique) primitive vector on ρi. Then we can easily see

that the meromorphic extension f̃ to XΣ has the pole of order ai along Di. Set
Z := f−1(0). Then D ∩ Z is the set of the points of indeterminacy of f̃ . Now,

in order to eliminate the indeterminacy of the meromorphic function f̃ on XΣ, we

first construct the blow-up π1 : X
(1)
Σ −→ XΣ of XΣ along the (n − 2)-dimensional

smooth subvariety D1 ∩ Z. Then the indeterminacy of the pull-back f̃ ◦ π1 of f̃ to

X(1)
Σ is improved. If f̃ ◦ π1 still has points of indeterminacy on the intersection of

the exceptional divisor E1 of π1 and the proper transform Z(1) of Z, we construct

the blow-up π2 : X
(2)
Σ −→ X(1)

Σ of X(1)
Σ along E1∩Z(1). By repeating this procedure

a1 times, we obtain a tower of blow-ups

X(a1)
Σ −→

πa1

· · · · · · −→
π2

X(1)
Σ −→

π1

XΣ. (3.16)

Then the pull-back of f̃ to X(a1)
Σ has no indeterminacy over D1 (see the figures

below).

Figure 1 Figure 2 Figure 3

Next we apply this construction to the proper transforms of D2 and Z in X(a1)
Σ .

Then we obtain also a tower of blow-ups

X(a1)(a2)
Σ −→ · · · · · · −→ X(a1)(1)

Σ −→ X(a1)
Σ (3.17)

and the indeterminacy of the pull-back of f̃ to X(a1)(a2)
Σ is eliminated over D1∪D2.

By applying the same construction to (the proper transforms of) D3, D4, . . . , Dl,

we finally obtain a birational morphism π : X̃Σ −→ XΣ such that g := f̃ ◦ π has no
point of indeterminacy on the whole X̃Σ. Then we get a commutative diagram of
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holomorphic maps

Cn ι

f

X̃Σ

g

C
j

P1,

(3.18)

where g is proper. Therefore we obtain an isomorphism F = j!(Rf!CCn) !
Rg∗(ι!CCn) in Db

c(P
1). Let us apply Proposition 2.8 to the proper morphism

g : X̃Σ −→ P1. Then by calculating the monodromy zeta function of ψh◦g(ι!CCn)

at each point of (h◦g)−1(0) = g−1(∞) ⊂ X̃Σ, we can calculate ζh,∞(F)(t) with the
help of Bernstein-Khovanskii-Kushnirenko’s theorem (Theorem 2.12). This com-
pletes the proof of (i). The assertion (ii) can be proved similarly. !

By a result of Broughton [Br], if f is convenient and non-degenerate at infinity,
then f is tame at infinity. Then by Theorem 3.7 we have

Hj(f−1(R);C) = 0 (j '= 0, n− 1) (3.19)

for R ( 0. Hence in this case the characteristic polynomial of Φ∞
n−1 is calculated

by ζ∞f (t). In [MT3, Section 4] various generalizations of Theorem 3.8 (ii) to non-
convenient polynomials were obtained. We found that the constant term a = a0 ∈ C
of a non-convenient polynomial f(x) =

∑
v∈Zn

+
avxv (av ∈ C) on Cn is a bifurcation

point of f in general. This is quite natural in view of the previous results in
Némethi-Zaharia [NZ]. Moreover in [MT3, Section 5] we generalized Theorem 3.8
to polynomial maps f = (f1, f2, . . . , fk) : Cn −→ Ck (1 ≤ k ≤ n). See [MT3,
Section 5] for the detail.

4. Nilpotent parts of monodromies at infinity

In this section, we introduce our recent results in [MT4]. In [MT4], following
Denef-Loeser [DeL1] and [DeL2] we introduced motivic reincarnations of global
(Milnor) fibers of polynomial maps and gave a general formula for the nilpotent
parts (i.e. the numbers of Jordan blocks of arbitrary sizes) in their monodromies at
infinity. Namely, in [MT4] we obtained a global analogue of the results in [DeL1]
and [DeL2]. First of all, let us recall the general setting considered in Dimca-Saito
[DiS, Theorem 0.1] and Sabbah [S1]. Let f : Cn −→ C be a polynomial map.
We take a compactification X of Cn such that D = D1 ∪ · · · ∪ Dm = X \ Cn is
a normal crossing divisor (D1, . . . , Dm are smooth) and f−1(c) intersects DI :=⋂

i∈I Di transversally for any subset I ⊂ {1, 2, . . . ,m} and generic c ∈ C. Thanks
to Hironaka’s theorem, such a compactification of Cn always exists. In this very
general setting, Dimca-Saito [DiS, Theorem 0.1] obtained an upper bound of the
sizes of the Jordan blocks for the eigenvalue 1 in the monodromies at infinity Φ∞

j

of f . In [MT4, Section 6], we obtained a similar result also for other eigenvalues
λ '= 1. Since changing the constant term of f ∈ C[x1, . . . , xn] does not affect the
monodromy at infinity of f , we may assume that f−1(0) intersects DI transversally
for any I ⊂ {1, 2, . . . ,m}. Then by eliminating the points of indeterminacy of the
meromorphic extension of f to X as in the proof of Theorem 3.8 we obtain a
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commutative diagram

Cn ι

f

X̃

g

C
j

P1,

(4.1)

where g is a proper holomorphic map. As before we take a local coordinate h of
P1 in a neighborhood of ∞ ∈ P1 such that ∞ = {h = 0} and set g̃ = h ◦ g. Then
g̃ is a holomorphic function defined on a neighborhood of the closed subvariety
Y := g̃−1(0) = g−1(∞) of X̃. Moreover for R $ 0 we have an isomorphism

Hj
c (f

−1(R);C) % Hj(Y ;ψg̃(ι!CCn)). (4.2)

Next define an open subset Ω of X̃ by

Ω = Int(ι(Cn) & Y ) (4.3)

and set U = Ω ∩ Y . Then by our construction of X̃ we see that U (resp. the
complement of Ω in X̃) is a normal crossing divisor in Ω (resp. X̃). Hence we can
easily prove the isomorphisms

Hj(Y ;ψg̃(ι!CCn)) % Hj(Y ;ψg̃(ι
′
!CΩ)) (4.4)

% Hj
c (U ;ψg̃(CX̃)), (4.5)

where ι′ : Ω ↪−→ X̃ is the inclusion. Now let E1, E2, . . . , Ek be the irreducible
components of the normal crossing divisor U = Ω ∩ Y in Ω ⊂ X̃. In our setting
the proper transform D′

i of Di in X̃ is Ej for some 1 ≤ j ≤ k. For each 1 ≤ i ≤ k,
let bi > 0 be the order of the zero of g̃ along Ei. For a non-empty subset I ⊂
{1, 2, . . . , k}, let us set

EI =
⋂

i∈I

Ei, (4.6)

E◦
I = EI \

⋃

i%∈I

Ei (4.7)

and dI = gcd(bi)i∈I > 0. Then, as in [DeL2, Section 3.3], we can construct an

unramified Galois covering Ẽ◦
I −→ E◦

I of E◦
I as follows. First, let W ⊂ Ω be an

affine open subset such that g̃ = g̃1,W (g̃2,W )dI on W , where g̃1,W is a unit on W
and g̃2,W : W −→ C is a regular function. It is easy to see that E◦

I is covered by
such open subsets W of Ω. Then by gluing the varieties

{(t, z) ∈ C∗ × (E◦
I ∩W ) | tdI = (g̃1,W )−1(z)} (4.8)

together in an obviously way we obtain an unramified Galois covering Ẽ◦
I over E◦

I .
For d ∈ Z>0, let µd % Z/Zd be the multiplicative group consisting of the d-roots
in C. We denote by µ̂ the projective limit lim←−

d

µd of the projective system {µi}i≥1

with morphisms µid −→ µi given by t .−→ td. Then the covering Ẽ◦
I of E◦

I admits
a natural µdI -action defined by assigning the automorphism (t, z) .−→ (ζdI t, z) of

Ẽ◦
I to the generator ζdI := exp(2π

√
−1/dI) ∈ µdI . Namely the variety Ẽ◦

I is
equipped with a good µ̂-action in the sense of [DeL2, Section 2.4]. Following the
notations in [DeL2], denote by Mµ̂

C the ring obtained from the Grothendieck ring

Kµ̂
0 (VarC) of varieties over C with good µ̂-actions by inverting the Lefschetz motive
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L ! C ∈ Kµ̂
0 (VarC). Recall that L ∈ Kµ̂

0 (VarC) is endowed with the trivial action
of µ̂.

Definition 4.1. ([MT4, Definition 4.1]) We define the motivic Milnor fiber
at infinity S∞

f of the polynomial map f : Cn −→ C by

S∞
f =

∑

I "=∅

(1− L)!I−1[Ẽ◦
I ] ∈ Mµ̂

C. (4.9)

Remark 4.2. By Guibert-Loeser-Merle [GuiLM, Theorem 3.9], the motivic
Milnor fiber at infinity S∞

f of f does not depend the compactification X of Cn. This
fact was informed to us by Schürmann (a private communication) and Raibaut [R].

As in [DeL2, Section 3.1.2 and 3.1.3], we denote by HSmon the abelian cat-
egory of Hodge structures with a quasi-unipotent endomorphism. Then, to the
object ψh(j!Rf!CCn) ∈ Db

c({∞}) and the semisimple part of the monodromy auto-
morphism acting on it, we can associate an element

[H∞
f ] ∈ K0(HS

mon) (4.10)

in an obvious way. Similarly, to ψh(Rj∗Rf∗CCn) ∈ Db
c({∞}) we associate an

element
[G∞

f ] ∈ K0(HS
mon). (4.11)

According to a deep result [S2, Theorem 13.1] of Sabbah, if f is tame at infinity then
the weights of the element [G∞

f ] are defined by the monodromy filtration up to some
Tate twists (see also [So1] and [So3]). This implies that for the calculation of the
monodromy at infinity Φ∞

n−1 : H
n−1(f−1(R);C) ∼−→ Hn−1(f−1(R);C) (R & 0) of

f it suffices to calculate [H∞
f ] ∈ K0(HS

mon) which is the dual of [G∞
f ]. To describe

the element [H∞
f ] ∈ K0(HS

mon) in terms of S∞
f ∈ Mµ̂

C, let

χh : Mµ̂
C −→ K0(HS

mon) (4.12)

be the Hodge characteristic morphism defined in [DeL2] which associates to a
variety Z with a good µd-action the Hodge structure

χh([Z]) =
∑

j∈Z

(−1)j [Hj
c (Z;Q)] ∈ K0(HS

mon) (4.13)

with the actions induced by the one z '−→ exp(2π
√
−1/d)z (z ∈ Z) on Z. Then by

applying the proof of [DeL1, Theorem 4.2.1] to our situation (4.2), (4.4) and (4.5),
we obtain the following result.

Theorem 4.3. ([MT4, Theorem 4.3]) In the Grothendieck group K0(HS
mon),

we have
[H∞

f ] = χh(S∞
f ). (4.14)

On the other hands, the results in [S1] and [S2] imply the following symmetry
of the weights of the element [H∞

f ] ∈ K0(HS
mon) when f is tame at infinity. Recall

that if f is tame at infinity we have Hj
c (f

−1(R);C) = 0 (R & 0) for j )= n−1, 2n−2
and H2n−2

c (f−1(R);C) ! [H0(f−1(R);C)]∗ ! C. For an element [V ] ∈ K0(HS
mon),

V ∈ HSmon with a quasi-unipotent endomorphism Θ : V
∼−→ V , p, q ≥ 0 and

λ ∈ C denote by ep,q([V ])λ the dimension of the λ-eigenspace of the morphism
V p,q ∼−→ V p,q induced by Θ on the (p, q)-part V p,q of V .

Theorem 4.4 (Sabbah [S1] and [S2]). Assume that f is tame at infinity. Then
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(i) Let λ ∈ C∗ \ {1}. Then we have ep,q([H∞
f ])λ = 0 for (p, q) /∈ [0, n − 1] ×

[0, n− 1]. Moreover for (p, q) ∈ [0, n− 1]× [0, n− 1] we have

ep,q([H∞
f ])λ = en−1−q,n−1−p([H∞

f ])λ. (4.15)

(ii) We have ep,q([H∞
f ])1 = 0 for (p, q) /∈ (n−1, n−1)$ ([0, n−2]× [0, n−2])

and en−1,n−1([H∞
f ])1 = 1. Moreover for (p, q) ∈ [0, n − 2] × [0, n − 2] we

have
ep,q([H∞

f ])1 = en−2−q,n−2−p([H∞
f ])1. (4.16)

Using our results below in this section, we can check the above symmetry by
explicitly calculating χh(S∞

f ) for small n’s. Since the weights of [G∞
f ] ∈ K0(HS

mon)
are defined by the monodromy filtration and [G∞

f ] is the dual of [H∞
f ] up to some

Tate twist, we obtain the following result.

Theorem 4.5. ([MT4, Theorem 4.5]) Assume that f is tame at infinity. Then

(i) Let λ ∈ C∗ \ {1} and k ≥ 1. Then the number of the Jordan blocks for the
eigenvalue λ with sizes ≥ k in Φ∞

n−1 : H
n−1(f−1(R);C) ∼−→ Hn−1(f−1(R);C)

(R ' 0) is equal to

(−1)n−1
∑

p+q=n−2+k,n−1+k

ep,q(χh(S∞
f ))λ. (4.17)

(ii) For k ≥ 1, the number of the Jordan blocks for the eigenvalue 1 with sizes
≥ k in Φ∞

n−1 is equal to

(−1)n−1
∑

p+q=n−2−k,n−1−k

ep,q(χh(S∞
f ))1. (4.18)

By using Newton polyhedrons at infinity, we can rewrite the result of Theorem
4.3 neatly as follows. Let f ∈ C[x1, . . . , xn] be a convenient polynomial. Assume
moreover that f is non-degenerate at infinity. Then f is tame at infinity and we
have

Hj(f−1(R);C) = 0 (j (= 0, n− 1) (4.19)

for R ' 0. Now recall the construction of the smooth compactification XΣ of Cn

and the smooth toric divisors D1, D2, · · · , Dm in the proof of Theorem 3.8. Then
the divisor D := D1 ∪ · · · ∪ Dm = XΣ \ Cn in XΣ is normal crossing and f−1(c)
intersects DI =

⋂
i∈I Di transversally for any non-empty subset I ⊂ {1, 2, . . . ,m}

and c ∈ C. As before, denote by ai > 0 the order of the poles of the meromorphic
extension of f to XΣ along Di. In the proof of Theorem 3.8, by eliminating the
points of indeterminacy of the meromorphic extension of f to XΣ we constructed
a commutative diagram

Cn ι

f

X̃Σ

g

C
j

P1

(4.20)

such that g is a proper holomorphic map. Take a local coordinate h of P1 in
a neighborhood of ∞ ∈ P1 such that ∞ = {h = 0} and set g̃ = h ◦ g, Y =

g̃−1(0) = g−1(∞) ⊂ X̃Σ and Ω = Int(ι(Cn)$Y ) as before. For simplicity, let us set
g̃ = 1

f . Then the divisor U = Y ∩ Ω in Ω contains not only the proper transforms

D′
1, . . . , D

′
m of D1, . . . , Dm in X̃Σ but also the exceptional divisors of the blow-up:



158 MONODROMIES AT INFINITY AND A-HYPERGEOMETRIC FUNCTIONS

X̃Σ −→ XΣ. From now on, we will show that these exceptional divisors are not
necessary to compute the monodromy at infinity of f : Cn −→ C by Theorem 4.3.
For each non-empty subset I ⊂ {1, 2, . . . ,m}, set

D◦
I = DI \

{(
⋃

i/∈I

Di

)

∪ f−1(0)

}

⊂ XΣ (4.21)

and dI = gcd(ai)i∈I > 0. Then the function g̃ = 1
f is regular on D◦

I and we can

decompose it as 1
f = g̃1(g̃2)dI globally on a Zariski open neighborhood W of D◦

I

in XΣ, where g̃1 is a unit on W and g̃2 : W −→ C is regular. Therefore we can
construct an unramified Galois covering D̃◦

I of D◦
I with a natural µdI -action as in

(4.8). Let [D̃◦
I ] be the element of the ring Mµ̂

C which corresponds to D̃◦
I . Then we

can prove the following result.

Theorem 4.6. ([MT4, Theorem 4.6]) In the situation as above, we have the
equality

χh(S∞
f ) = χh




∑

I %=∅

(1− L)!I−1[D̃◦
I ]



 (4.22)

in the Grothendieck group K0(HS
mon).

By Theorems 4.3, 4.5 and 4.6, the calculation of the monodromy at infinity

Φ∞
n−1 : H

n−1(f−1(R);C) ∼−→ Hn−1(f−1(R);C) (4.23)

(R % 0) in the above case is reduced to that of

χh




∑

I %=∅

(1− L)!I−1[D̃◦
I ]



 ∈ K0(HS
mon). (4.24)

From now on, by rewriting Theorem 4.6 with the help of the results in Section
2, we give some explicit formulas for the numbers of the Jordan blocks in Φ∞

n−1.
As before we assume that f(x1, . . . , xn) ∈ C[x1, . . . , xn] is convenient and non-
degenerate at infinity.

Definition 4.7. We say that γ ≺ Γ∞(f) is a face of Γ∞(f) at infinity if 0 /∈ γ.

For each face γ ≺ Γ∞(f) of Γ∞(f) at infinity, let dγ > 0 be the lattice distance
of γ from the origin 0 ∈ Rn and ∆γ the convex hull of {0}( γ in Rn. Let L(∆γ) be
the (dim γ+1)-dimensional linear subspace of Rn spanned by ∆γ and consider the
lattice Mγ = Zn∩L(∆γ) * Zdim γ+1 in it. Then by an isomorphism (L(∆γ),Mγ) *
(Rdim γ+1,Zdim γ+1) and a translation by an element of Zdim γ+1 we obtain the

following polytope ∆̃γ * ∆γ in (Rdim γ+1,Zdim γ+1):

,
Figure 4



4. NILPOTENT PARTS OF MONODROMIES AT INFINITY 159

where the base γ̃ of ∆̃γ is isomorphic to γ ≺ ∆γ . Let gγ(t, ξ1, . . . , ξdim γ) be a
non-degenerate Laurent polynomial whose support is contained in the (disjoint)

union of γ̃ and the apex of ∆̃γ . Assume also that NP (gγ) = ∆̃γ . Consider the
hypersurface Z∗

∆γ
= {(t, ξ1, . . . , ξdim γ) ∈ (C∗)dim γ+1 | gγ(t, ξ1, . . . , ξdim γ) = 0} in

(C∗)dim γ+1 defined by it. Then there exists an action of µdγ on Z∗
∆γ

defined by

(t, ξ1, . . . , ξdim γ) #−→ (ζkdγ
t, ξ1, . . . , ξdim γ) for ζkdγ

∈ µdγ . We thus obtain an element

[Z∗
∆γ

] of Mµ̂
C. Finally, for the face γ ≺ Γ∞(f) at infinity, let Sγ ⊂ {1, 2, . . . , n} be

the minimal subset of {1, 2, . . . , n} such that γ ⊂ RSγ and setmγ = $Sγ−dim γ−1 ≥
0.

Theorem 4.8. ([MT4, Theorem 5.3]) In the situation as above, we have the
following results, where in the sums

∑
γ below the face γ of Γ∞(f) ranges through

those at infinity.

(i) In the Grothendieck group K0(HS
mon), we have

[H∞
f ] = χh(S∞

f ) =
∑

γ

χh((1− L)mγ · [Z∗
∆γ

]). (4.25)

(ii) Let λ ∈ C∗ \ {1} and k ≥ 1. Then the number of the Jordan blocks for the
eigenvalue λ with sizes ≥ k in Φ∞

n−1 : H
n−1(f−1(R);C) ∼−→ Hn−1(f−1(R);C)

(R ( 0) is equal to

(−1)n−1
∑

p+q=n−2+k,n−1+k

{
∑

γ

ep,q
(
χh((1− L)mγ · [Z∗

∆γ
])
)

λ

}

. (4.26)

(iii) For k ≥ 1, the number of the Jordan blocks for the eigenvalue 1 with sizes
≥ k in Φ∞

n−1 is equal to

(−1)n−1
∑

p+q=n−2−k,n−1−k

{
∑

γ

ep,q
(
χh((1− L)mγ · [Z∗

∆γ
])
)

1

}

. (4.27)

In particular, the number of the Jordan blocks for the eigenvalue 1 with
the maximal possible size n− 1 in Φ∞

n−1 is

(−1)n−1
∑

γ

e0,0
(
χh([Z

∗
∆γ

])
)

1
. (4.28)

Note that by using the algorithm in Section 2 we can always calculate ep,q(χh((1−
L)mγ · [Z∗

∆γ
]))λ explicitly. Here we shall give some closed formulas for the numbers

of the Jordan blocks with large sizes in Φ∞
n−1. First we consider the numbers of

the Jordan blocks for the eigenvalues λ ∈ C \ {1}. Let q1, . . . , ql (resp. γ1, . . . , γl′)
be the 0-dimensional (resp. 1-dimensional) faces of Γ∞(f) such that qi ∈ Int(Rn

+)
(resp. the relative interior rel.int(γi) of γi is contained in Int(Rn

+)). Obviously
these faces are at infinity. For each qi (resp. γi), denote by di > 0 (resp. ei > 0)
the lattice distance dist(qi, 0) (resp. dist(γi, 0)) of it from the origin 0 ∈ Rn. For
1 ≤ i ≤ l′, let ∆i be the convex hull of {0} * γi in Rn. Then for λ ∈ C \ {1} and
1 ≤ i ≤ l′ such that λei = 1 we set

n(λ)i = ${v ∈ Zn ∩ rel.int(∆i) | height(v, γi) = k}
+${v ∈ Zn ∩ rel.int(∆i) | height(v, γi) = ei − k}, (4.29)
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where k is the minimal positive integer satisfying λ = ζkei and for v ∈ Zn∩rel.int(∆i)
we denote by height(v, γi) the lattice height of v from the base γi of ∆i.

Theorem 4.9. ([MT4, Theorem 5.4]) Let f ∈ C[x1, . . . , xn] be as above and
λ ∈ C∗ \ {1}. Then we have

(i) The number of the Jordan blocks for the eigenvalue λ with the maximal
possible size n in Φ∞

n−1 : H
n−1(f−1(R);C) ∼−→ Hn−1(f−1(R);C) (R % 0)

is equal to ${qi | λdi = 1}.
(ii) The number of the Jordan blocks for the eigenvalue λ with size n − 1 in

Φ∞
n−1 is equal to

∑
i : λei=1 n(λ)i.

Example 4.10. Let f(x, y) ∈ C[x, y] be a convenient polynomial whose Newton
polyhedron at infinity Γ∞(f) has the following shape.

Figure 5

Assume moreover that f is non-degenerate at infinity. Then by Libgober-
Sperber’s theorem (Theorem 3.8 (i)) the characteristic polynomial P1(λ) of Φ∞

1 : H1(f−1(R);C) ∼−→
H1(f−1(R);C) (R % 0) is given by

P1(λ) = (λ− 1)(λ4 − 1)(λ6 − 1)3. (4.30)

For a positive integer d > 0, denote by ζd the d-th primitive root of unity exp(2π
√
−1/d).

Then the multiplicities of the roots of the equation P1(λ) = 0 are given by the di-
agram:

.
Figure 6

For α ∈ C, denote by H1(f−1(R);C)α the α-eigenspace of the monodromy op-
erator Φ∞

1 at infinity. First, by the monodromy theorem the restriction of Φ∞
1

to H1(f−1(R);C)1 ' C5 is semisimple. Moreover by Theorem 4.9 (i) the Jordan
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normal form of the restriction of Φ∞
1 to H1(f−1(R);C)−1 ! C4 is





−1 1 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



 . (4.31)

In the same way, we can show that for α = ζ6,
√
−1, ζ3, ζ23 ,−

√
−1, ζ56 the restriction

of Φ∞
1 to H1(f−1(R);C)α is semisimple.

Next we consider the number of the Jordan blocks for the eigenvalue 1 in Φ∞
n−1.

By Proposition 2.18, we can rewrite the last half of Theorem 4.8 (iii) as follows.
Denote by Πf the number of the lattice points on the 1-skeleton of ∂Γ∞(f) ∩
Int(Rn

+).

Theorem 4.11. ([MT4, Theorem 5.6]) In the situation as above, the number
of the Jordan blocks for the eigenvalue 1 with the maximal possible size n − 1 in
Φ∞

n−1 is Πf .

For a face γ ≺ Γ∞(f) at infinity, denote by l∗(γ) the number of the lattice points
on the relative interior rel.int(γ) of γ. Then by Theorem 4.8 (iii) and Proposition
2.17, we also obtain the following result.

Theorem 4.12. ([MT4, Theorem 5.7]) In the situation as above, the number
of the Jordan blocks for the eigenvalue 1 with size n− 2 in Φ∞

n−1 is equal to

2
∑

γ

l∗(γ), (4.32)

where γ ranges through the faces of Γ∞(f) at infinity such that dimγ = 2 and
rel.int(γ) ⊂ Int(Rn

+). In particular, this number is even.

From now on, we assume that any face γ ≺ Γ∞(f) at infinity is prime in the
sense of Definition 2.19 (i) and rewrite Theorem 4.8 (ii) more explicitly. First, recall
that by Proposition 2.14 for λ ∈ C∗ \ {1} and a face γ ≺ Γ∞(f) at infinity we have
ep,q(Z∗

∆γ
)λ = 0 for any p, q ≥ 0 such that p + q > dim∆γ − 1 = dim γ. So the

non-negative integers r ≥ 0 such that
∑

p+q=r e
p,q(Z∗

∆γ
)λ )= 0 are contained in the

closed interval [0, dimγ] ⊂ R.

Definition 4.13. For a face γ ≺ Γ∞(f) at infinity and k ≥ 1, we define a
finite subset Jγ,k ⊂ [0, dimγ] ∩ Z by

Jγ,k = {0 ≤ r ≤ dimγ | n− 2 + k ≡ r mod 2}. (4.33)

For each r ∈ Jγ,k, set

dk,r =
n− 2 + k − r

2
∈ Z+. (4.34)

Since for any face γ ≺ Γ∞(f) at infinity the polytope ∆γ is pseudo-prime in
the sense of Definition 2.19 (ii), by Corollary 2.21 for λ ∈ C∗ \ {1} and an integer
r ≥ 0 such that r ∈ [0, dimγ] we have

∑

p+q=r

ep,q(χh([Z
∗
∆γ

]))λ = (−1)dimγ+r+1
∑

Γ≺∆γ

dimΓ=r+1

{
∑

Γ′≺Γ

(−1)dimΓ′

φ̃λ(Γ
′)

}

. (4.35)

For simplicity, we denote this last integer by e(γ,λ)r. Then by Theorem 4.8 (ii) we
obtain the following result.



162 MONODROMIES AT INFINITY AND A-HYPERGEOMETRIC FUNCTIONS

Theorem 4.14. ([MT4, Theorem 5.9]) In the situation as above, let λ ∈
C∗ \{1} and k ≥ 1. Then the number of the Jordan blocks for the eigenvalue λ with
sizes ≥ k in Φ∞

n−1 : H
n−1(f−1(R);C) ∼−→ Hn−1(f−1(R);C) (R % 0) is equal to

(−1)n−1
∑

γ





∑

r∈Jγ,k

(−1)dk,r

(
mγ

dk,r

)
· e(γ,λ)r +

∑

r∈Jγ,k+1

(−1)dk+1,r

(
mγ

dk+1,r

)
· e(γ,λ)r




 ,

(4.36)
where in the sum

∑
γ the face γ of Γ∞(f) ranges through those at infinity (we used

also the convention
(a
b

)
= 0 (0 ≤ a < b) for binomial coefficients).

By Theorem 4.8 (iii) and [MT4, Proposition 2.14] we can also explicitly de-
scribe the number of the Jordan blocks for the eigenvalue 1 in Φ∞

n−1.
Finally to end this section, we introduce our global analogue of the Steenbrink

conjecture proved by Varchenko-Khovanskii [VK] and Saito [So2].

Definition 4.15. (Sabbah [S1] and Steenbrink-Zucker [StZ])As a Puiseux
series, we define the spectrum at infinity sp∞f (t) of f by
sp∞f (t)

=
∑

β∈(0,1]∩Q




n−1∑

i=0

(−1)n−1





∑

q≥0

ei,q(χh([H
∞
f ]))exp(2π

√
−1β)




 ti+β



+ (−1)ntn(4.37)

When f is tame at infinity, by Theorem 4.4 we can easily prove that the support
of sp∞f (t) is contained in the open interval (0, n) and has the symmetry

sp∞f (t) = tnsp∞f

(
1

t

)
(4.38)

with center at n
2 . From now on, we assume that f is convenient and non-degenerate

at infinity. In order to describe sp∞f (t) by Γ∞(f), for each face γ at infinity of
Γ∞(f) denote by k(γ) = $Sγ ∈ Z≥1 the dimension of the minimal coordinate plane
containing γ and set Cone(γ) = R+γ. Next, we consider a continuous function
hf : Rn

+ −→ R on Rn
+ which is piecewise linear with respect to the decomposition

Rn
+ =

⋃
γ Cone(γ) and defined by the condition hf |∂Γ∞(f)∩Int(Rn

+) ≡ 1. For a face γ

at infinity of Γ∞(f), let Lγ be the semigroup Cone(γ)∩Zn
+ and define its Poincaré

series Pγ(t) by

Pγ(t) =
∑

β∈Q+

${v ∈ Lγ | hf (v) = β}tβ . (4.39)

Theorem 4.16. ([MT4, Theorem 5.11]) In the situation as above, we have

sp∞f (t) =
∑

γ

(−1)n−1−dimγ(1− t)k(γ)Pγ(t) + (−1)n, (4.40)

where in the above sum γ ranges through the faces at infinity of Γ∞(f).

5. Applications to local Milnor monodromies

Our arguments in previous sections can be applied also to the nilpotent parts of
local Milnor monodromies. Namely, we can rewrite the fundamental result [DeL1,
Theorem 4.2.1] of Denef-Loeser as follows.

Definition 5.1. Let f(x) ∈ C[x1, . . . , xn] be a polynomial on Cn.
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(i) We call the convex hull of
⋃

v∈supp f{v + Rn
+} in Rn

+ the (usual) Newton
polyhedron of f and denote it by Γ+(f).

(ii) The union of the compact faces of Γ+(f) is called the Newton boundary
of f and denoted by Γf .

Now we are interested in describing the Hodge realization of the motivic Milnor
fiber Sf,0 of f at 0 ∈ Cn introduced in [DeL2, Section 3] in terms of Γ+(f).

Definition 5.2 ([Ko]). We say that f(x) =
∑

v∈Zn
+
avxv ∈ C[x1, . . . , xn] is

non-degenerate at 0 ∈ Cn if for any face γ ≺ Γ+(f) such that γ ⊂ Γf the complex
hypersurface

{x = (x1, . . . , xn) ∈ (C∗)n | fγ(x) = 0} (5.1)

in (C∗)n is smooth and reduced.

From now on, we assume that f ∈ C[x1, . . . , xn] is convenient and non-degenerate
at 0 ∈ Cn, and the hypersurface {x ∈ Cn | f(x) = 0} has an isolated singular point
at 0 ∈ Cn. Then we have Hj(F0;C) $ 0 (j %= 0, n− 1) by a fundamental theorem
of Milnor [Mi]. In [DeL1] and [DeL2], Denef-Loeser introduced the motivic Mil-
nor fiber Sf,0 ∈ Mµ̂

C of f at 0 ∈ Cn such that χh(Sf,0) coincides with the Hodge
characteristic of F0 in K0(HS

mon). For each face γ ≺ Γ+(f) such that γ ⊂ Γf ,
let dγ > 0 be the lattice distance of γ from 0 ∈ Rn and ∆γ the convex hull of
{0} ' γ in Rn. Then as in Section 4, we can define a non-degenerate hypersurface
Z∗
∆γ

⊂ (C∗)dimγ+1 and an element [Z∗
∆γ

] ∈ Mµ̂
C with an action of µdγ . But this time

we send ∆γ to a polytope ∆̃γ with the following position in (Rdim γ+1,Zdim γ+1):

Figure 7

and choose a non-degenerate Laurent polynomial gγ(t, ξ1, . . . , ξdim γ) whose support

is contained in the (disjoint) union of γ̃ and the apex of ∆̃γ . Assume also that

NP (gγ) = ∆̃γ . Then we set Z∗
∆γ

= {gγ = 0} ⊂ (C∗)dim γ+1 and define an action of

µdγ on it by (t, ξ) (−→ (ζkdγ
t, ξ) for ζkdγ

∈ µdγ . In this way we obtain [Z∗
∆γ

] ∈ Mµ̂
C.

For the description of χh(Sf,0) ∈ K0(HS
mon), we need also the following elements

[Z∗
γ ] in Mµ̂

C. For each face γ ≺ Γ+(f) such that γ ⊂ Γf , let Z∗
γ ⊂ (C∗)dimγ be a non-

degenerate hypersurface defined by a Laurent polynomial whose Newton polytope
is γ ⊂ (Rdimγ ,Zdimγ). Then we define [Z∗

γ ] ∈ Mµ̂
C to be the class of the variety Z∗

γ

with the trivial action of µ̂. For such γ, we define also the number mγ ≥ 0 as in
Section 4.

Theorem 5.3. ([MT4, Theorem 7.3]) In the situation as above, we have
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(i) In the Grothendieck group K0(HS
mon), we have

χh(Sf,0) =
∑

γ⊂Γf

χh

(
(1− L)mγ · [Z∗

∆γ
]
)
+

∑

γ⊂Γf

dimγ≥1

χh

(
(1− L)mγ+1 · [Z∗

γ ]
)
. (5.2)

(ii) Let λ ∈ C∗ \ {1} and k ≥ 1. Then the number of the Jordan blocks for
the eigenvalue λ with sizes ≥ k in Φn−1,0 : Hn−1(F0;C) $ Hn−1(F0;C) is
equal to

(−1)n−1
∑

p+q=n−2+k,n−1+k





∑

γ⊂Γf

ep,q
(
χh

(
(1− L)mγ · [Z∗

∆γ
]
))

λ




 . (5.3)

(iii) For k ≥ 1, the number of the Jordan blocks for the eigenvalue 1 with sizes
≥ k in Φn−1,0 is equal to

(−1)n−1
∑

p+q=n−1+k,n+k

{
∑

γ⊂Γf

ep,q
(
χh

(
(1− L)mγ · [Z∗

∆γ
]
))

1

+
∑

γ⊂Γf

dimγ≥1

ep,q
(
χh

(
(1− L)mγ+1 · [Z∗

γ ]
))

1

}

. (5.4)

Let q1, . . . , ql (resp. γ1, . . . , γl′) be the 0-dimensional (resp. 1-dimensional)
faces of Γ+(f) such that qi ∈ Int(Rn

+) (resp. rel.int(γi) ⊂ Int(Rn
+)). Then by

defining as in Section 4 the numbers di > 0 (1 ≤ i ≤ l), ei > 0 (1 ≤ i ≤ l′) and
n(λ)i ≥ 0 (1 ≤ i ≤ l′) for λ ∈ C \ {1}, we can obtain the following results from
Theorem 5.3 (ii).

Theorem 5.4. ([MT4, Theorem 7.4]) In the situation as above, for λ ∈ C∗ \
{1}, we have

(i) The number of the Jordan blocks for the eigenvalue λ with the maximal
possible size n in Φn−1,0 is equal to ${qi | λdi = 1}.

(ii) The number of the Jordan blocks for the eigenvalue λ with size n − 1 in
Φn−1,0 is equal to

∑
i : λei=1 n(λ)i.

We can rewrite Theorem 5.3 (iii) more simply as follows.

Theorem 5.5. ([MT4, Theorem 7.5]) In the situation as above, for k ≥ 1 the
number of the Jordan blocks for the eigenvalue 1 with sizes ≥ k in Φn−1,0 is equal
to

(−1)n−1
∑

p+q=n−2−k,n−1−k





∑

γ⊂Γf

ep,q
(
χh

(
(1− L)mγ · [Z∗

∆γ
]
))

1




 . (5.5)

By Theorem 5.5, we obtain the following corollary. Denote by Π′
f the number

of the lattice points on the 1-skeleton of Γf ∩ Int(Rn
+). Also, for a compact face

γ ≺ Γ+(f) we denote by l∗(γ) the number of the lattice points on rel.int(γ) as
before.

Corollary 5.6. ([MT4, Corollary 7.6]) In the situation as above, we have

(i) The number of the Jordan blocks for the eigenvalue 1 with the maximal
possible size n− 1 in Φn−1,0 is Π′

f .
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(ii) The number of the Jordan blocks for the eigenvalue 1 with size n − 2 in
Φn−1,0 is equal to

2
∑

γ

l∗(γ), (5.6)

where γ ranges through the faces of Γ+(f) such that dimγ = 2 and
rel.int(γ) ⊂ Γf ∩ Int(Rn

+).

Theorem 5.5 asserts that after replacing the faces at infinity of Γ∞(f) by those
of Γ+(f) contained in Γf the combinatorial description of the local monodromy
Φn−1,0 is the same as that of the global one Φ∞

n−1. Namely we find a striking
symmetry between local and global. Assuming that any face γ ≺ Γ+(f) such that
γ ⊂ Γf is prime in the sense of Definition 2.19 (i), we can obtain also some explicit
formulas for the numbers of the Jordan blocks with smaller sizes k ≥ 1 in Φn−1,0.
Since the results are completely similar to those in Section 4, we omit them.

Remark 5.7. It would be an interesting problem to compare the results above
with the previous ones due to Danilov [Da2] and Tanabe [Te] etc.

Remark 5.8. By Theorems 5.3 (i) we can easily give another proof to the
Steenbrink conjecture which was proved by Varchenko-Khovanskii [VK] and Saito
[So2] independently. For an introduction to this conjecture, see an excellent survey
in Kulikov [Ku] etc.

From now on, we shall introduce our recent results in [ET]. For k ≥ 2 let

W = {f1 = · · · = fk−1 = 0} ⊃ V = {f1 = · · · = fk−1 = fk = 0} (5.7)

be complete intersection subvarieties of Cn such that 0 ∈ V . Assume that W
and V are non-degenerate in the sense of [Ok2] and have isolated singularities
at the origin 0 ∈ Cn. Then by a fundamental result of Hamm [Ha] the Mil-
nor fiber F0 of g := fk|W : W −→ C at the origin 0 has the homotopy type
of the bouquet of (n − k)-spheres. This implies that we have Hj(F0;C) ) 0
(j *= 0, n − k). Recall that the semisimple part of the monodromy operator
Φn−k,0 : Hn−k(F0;C) ) Hn−k(F0;C) was determined by Oka [Ok1] and [Ok2].
Our objective here is to describe the Jordan normal form of the monodromy op-
erator Φn−k,0 : Hn−k(F0;C) ) Hn−k(F0;C) in terms of the Newton polyhedrons
of f1, f2, . . . , fk. For this purpose, by considering the mixed Hodge module over
the constant perverse sheaf CW\{0}[n − k + 1] ∈ Db

c(C
n \ {0}), to the object

ψfk(CW )0 ∈ Db
c({0}) and the semisimple part of the monodromy automorphism

acting on it, we associate naturally an element

[Hg] ∈ K0(HS
mon). (5.8)

Then as in [DeL1] and [DeL2], by using a resolution of singularities of W and
g : W −→ C we can easily construct an element Sk

f,0 ∈ Mµ̂
C such that χh(Sk

f,0) =

[Hg] in K0(HS
mon). We call Sk

f,0 the motivic Milnor fiber of g : W −→ C at the
origin 0. For simplicity, we assume also that f1, f2, . . . , fk are convenient. Set
f := (f1, f2, . . . , fk) and

Γ+(f) := Γ+(f1) + Γ+(f2) + · · ·+ Γ+(fk). (5.9)

We denote the union of compact faces of Γ+(f) by Γf . Recall that on Rn
+ we can

define an equivalence relation by u ∼ u′ ⇐⇒ the supporting faces of u and u′ in
Γ+(f) are the same. Then we obtain a decomposition Rn

+ =
⊔

Θ≺Γ+(f) σΘ of Rn
+
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into locally closed cones σΘ. Since for a face Θ ≺ Γ+(f) the supporting face of
u ∈ σΘ in Γ+(fi) does not depend on the choice of u ∈ σΘ, we denote it simply by
γΘ
i . Then we have

Θ = γΘ
1 + γΘ

2 + · · ·+ γΘ
k . (5.10)

For a face Θ ≺ Γ+(f) such that Θ ⊂ Γf let gΘi (x) (i = 1, 2, . . . , k) be Laurent
polynomials on (C∗)dimΘ

x such that NP (gΘi ) = γΘ
i and

{gΘ1 (x) = · · · = gΘk−1(x) = 0} ⊃ {gΘ1 (x) = · · · = gΘk−1(x) = gΘk (x) = 0} (5.11)

are non-degenerate complete intersections. Let KΘ % RdimΘ be the affine linear
subspace of Rn which is parallel to the affine span of Θ and contains γΘ

k . Then we
define a positive integer dΘ > 0 to be the lattice distance of KΘ from the origin
0 ∈ Rn. Note that dΘ can be a multiple of the lattice distance of γΘ

k from 0 ∈ Rn

if dimγΘ
k < dimΘ. Let LΘ % RdimΘ+1 be the linear subspace of Rn generated

by {0} & KΘ and consider the lattice MΘ = Zn ∩ LΘ in it. As in the previous
case of k = 1, by an isomorphism (LΘ,MΘ) % (RdimΘ+1

ξ,t ,ZdimΘ+1), the convex

full of {0} & γΘ
k is sent to a polytope ∆γΘ

k
whose base γ̃Θ

k % γΘ
k (resp. apex) is

in {t = dΘ} ⊂ RdimΘ+1
ξ,t (resp. the origin 0 ∈ RdimΘ+1

ξ,t ). Let g̃Θk (x, t) be a non-

degenerate Laurent polynomial on (C∗)dimΘ+1 such that NP (g̃Θk ) = ∆Θ. Moreover

we assume that g̃Θk (x, t) is obtained by adding a monomial to gΘk (x). Then consider
the non-degenerate complete intersection subvariety

Z∗
∆Θ

= {gΘ1 (x) = · · · = gΘk−1(x) = g̃Θk (x, t) = 0} (5.12)

of (C∗)dimΘ+1 and a natural action of µdΘ on it. We thus obtain an element
[Z∗

∆Θ
] of Mµ̂

C. For the description of χh(Sk
f,0) ∈ K0(HS

mon), we need also the

following elements [Z∗
Θ] in Mµ̂

C. For each face Θ ≺ Γ+(f) such that Θ ⊂ Γf , let
Z∗
Θ ⊂ (C∗)dimΘ be a non-degenerate complete intersection subvariety defined by

Z∗
Θ = {gΘ1 (x) = · · · = gΘk−1(x) = gΘk (x) = 0}. (5.13)

Then we define [Z∗
Θ] ∈ Mµ̂

C to be the class of the variety Z∗
Θ with the trivial action

of µ̂. Finally for each Θ we define the number mΘ ≥ 0 as before.

Theorem 5.9. ([ET]) In the situation as above, we have

(i) In the Grothendieck group K0(HS
mon), we have

χh(Sk
f,0) =

∑

Θ⊂Γf

dimΘ≥k−1

χh

(
(1−L)mΘ · [Z∗

∆Θ
]
)
+

∑

Θ⊂Γf

dimΘ≥k

χh

(
(1−L)mΘ+1 · [Z∗

Θ]
)
. (5.14)

(ii) Let λ ∈ C∗ \ {1} and i ≥ 1. Then the number of the Jordan blocks for
the eigenvalue λ with sizes ≥ i in Φn−k,0 : Hn−k(F0;C) % Hn−k(F0;C) is
equal to

(−1)n−k
∑

p+q=n−k−1+i,n−k+i





∑

Θ⊂Γf

ep,q
(
χh

(
(1− L)mΘ · [Z∗

∆Θ
]
))

λ




 . (5.15)

Applying the Cayley trick in [DaK, Section 6] to Theorem 5.9 (ii), we can
now explicitly calculate the numbers of the Jordan blocks for the eigenvalues λ *= 1
in Φn−k,0 by the results in Section 2. Especially Theorem 2.16 is very useful to
simplify the calculations. See [ET] for the details.
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Remark 5.10. Since the dimension of the support of the nearby cycle perverse
sheaf ψfk(CW [n − k + 1]) is not zero in general, for the part of the eigenvalue 1
we cannot expect to have a symmetry of weights of χh(Sk

f,0) ∈ K0(HS
mon) coming

from the monodromy filtration of the corresponding mixed Hodge module. This
fact explains the reason why the results on the Jordan blocks for the eigenvalue 1
in Φn−k,0 cannot be obtained by our methods. For related problems, see also for
example Ebeling-Steenbrink [ES].

When Γ+(f1) = · · · = Γ+(fk) we obtain the following very simple result. Note
that in this case for any Θ ≺ Γ+(f) we have γΘ

1 = · · · = γΘ
k . Let Θ1, . . . ,Θl be the

(k − 1)-dimensional faces of Γ+(f) such that rel.int(Θi) ⊂ Int(Rn
+).

Theorem 5.11. ([ET]) In the situation as above, assume that λ ∈ C∗ \
{1}. Then the number of the Jordan blocks for the eigenvalue λ with the max-
imal possible size n − k + 1 in Φn−k,0 : Hn−k(F0;C) % Hn−k(F0;C) is equal to∑

i : λ
dΘi =1

VolZ(γ
Θi
k ), where VolZ(γ

Θi
k ) is the normalized (k − 1)-dimensional vol-

ume of γΘi
k with respect to the lattice KΘi ∩ Zn.

Also in the case where the condition Γ+(f1) = · · · = Γ+(fk) is not satisfied, we
can describe the numbers of the Jordan blocks for the eigenvalues λ '= 1 with the
maximal possible size n − k + 1 in Φn−k,0 by the normalized volumes of the faces
of Γ+(fi). Since the results are more complicated, we refer to [ET] for the details.

6. Monodromy at infinity of A-hypergeometric functions

In this section, we introduce our recent result in [T2] on the monodromies at
infinity of A-hypergeometric functions. More precisely, in [T2] we considered non-
confluent A-hypergeometric functions introduced by Gelfand-Kapranov-Zelevinsky
[GeKZ1] and proved a formula for the eigenvalues of their monodromy automor-
phisms defined by the analytic continuations along large loops contained in com-
plex lines parallel to the coordinate axes. The theory of A-hypergeometric systems
introduced by [GeKZ1] is an ultimate generalization of that of classical hyperge-
ometric differential equations. As in the classical case, the holomorphic solutions
to A-hypergeometric systems i.e. A-hypergeometric functions admit power series
expansions [GeKZ1] and integral representations [GeKZ2]. Moreover this theory
has very deep connections with many other fields of mathematics, such as toric
varieties, projective duality, period integrals, mirror symmetry and combinatorics.
Also from the viewpoint of D-module theory (see [Di], [HTT] and [KS] etc.), A-
hypergeometric D-modules are very elegantly constructed in [GeKZ2]. For the
recent development of this subject see [ScW] etc. However, to the best of our
knowledge, the monodromy representations of A-hypergeometric functions are not
fully understood yet. One of the most successful approach to the understand-
ing of these monodromy representations would be Borisov-Horja’s Mellin-Barnes
type connection formulas for A-hypergeometric functions in [BH] and [Ho]. From
now on, we will show that the monodromies at infinity of A-hypergeometric func-
tions can be studied by our arguments in previous sections. Indeed, our study in
[T2] is motivated by the previous one on the geometric monodromies at infinity
of polynomial maps Cn −→ Ck (n ≥ k ≥ 2) in [MT3, Section 5]. Namely in
[T2] we used also toric compactifications for the study of monodromies at infinity
of A-hypergeometric functions as in the proof of Theorem 3.8. In order to state
our result, we first recall the definition of A-hypergeometric systems introduced in
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[GeKZ1] and [GeKZ2]. Let A = {a(1), a(2), . . . , a(m)} ⊂ Zn−1 be a finite subset
of the lattice Zn−1. Assume that A generate Zn−1 as an affine lattice. Then the
convex hull Q of A in Rn−1

v = R⊗Z Zn−1 is an (n− 1)-dimensional polytope. For

j = 1, 2, . . . ,m set ã(j) := (a(j), 1) ∈ Zn = Zn−1⊕Z and consider the n×m integer
matrix

Ã :=
(
tã(1) tã(2) · · · tã(m)

)
= (aij) ∈ M(n,m,Z) (6.1)

whose j-th column is tã(j). Then the GKZ hypergeometric system on X = CA =
Cm

z associated with A ⊂ Zn−1 and a parameter vector γ ∈ Cn is given by



m∑

j=1

aijzj
∂

∂zj
− γi



 f(z) = 0 (1 ≤ i ≤ n), (6.2)





∏

µj>0

(
∂

∂zj

)µj

−
∏

µj<0

(
∂

∂zj

)−µj




 f(z) = 0 (µ ∈ KerÃ ∩ Zm \ {0}) (6.3)

(see [GeKZ1] and [GeKZ2] for the details). Let DX be the sheaf of differential
operators with holomorphic coefficients on X = Cm

z and set

Pi :=
m∑

j=1

aijzj
∂

∂zj
− γi (1 ≤ i ≤ n), (6.4)

!µ :=
∏

µj>0

(
∂

∂zj

)µj

−
∏

µj<0

(
∂

∂zj

)−µj

(µ ∈ KerÃ ∩ Zm \ {0}). (6.5)

Then the coherent DX -module

MA,γ = DX/(
∑

1≤i≤n

DXPi +
∑

µ∈KerÃ∩Zm\{0}

DX!µ) (6.6)

which corresponds to the above system is holonomic and its solution complex

Sol(MA,γ) = RHomDX (MA,γ ,OX) (6.7)

is a local system on an open dense subset ofX. Moreover in [GeKZ1] and [GeKZ2]
Gelfand-Kapranov-Zelevinsky proved that the singular locus of Sol(MA,γ) is de-
scribed by the A-discriminant varieties studied precisely in [GeKZ3]. In [MT1]
we obtained a formula which expresses the dimensions and the degrees of A-
discriminant varieties in terms of the geometry of A. Now let us recall the definition
of the non-resonance of the parameter vector γ ∈ Cn in [GeKZ2, Section 2.9]. Let
K be the convex cone in Rn generated by the vectors (a(1), 1), (a(2), 1), . . . , (a(m), 1) ∈
Zn = Zn−1 ⊕ Z. For each face Γ ≺ K of K denote by Lin(Γ) * CdimΓ the C-linear
span of Γ in Cn.

Definition 6.1. ([GeKZ2, Section 2.9]) We say that the parameter vector
γ ∈ Cn is non-resonant if for any face Γ ≺ K of codimension one we have γ /∈
Zn + Lin(Γ).

Note that generic γ ∈ Cn satisfy the above condition. The following funda-
mental result is due to [GeKZ1]. For further generalizations, see Saito-Sturmfels-
Takayama [SST] etc.
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Theorem 6.2. ([GeKZ1]) Assume that the parameter vector γ ∈ Cn is non-
resonant. Then the rank of Sol(MA,γ) at a generic point is equal to the normalized
(n− 1)-dimensional volume VolZ(Q) ∈ Z+ of Q with respect to the lattice Zn−1.

Now we fix an integer j0 ∈ Z such that 1 ≤ j0 ≤ m and for a vector
(c1, c2, . . . , cj0−1, cj0+1, . . . , cm) ∈ Cm−1 consider a complex line L $ C in X = Cm

z

defined by

L = {z = (z1, z2, . . . , zm) ∈ Cm | zj = cj for j %= j0} ⊂ X = Cm
z . (6.8)

Then L is a complex line parallel to the j0-th axis Czj0
of X = Cm

z . We will natu-
rally identify L with Czj0

. For simplicity, we denote the j0-th coordinate function
zj0 : X = Cm

z −→ C by s. Then it is well-known that if (c1, c2, . . . , cj0−1, cj0+1, . . . , cm) ∈
Cm−1 is generic there exists a finite subset SL ⊂ L $ Cs such that Sol(MA,γ)|L
is a local system on L \ SL. Let us take such a line L in X = Cm

z and a point
s0 ∈ L $ Cs in L such that |s0| > maxs∈SL |s|. Then we obtain a monodromy
automorphism

Sol(MA,γ)s0
∼−→ Sol(MA,γ)s0 (6.9)

defined by the analytic continuation of the sections of Sol(MA,γ)|L along the path

Cs0 =
{
s0 exp(

√
−1θ) | 0 ≤ θ ≤ 2π

}
(6.10)

in L $ Cs. It is easy to see that the characteristic polynomial of this automorphism
does not depend on L and s0 ∈ L. We denote it by λ∞

j0 (t) ∈ C[t]. We call
λ∞
j0 (t) the characteristic polynomial of the j0-th monodromy at infinity of the A-

hypergeometric functions Sol(MA,γ). By Theorem 6.2 if γ ∈ Cn is non-resonant the
rank of the local system Sol(MA,γ) is equal to the normalized (n− 1)-dimensional
volume VolZ(Q) ∈ Z+. This implies that the degree of λ∞

j0 (t) should be VolZ(Q)
in such cases. In order to give a formula for λ∞

j0 (t) we prepare some notations.
First, we set α = γn,β1 = −γ1 − 1,β2 = −γ2 − 1, . . . ,βn−1 = −γn−1 − 1 and β =
(β1,β2, . . . ,βn−1) ∈ Cn−1 (see [GeKZ2, Theorem 2.7]). Next let ∆1,∆2, . . . ,∆k

be the (n − 2)-dimensional faces (i.e. the facets) of Q such that a(j0) /∈ ∆r (r =
1, 2, . . . , k). Then for each r = 1, 2, . . . , k there exists a unique primitive vector
ur ∈ Zn−1 \ {0} such that

∆r =

{
v ∈ Q

∣∣∣ 〈ur, v〉 = min
w∈Q

〈ur, w〉
}
. (6.11)

Let us set

hr = min
w∈Q

〈ur, w〉 = 〈ur,∆r〉 ∈ Z, (6.12)

dr = 〈ur, a(j0)〉 − hr ∈ Z. (6.13)

Since −ur ∈ Zn−1 ⊂ Rn−1 is the primitive outer conormal vector of the facet
∆r ≺ Q of Q and we have

dr = 〈−ur, w − a(j0)〉 (6.14)

for any w ∈ ∆r, the integer dr is the lattice distance of the point a(j0) ∈ Q from
∆r. In particular, we have dr > 0. Finally we set

δr = αhr + 〈β, ur〉 ∈ C (6.15)

for r = 1, 2, . . . , k. Then we obtain the following result.
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Theorem 6.3. ([T2, Theorem 1.1]) Assume that γ ∈ Cn is non-resonant.
Then the characteristic polynomial λ∞

j0 (t) of the j0-th monodromy at infinity of
Sol(MA,γ) is given by

λ∞
j0 (t) =

k∏

r=1

{
tdr − exp(−2π

√
−1δr)

}VolZ(∆r)
, (6.16)

where VolZ(∆r) ∈ Z+ is the normalized (n− 2)-dimensional volume of ∆r.

Since we have VolZ(Q) =
∑k

r=1 dr×VolZ(∆r), by this theorem we obtain a geo-
metric decomposition of the space of A-hypergeometric functions into eigenspaces.
We do not know if a similar result holds also for irregular (i.e. confluent) A-
hypergeometric functions studied intensively by [Ad] and [ScW] etc. It would be
an interesting problem to generalize Theorem 6.3 to such cases. From now on, we
shall give a sketch of the proof of Theorem 6.3.

Proof. Let

L = {z = (z1, z2, . . . , zm) ∈ Cm | zj = cj for j %= j0} ⊂ X = Cm
z . (6.17)

((c1, c2, . . . , cj0−1, cj0+1, . . . , cm) ∈ Cm−1) be the defining equation of L ' Cs in
X = Cm

z and define a Laurent polynomial p on (C∗)n−1
x × L ' (C∗)n−1

x × Cs by

p(x, s) = sxa(j0) +
∑

j $=j0

cjx
a(j). (6.18)

Denote by P̃ the convex hull of (a(j0), 1) ( {(a(j), 0) | j %= j0} in Rn
ṽ = Rn−1

v ⊕ R.
We may assume that the Newton polytope of p(x, s) is P̃ . Let U be an open
subset of (C∗)n−1

x × L defined by U = {(x, s) ∈ (C∗)n−1 × L | p(x, s) %= 0} and
π = s : U −→ L ' C the restriction of the second projection (C∗)n−1 × L −→ L to
U . Define a local system L of rank one on U by

L = C p(x, s)αxβ1
1 xβ2

2 · · ·xβn−1

n−1 . (6.19)

Then by [GeKZ2, page 270, line 9-10] we have an isomorphism

Sol(MA,γ)|L ' Rπ!L[n− 1] (6.20)

in Db
c(L), which is an integral representation of A-hypergeometric functions. Let

j : L ' Cs ↪−→ Cs ( {∞} = P1 be the embedding and h(s) = 1
s the holomorphic

function defined on an neighborhood of ∞ in P1 such that {∞} = {h = 0}. Then it
suffices to show that the monodromy zeta function ζh,∞(j!Rπ!L[n− 1])(t) ∈ C(t)∗

of the constructible sheaf j!Rπ!L[n− 1] ∈ Db
c(P

1) at ∞ ∈ P1 is given by

ζh,∞(j!Rπ!L[n− 1])(t) =
k∏

r=1

{1− exp(2π
√
−1δr)t

dr}VolZ(∆r). (6.21)

By using a toric compactification of Cn−1 ×L ' Cn similar to the one in the proof
of Theorem 3.8 we can prove this equality. In the proof, our A’Campo type lemma
Proposition 2.9 for constructible sheaves as well as Proposition 2.8 play key roles.

!
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Example 6.4. ([SST, page 25-26]) For the 3× 4 integer matrix

M = (mij) =




1 0 0 −1
0 1 0 1
0 0 1 1



 ∈ M(3, 4,Z) (6.22)

and the vector ρ = t(ρ1, ρ2, ρ3) = t(c− 1,−a,−b) ∈ C3 let us consider the following
system on C4

z. 


4∑

j=1

mijzj
∂

∂zj
− ρi



 f(z) = 0 (1 ≤ i ≤ 3), (6.23)





∏

µj>0

(
∂

∂zj

)µj

−
∏

µj<0

(
∂

∂zj

)−µj




 f(z) = 0 (µ ∈ KerM ∩ Z4 \ {0}). (6.24)

By using the unimodular matrix

B =




1 0 0
0 1 0
1 1 1



 ∈ SL(3,Z) (6.25)

we set

Ã = (aij) = BM =




1 0 0 −1
0 1 0 1
1 1 1 1



 ∈ M(3, 4,Z) (6.26)

and γ = t(γ1, γ2, γ3) = Bρ = t(c− 1,−a, c− a− b− 1) ∈ C3. Then we obtain an
equivalent system




4∑

j=1

aijzj
∂

∂zj
− γi



 f(z) = 0 (1 ≤ i ≤ 3), (6.27)





∏

µj>0

(
∂

∂zj

)µj

−
∏

µj<0

(
∂

∂zj

)−µj




 f(z) = 0 (µ ∈ KerÃ ∩ Z4 \ {0}). (6.28)

on C4
z. Since the bottom row of Ã is (1, 1, 1, 1), this is the A-hypergeometric system

MA,γ associated to

A = {(1, 0), (0, 1), (0, 0), (−1, 1)} ⊂ Z2 (6.29)

and the parameter vector γ ∈ C3. By Theorem 6.3 for the case j0 = 1, the charac-
teristic polynomial λ∞

1 (t) of the 1-st monodromy at infinity of the A-hypergeometric
functions Sol(MA,γ) is given by

λ∞
1 (t) =

{
t− exp(2π

√
−1(c− a))

}
·
{
t− exp(2π

√
−1(c− b))

}
. (6.30)

On the other hand, according to [SST, page 25-26] the holomorphic solutions f(z)
to MA,γ have the form

f(z) = zc−1
1 z−a

2 z−b
3 g

(
z1z4
z2z3

)
, (6.31)

where g(x) satisfies the Gauss hypergeometric equation

x(1− x)
d2g

dx2
(x) + {c− (a+ b+ 1)x}dg

dx
(x)− abg(x) = 0. (6.32)
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Since the characteristic exponents of the Gauss hypergeometric equation at ∞ ∈ P
are a, b ∈ C, we can check that the monodromy at infinity of the restriction of
Sol(MA,γ) to a generic complex line L # C ⊂ C4

z of the form

L = {z ∈ C4 | z2 = c2, z3 = c3, z4 = c4} (6.33)

is given by the formula (6.30).
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