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1. LATTICES IN LIE GROUPS

Arithmetic groups arise naturally as discrete subgroups

of Lie groups, defined by arithmetic properties. In this

lecture I want to describe some of the possibilities,

especially when the Lie group is semisimple. For a compre-

hensive treatment, RaghunathanTs book [22] would be a

natural starting point (to be supplemented by more recent

research papers).

(1.1) Let G be a connected Lie group. By a lattice in G is

meant a discrete subgroup T for which G/r has finite

measure (induced by Haar measure on G). There are two very

different cases to consider: T is uniform (or cocompact)

if G/r is compact, nonuniform otherwise. For example,

the standard lattice f1 in Rn is uniform, while SLn(Z)

is a nonuniform lattice in SL (R).

Both of the examples just mentioned have an obvious

arithmetic flavor. To be more precise, we have to consider
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a Lie group G which arises as the topological identity

component G(FO° in the R-points G(R) of an algebraic

group G defined over Q (or other number field). Many

familiar Lie groups do arise in this way. If G_ is embedded

in some general linear group GL , then G n GL (Z) is

often a lattice in G(e.g., when G is semisimple, by results

of Borel and Harish-Chandra). Whether it is a lattice or

not3 G n GLn(l) or any commensurable subgroup of (KQ) is

called an arithmetic subgroup of G. (Recall that two groups

are commensurable if their intersection has finite index in

each.) We will stick to the case of groups defined over Q;

the process of "restriction of scalars" often makes this the

essential case.

Several questions can be posed right away:

(1) Does a given Lie group G contain both uniform and

nonuniform lattices?

(2) If G has the form G(JR)° for a Q-group G, are its

arithmetic subgroups actually lattices? If so, is every

lattice in G of this type?

(3) What group-theoretic properties does a lattice (or

arithmetic group) r have? Is r finitely generated

(f.g.)? finitely presented (f.p.)? torsion-free? What are

its normal subgroups? (These questions, or others of a

cohomological nature, can often be studied effectively in

the context of G and its homogeneous spaces.)

Remark. "Arithmetic groups" also arise in the setting
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of algebraic groups over global function fields. In another

direction, one can study "S-arithmetic" subgroups, where S

is a finite set of valuations including all archimedean

ones.

(1.2) Lattices in solvable Lie groups have been rather

thoroughly studied (cf. [22, Ch. II-IV]). To list a few of

the key results, due to Mal'cev, L. Auslander, Mostow, and

others, it is convenient to assume that G is simply

connected (s.c.); the general case can usually be reduced

to this one.

(1) Let G be a s.c. nilpotent Lie group. Then G has

a lattice subgroup iff the Lie algebra of G has a basis

with rational structure constants. (The idea of the proof

is to obtain a lattice by exponentiating the Z-span of such

a basis.)

(2) An abstract group T is isomorphic to a lattice

in some s.c. nilpotent Lie group iff T is f.g., torsion-

free, nilpotent.

(3) All lattices in a s.c.. nilpotent Lie group are

uniform and arithmetically defined.

(4) All lattices in a s.c. solvable Lie group are

uniform, but not necessarily arithmetically defined.

(5) A lattice in a s.c. solvable Lie group is

polycyclic (hence f.g.). Any polycyclic group has a normal

subgroup of finite index which is isomorphic to such a

lattice. (Here the idea is to embed the given polycyclic
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group in some GL (Z) and then study its Zariski closure

in GLn(C).)

(6) Given a lattice T in a s.c. solvable Lie group

G, there is a faithful representation f :G •*• GL (B) for

which f(D c GLn(Z).

The results (2) and (5) suggest how Lie groups or

algebraic groups may be profitably used to study polycyclic

groups. (Cf. the recent work of F. Grunewald--P.P. Pickel-

D. Segal, S. Donkin, and others.)

(1.3) The study of lattices in semi-simple Lie groups is in

some respects far more complicated than in the solvable

case. Lattices still turn out to be f.g. (which allows

one eventually to conclude that all lattices in Lie groups

are f.g. [22, 13-21]), but they may or may not be uniform.

Borel showed that when G is noncompact, G has both uniform

and nonuniform lattices (cf. [22, Ch. XIV]). The proof

reduces quickly to the case of a simple group G isomorphic

to its adjoint group. Then the idea is to find an

auxiliary algebraic group G over Q and an epimorphism

f:G(R)° = Gf -»• G with compact kernel. By locating

suitable arithmetic subgroups rf of Gf with Gf/Tf

compact (resp. noncompact), one gets lattices r = f(rf)

of the desired types in G. The construction here is rather

subtle. For example, to make G'/F1 noncompact, it is

essential to have a nontrivial unipotent element in Tf,
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which depends on having a nonzero nilpotent element in a

suitable Q-form of the Lie algebra. Of course, in a

special case like G = SL (R), one might argue directly

that the arithmetic subgroup SL (2) is a nonuniform

lattice (cf. [8] or [10]). But even here it is difficult

to exhibit straightforwardly a uniform lattice, without

use of a larger auxiliary group G1.

(1.4) As noted above, Borelfs proof of the existence of

both kinds of lattices in a semisimple Lie group is based

on a construction of arithmetic groups. The question

remains: Must all lattices be obtained in this way? To

make the question precise (and to avoid uninteresting

technicalities), we formulate a definition: Let G be a

connected semisimple Lie group, G* its adjoint group,

p:G •*• G* the canonical map. A lattice T in G is said to

be arithmetic if there exists an algebraic group Gf over Q,

with an arithmetic subgroup T! c G/(Q) and an epimorphism

f:Gf(|R)0 •* G* such that Ker f is compact and f(Tf) has

finite index in p(F).

For certain semisimple groups of JR-rank 1, such as

S0(2,l) = PSLp(R), our question actually has a negative

answer: There exist non-arithmetic lattices (both uniform

and nonuniform). Examples involving S0(n,l) (n<5) were

first discovered by Makarov and Vinberg, while Mostow

[17sl8] has recently found others in the groups SU(n,l)
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. It remains to be seen whether such examples also

occur in the groups Sp(n,l) and whether they are limited

to low dimensions.

(1.5) Por semisimple Lie groups of R-rank>2, it was con-

jectured first by Selberg (in the uniform case) and later

by Pyatetski-Shapiro (in the general case) that all

"irreducible" lattices are arithmetic. (A lattice is

irreducible if its projection to any nontrivial proper

factor is non-discrete: this rules out obvious counter-

examples involving products of rank 1 groups.) The first

complete proofs of these conjectures were given by Margulis

(cf. [12], [13], [30]), using a dazzling array of tech-

niques. Here is a very brief indication of how he proceeds

in [133.

ARITHMETIC ITY THEOREM. Let G be a connected semi-

simple algebraic group over (R, of DR-rank £ 2, and assume

G = G_(R)° has no compact factors. Then any irreducible

lattice T in G is arithmetic.

SUPERRIGIDITY THEOREM. Let G be as in the Arith-

meticity Theorem, T an irreducible lattice in G. Let k

be any local field of characteristic 0(R, C, or a finite

extension of Q ) . Let P be a connected semisimple k-group

without center, $:T •* P(k) a homomorphism such that <Kr)

is Zariski dense in P. Then: (i) If k # R,C, *(D is
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relatively compact in the k-topology. (ii) If k = IR or C,

then F = FT*!^* a product of k-groups, where pr.j(<j>(r))

is relatively compact in the k-topology and pr2 o$:T •»• Fp

extends to a rational homomorphism G_ •*• Pp.

Although its formulation is technical looking, the

second theorem implies the first and has other far-reaching

implications (e.g., for the study of isomorphisms between

simple algebraic groups over various arithmetic rings).

For the proof, Margulis draws together a wide range of

methods: ergodic theory, function spaces,.... Once estab-

lished, it can be invoked (in several different ways) in

the proof of the Arithmeticity Theorem. For example, at

one stage it is known that, for the given lattice r ,

there exists a centerless semisimple matrix group H over

Q and a monomorphism a:T -> H(Q) with Zariski dense image.

After composing with the inclusion into H(Q ), the Super-

rigidity Theorem forces the image of T to be relatively

compact in the Q -topology, for each prime p. This means

that the powers of p in denominators of matrix entries in

a(T) are bounded. But T is f.g., so the denominators in

question can involve only finitely many primes. Combining

these statements, a(T) n H(Z) has finite index in a(T).

This is a major step toward proving that T is arithmetic.

We should mention a further striking consequence of

Margulis1 methods: With G and T as above, each noncentral
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normal subgroup of T is of finite index. Earlier results

of this type mostly depended on having a positive solution

to the congruence subgroup problem.

2. FINITE GENERATION AND FINITE PRESENTATION

Given an arithmetic group F, it is natural to ask

whether T is finitely generated (f.g.) and, if so, whether

it is in fact finitely presented (f.p.). These questions

can sometimes be answered positively by exhibiting gener-

ators and relations; but in other cases only a qualitative

or indirect proof is available. And in a few situations,

negative answers turn up.

(2.1) Consider a very classical example: the group T =
A

PSL2(2), or its close relative r = SL2(Z), cf. [19, Ch.

VIII]. Let S= £° J), T- (5-̂  = (J j) m ?,

with respective images s,t,u in T. Note that T = SU.
A

From linear algebra one knows that T is generated by S and

U (or equivalently, by S and T). So T is generated by the

elements s, t of respective finite orders 2,3. In fact,

T is the free product of the cyclic groups they generate.
A

To see this, it is easier to work in T. It has to be shown
a el en bthat A = + T ST S...T S can never reduce to + I (where

a,b € {0,1} and e. e {1,2} ). By rearranging, we may assume
ei en

a = b = 0, so A = j^ST...ST. Now it is enough to show
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that no nontrivial word in the semigroup generated by ST =

\0 3J and ST * (l l) reduces to + I. But note that

for each Z = fe °\ in this semigroup, (ST)Z = - fa*c b*~)

while (ST2)Z = /* \ . By induction, all entries of

Z have like sign. It follows that if Z has a nonzero entry

off the diagonal (which ST and ST both do) , the same is

true for these longer words. So we can never reach + I.

(2.2) Nielsen found a finite presentation for SL-(Z), to

which Magnus later reduced the case of SL (20 for n £ 3.

In a modern guise, this fits into the computation of KpZ

by Silvester-Milnor: SL (Z) (n £ 3) is generated by the

elementary matrices E..(i * j ) , where E.. has 1 in the

(i,j) position and on the diagonal, but 0 elsewhere, subject

only to the relations: (EjM»Ek£) = 1 if j * k, i^£;(E1 .,E.k)

= E±k if i,j,k are distinct; (Ei2E2l"lE12^ = Iu The flrst

two relations alone define a central extension St (Z) •>

SLn(Z), with kernel K2Z « Z/2Z. (The covering group is

called the Steinberg group.)

Other Chevalley groups GKZ) such as Sp2n(Z) were sub-

sequently studied by Klingen, Wardlaw, Behr, Hurrelbrink-

Rehmann, culminating in the explicit presentations of Behr

[6]. He views G(Z) as an amalgamated product of rank 2

parabolic subgroups, via the action of G(Z) on a simplicial

complex introduced by Soule*. Then the rank 2 cases S

Spit(Z), and G2(Z) can be plugged in.
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Relatively few groups over other arithmetic rings have

been treated as explicitly as these groups over Z: mainly

SLp over rings of integers of imaginary quadratic

extensions of <8, cf. Swan [293. In [20] O'Meara

proved that certain of the groups GL -SL over Hasse

domains (rings of S-integers in global fields of arbitrary

characteristic)are at least f.g.

(2.3) If one is willing to settle for less explicit infor-

mation about generators and relations, far more general

arithmetic (and S-arithmetic) groups can be shown to be f.p.

by the reduction theory of Borel, Harish-Chandra (cf.[8],

[10]). The idea is to start with a semisimple group G over

Q, with r = G(2) or other arithmetic subgroup acting on a

homogeneous space X of the Lie group G(R). There is an

open "Siegel set" in X approximating a fundamental domain

for the action of T . Then a simple lemma produces (in

principle) a finite generating set in T :

LEMMA. Let X be a connected topological space, acted

on by a group T(on the right). Let U be open in X, with

U.T = X. Then the set A = {Y^rjU-ynU # <)>} generates F.

(The proof is easy: Let Tf be the subgroup generated

by A, so U.T1 is open. If U.y n U.yf * $ for yeT ,

y! €T !
3 we get ye Ay1 <= rf. Since X is connected, this

forces U.T1 « X, whence Ff = T.)

That A is finite in the case of our arithmetic group
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is the hard thing to prove, and the proof gives little

insight into the nature of A even for familiar groups r.

(It is somewhat like proving that class numbers are finite

without actually calculating them.)

Behr [4] went on to show that the group T above is in

fact f.p., where the relations involving elements of A are

the "obvious" ones (cf. [10,13-**])• By using the Bruhat-

Tits theory of reductive groups over local fields, Kneser

and Behr w«re also able to treat S-arithmetic groups in a

similar spirit.

(2.4) For arithmetic subgroups of algebraic groups over

number fields, the methods of Borel, Harish-Chandra, Behr

lead to positive results about finite presentability. But

for groups over function fields, there are some negative

results, and in general the terrain has been less well

explored.

Here is a brief survey of the best studied situation:

(* is a Chevalley group (scheme), usually assumed to be

simply connected, e.g., SL or sP2n- K is a function

field in one variable over F , such as Fa(t) with t tran-

scendental. S is a finite nonempty set of primes of K, and

Og is the ring of S-integers in K(e.g., IP [t] or F [tjt"1]

in case |S | = 1 or 2, K = Fq (t)). Finally, T = G(0g) is

the S-arithmetic group in question. The known results

depend crucially on two numerical invariants:
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r = rank G(e.g., n-1 for SLn and n for
 sP2n^»

 s " Is!•

example, Behr [5] shows (in a much more general setting)

that T is f.g. unless r « s = 1. Whether T is f.p. in

this case remains unsettled except in a few cases indicated

in the table below.

r B 1

r =* 2

r > 3

s = 1

SL2(Pq[t]) is

not f.g. (Nagao)

SL3(Fq[t]) is

not f.p. (Behr3
Soule [73)

G(Pq[t]) is
f.p. ( Rehmann ,
Soule [24]')

s - 2

SL0(0Q)is not f.p.

(Stuhler [2?])

OCPqCt.t1"1]) is

f.p. (except
possibly Gg)
(Hurrelbrink [11])

OjpqCt.t"1])
is f.p.
(Hurrelbrink [11])

s ^ 3

SL2(0S)
is f.p.

(Stuhler [27])

?

?

!

Rehmann has formulated a general conjecture for a semi-

simple group (scheme) G_ and corresponding S-arithmetic sub-

groups. Here the rank r of (3 over the different com-

pletions K of K (veS) may vary, so the crucial number is

r = Z r (= rs for a Chevalley group). The conjecture is
°° vcS v

that T is not f.g. when r^ « 1, that r is f.g. but not

f.p. when r^ = 2, and that r is f.p. when r^ £ 3-

(2.5) It is not difficult to visualize how one might go
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about proving that some f.g. group is f.p. But how can it

be shown that such a group is not f.p.? In [7] Behr uses a

method somewhat like that of Stuhler [27] to deal with

T = SL-dF [t]) (or other rank 2 group when -1 jl Pq2)-

Here is a very rough sketch of the method.

T is a discrete subgroup of the locally compact group1

P = SL~(k), where k is the completion of P (t) relative

to a valuation for which 1/t is a prime element. The

Bruhat-Tits theory yields an associated "building" I, a

simplicial complex made up of "apartments", each in turn

subdivided into "quarters". G and hence F acts on I. Fix

a quarter Q in an apartment A. Then a geometric argument

due to Soule" shows that every simplex in I is sent by T to

§. unique simplex in Q. But Q is in a natural way an in-

creasing union of bounded subsets Q(n), whence I = \* I(n)

if I(n) = T.Q(n).

Now the "Weyl group" W of the Tits system in G is just

an affine Weyl group (the symmetric group S- extended by

translations), and A is covered by W-translates of a

simplex C c Q whose vertices may be identified with

certain large subgroups P0,P-.,P2 of G. It can be shown

that F is generated by rQ and T^ n F2 (where r± = FnP.j),

with T. stabilizing the vertex P^. So words in these

generators yield edge-paths in I, and relations correspond

to closed paths at the vertex PQ. Suppose T to be f.p.
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for this set of generators. Since I is contractible, the

paths belonging to relations can be contracted to PQ1 each

contraction involving only finitely many simplices (hence

all taking place in some I(n)). To reach a contradiction,

Behr then exhibits for each n some relation whose path is

not contractible in I(n).

3. NORMAL SUBGROUPS

Another natural question to ask about an arithmetic

(or S-arithmetic) group is this: What are its normal sub-

groups? Paradoxically, the answer is more complicated for

"small" groups like SL2(Z) than for "big" groups like

(3-D Consider again the modular group r = PSL2(2), cf.

[19, Ch. VIII]. It was seen in (2.1) that T is a free

product of cyclic groups generated by elements s of order

2 and t of order 3- Note that u = st has infinite order

(as the image of f |) ) • Much is known about normal sub-
2 3groups of small index in T. The subgroup T (resp.I0)

generated by all squares (resp. cubes) is just the normal

closure of t (resp. s), and has index 2 (resp. 3)- These

are the only normal subgroups having index 2 or 3- The
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derived group (r,O is their intersection, having index 6,

and Tab = r/(r,O is generated by the image of u. It can

be shown that every proper normal subgroup of finite index

d other than F2,r3 is_ free, of rank l+(d/6). For
p

example, (F,r) is free of rank 2, with generators stst

and st st. (Thus the derived group of (T,r) is free of

infinite rank and has infinite index in r.)

There are other obvious normal subgroups of finite in-

dex: T(n) = kernel of natural map r -> PSL2(Z/n2) (n̂ l) =

principal congruence subgroup o_f level n. Any subgroup

including one of these is called a congruence subgroup. The

notion of level can be extended to any normal subgroup A

(say of index d): the level of A is the least positive n

for which un e A (so n|d). For example, (F,r) has

level 6 and includes the subgroup F(6), whose index in T

is 72. Wohlfahrt gave a nice criterion: Let A <i F have

level n. Then A is a congruence subgroup iff A => F(n).

In fact, relatively few subgroups of finite index are con-

gruence subgroups. For example, r has infinitely many normal

subgroups of level 6, but only 4 of them include F(6).

(3.2) Congruence subgroups can be defined in a rather

general setting. Let K be any global field (a number field

or a function field in one variable over a finite field).

Take S to be any finite nonempty set of valuations of K,

including at least the archimedean ones. Then let A be the



88 Arithmetic Groups

ring of S-integers in K, the elements at which all v jl S

take nonnegative values. (When S consists of the archime-

dean valuations of a number field, A is just the usual ring

of algebraic integers.) For a linear algebraic group G_

over K, the S-arithmetic subgroup TA = G(A) has a prin-

cipal congruence subgroup TV for each nonzero ideal q of

A, defined to be the kernel of the canonical map

G(A) •*• G(A/q). As before, a subgroup of FA containing_ _ _ _ _ ^

one of these is called a congruence subgroup. Then it may

be asked: Is every subgroup of finite index a congruence

subgroup?

(It may also be asked whether I\ has any "non-

obvious ff normal subgroups of infinite index. Though appar-

ently unrelated to the first question, this question can

often be studied effectively in tandem with the congruence

subgroup problem.)

Serre formulated the problem in an elegant way, by

considering simultaneously the group G = G(K) and its S-

arithmetic (resp. congruence) subgroups, cf. [3]* [10],

[14], [25]. This leads to a short exact sequence

1 •*• C(G) -* G •*- (J •* 1, involving the respective completions
A __

G, G of G in the topology whose fundamental system of

neighborhoods of 1 consists of the S-arithmetic (resp. con-
A __

gruence) subgroups. Restrictions to the closures TA, TA
A __

of TA yields the related sequence: 1 -> C(G) -> T + T. +!•
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The question then becomes: Is_ C(G) trivial (and, If not,

how big is it)? In case G is simple and simply connected,

G and F. have straightforward descriptions, due to strong

approximation; e.g., FA is just the product of the groups

G[(A ) taken over the integers A of all completions

(3.3) The case (* = SLp can serve as a microcosm of the

congruence subgroup problem for simple algebraic groups.

In this and the following lecture I want to sketch some of

the key points in Serre [25]. Consider first the "negative"

results: When |S| = 1, C(G) is_ infinite. This involves

three separate cases:

(1) The "rational" case A = *& (cf. (3-D above).

(2) The "imaginary quadratic" case, e.g., A = 2[i].

(3) The "characteristic p" case, e.g., A = FqCt] (<1 =

power of p) .

In the first two cases, C(G) actually has the car-

dinality c of the continuum, while in the third case

|C(G)| = 2C. (According to Melfnikov [15], the structure

of C(G) in case (1) is that of a "free profinite group of

countable rank" . )

(3.4) To show that C(G) is infinite in each case, Serre

first replaces T» by a suitable torsion-free subgroup T

of finite index (without loss of generality). For example,

T can be^ the derived group of TA in case (1), or can be
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a principal congruence subgroup in case (3). Then a key

step is to prove that rab = r/(r,D is infinite in each

case:

(1)(2) rab is a f.g. infinite abelian group.

(3) Ta is the direct sum of a f.g. group and a

vector space over (P of countably infinite dimension. (In

Particular, T itself cannot be f.g., cf. (2.4).)

Case (1) is classical, since torsion-free here implies

free, cf. (2.1). In the other cases, Serre defines an

auxiliary group U(F), the direct sum of intersections of

F with various maximal unipotent subgroups of G, and a

natural map a:U(T) -*• T . In case (2), T and hence rab

is already known to be f.g. [20]. If h is the class

number of K, U(T) turns out to be free abelian of rank
QVj

2h, while Kera has rank h, forcing ra to be infinite.

The proof depends on an identification of a with a map of

homology groups: Ĥ DXj,) •> H-L(Xr), where X = SL2(C)/SU2(G)

and the orbit space X/r has a compactification Xp.

(3-5) It still has to be deduced that C(G) is infinite.

Cases (!) and (2) can be argued together: Let C« be the
A

intersection of C(G) with the closure of T in G. If

C(G) were finite, Cp would be also. Then the arguments

of Bass-Milnor-Serre [3,§l6], which depend just on the

finiteness of the congruence kernel, would imply the

finiteness of Ĥ Î Z) = Hom(rab,2), contrary to (3-4).
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In [3] it is essential that the characteristic be 0, e.g.,

to get the splitting of short exact sequences of finite

dimensional Kr -modules, or to apply results of Lazard on

p-adic groups.

For case(3), one can argue that \T\ = c, since the

congruence topology has a countable basis of neighborhoods

of 1. On the other hand, the result of (3-4) on Ta

A A
implies that T maps onto the second dual V of an infi-

A
nite dimensional vector space V over F ; here |V| =2 ,

forcing |C(G)| ;> 2C. (Alternatively, Serre [26,11,2.?]

uses the action on the Bruhat-Tits tree to show more

directly that the set of S-arithmetic subgroups of T has

cardinality c.)

4. NORMAL SUBGROUPS (CONTINUED)

(4.1) Retain the notation of (3-2): G, K, S, A, TA, G. etc.

When G = SLp and |S| = 1, the congruence kernel C(G) is

infinite and the congruence subgroup problem has therefore

a strongly negative solution. Serrefs proof involves a

close study of the group structure of T., G, and of the way

TA (or its subgroup T) acts on a related topological space,

but requires no delicate arithmetic information. When

|S| £ 2, deeper arithmetic considerations enter into the

solution, which is positive or "almost" positive:
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THEOREM (Serre). Let G - SL2, |S| :> 2. Then

C(G) = y (the finite group of roots of unity in K) if K

is a totally imaginary number field and S the set of all

archjmedean valuations. Otherwise C(G) = 1.

The simplest case occurs when K = Q, S = {p,»}. (This

had been studied earlier by Ihara and Mennicke.)

The assumption |S| £ 2 crucially affects the

structure of the group U of units of A, which has the form

y x an ' . In particular, U now has elements of infinite

order.

(4.2) The proof of Serrefs theorem involves showing that

C(G) lies in the center of G. Here an essential role is

played by an auxiliary family of normal subgroups of I\:

for a nonzero ideal q of A, E is the normal subgroup gen-

erated by "q-elementary11 matrices in T . (It is unclear

at first whether E has finite index or not.) Now the

proof goes in steps.

(1) Any subgroup N of finite index in r. includes

some E . (We may assume N is normal, of index n, so

q = nA will do if char K = 0. In characteristic p, the

choice of q is a bit more complicated and uses the fact
/u 0 \

that the set of u € U with \ e N has finite index JnN.)
V° M

(2) A non-central subgroup H of G normalized by an

S-arithmetic subgroup N includes E for some q. (H must
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contain some matrix J with ac * 0 , otherwise its

Zariski closure in SL^ would be a proper, normal, but non-

central subgroup. Now (1) yields an E , c N, and some

delicate manipulation of matrix entries using elements of

infinite order in U yields the required E c H.)

(3) Set C = F /E ^ rA/Eq' If u c U, m « |y|,

then the image of [u _ j in r^/Ea centralizes C .

Y
(The proof is not easy: it requires Cebotarev density,

Artin reciprocity, etc.)

(4) Let C = lim C . T« acts (via inner automorph-
^ q H

isms) on C , hence on C, and this action extends (via (2))

to an action of G on C. This action is trivial, whence C

is abelian (and f.g. since T is). (The kernel of the

action contains ju -] ^ (3)» hence is infinite. But

G is almost simple.)
^ A

(5) C(G) = lim C (profinite completions), and thus

C(G) is central in G. (This follows from (4).)

(4.3) Now the proof shifts gears, applying the theory of
A __

Moore [16] to the central extension 1 •*• C(G) •* G •*• G •*• 1.

This theory implies that G is isomorphic to the "universal

covering" of G (relative to G), with C(G) isomorphic to

the relative fundamental group •n'1(G",G). As a result of
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Moore's calculation of fundamental groups, C(G) is of the

form asserted in (4.1). Moreover, C turns out to be finite

and cyclic, of order dividing m in the totally imaginary

case but trivial otherwise; so the index of E in TA is
q A

finite after all, and C = C(G). As a further byproduct of

step (2) above, we see that for any subgroup N of finite

index in I\, the normal subgroups of N all have finite

index or lie in {+ 1} . For example, Nab is finite (in

contrast to what can happen if |s| =1).

It should be emphasized that Moore's determination of

relative fundamental groups involves the whole arsenal of

class field theory. So by the time Serre concludes his

argument he has invoked a considerable amount of arithmetic

in order to answer what might seem to be a straightforward

group-theoretic question.

(4.4) When ^ is a Chevalley group (simple, simply con-

nected, split over K) of rank ^ 2, the solution of the

congruence subgroup problem is "almost" positive in the

same sense as above. For example, take S to be the set of

archimedean valuations of a number field K. Then C(G) =y

if K is totally imaginary; otherwise C(G) = 1. This

situation was studied independently by Mennicke and by

Bass-Lazard-Serre when G = SL (n^3) over Q, then for—• n

(j - SL or Sp« by Bass-Milnor-Serre [3]. Matsumoto

[14] completed the treatment of Chevalley groups by making
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heavy use of the results of Moore [16]. (For a partial

exposition, see [10].)

(4.5) The congruence subgroup problem for other simple

algebraic groups over K has not yet been fully solved, but

there has been substantial recent progress. The most

likely conjecture goes as follows (for (} absolutely simple,

simply connected): Let r be the rank of G over the com-

pletion K of K for each v c S, and set r = Z r (sum

over S). In case S contains non-archimedean valuations,

require G to have positive Ky-rank for each such v. (This

is a kind of non-compactness.). Then C(G)ought to be finite

when r > 2, as for Chevalley groups of rank £ 2. More-

over, C(G) ought to be trivial unless K is a totally

imaginary number field and S its set of archimedean valua-

tions; in this case C(G) ought to be y (or conceivably a

quotient of y).

Here is a quick summary of some recent work in this

direction.

In [23] Raghunathan showed that C(G) is finite if K

is a number field and G has K-rank at least 2 (while C(G)

has a p-subgroup of finite index in the function field

case). He also showed that each normal subgroup of an S-

arithmetic group (when G has K-rank £ 2) is either finite

and central, or else includes an S-elementary subgroup

(whose index is finite in the given arithmetic group). As
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in the earlier work, it is essential to show that certain

extensions are central. Building on this work, Deocihar C93,

has gotten more precise results in the case of quasi-split

groups (including Du).

Bak-Rehmann [2] have made a detailed study of non-split

groups of type A. In particular, they solve the congruence

, subgroup problem for many groups SLp(D) and "most" groups

SL (D), n ^ 3, where D is a finite dimensional central

division algebra over a global field.

More recently Bak Ell has announced a more comprehen-

sive solution of the problem for classical groups (other

than DJ.) of rank at least 2. This involves a reduction to

the cases treated in C23, and uses heavily some techniques

of algebraic K-theory. (Cf. his monograph, K-theory of

forms, Ann, of Math. Studies 98 (1981).)

Independently, Prasad and Raghunathan [21] have made

considerable progress on the congruence subgroup problem

and the related "metaplectic" conjecture.

One final remark: It is known that a non-split simple,

simply connected group G of positive K-rank contains a

simply connected split group of the same rank (constructed

by Borel-Tits). It is worth asking whether the respective

congruence kernels can be related directly, since the

latter is known explicitly. Such comparisons with split

or quasi-split subgroups already play a role in the work

of Deodhar and Prasad-Ragunathan.
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