
12 LECTURES ON SET THEORY

3. Axiomatic set theory. Axioms of Zermelo and Fraenkel

The discovery of the antinomies made it clear that a revision of the
principles of set theory was necessary. The attempt to improve set theory
which is best known among mathematicians is the axiomatic theory first set
forth by Zermelo. I shall expose his theory in a somewhat more precise
form, replacing his vague notion "definite Aussage" (= definite statement)
by the notion proposition or prepositional function in the first order predicate
calculus. We assume that we are dealing with a domain D of objects together
with the membership relation e, so that all propositions are built up from
atomic propositions of the form xey by use of the logical connectives &, v, - ,
-^•( and, or, not, if - when) and the quantifiers (x), (Ex) (for all x, for some x).
Then the following axioms are assumed valid. I write them both in logical
symbols and in ordinary language.

1. Axiom of extensionality.
If x and y have just the same elements, then x = y. In symbols

(z)(zex— -zey) — -(x = y)

Here x = y has the usual meaning, so that

where U is an arbitrary predicate. Hence we also have

2. Axiom of the small sets.
a) There exists a set without elements denoted by the symbol 0. Because

of 1. there can be only one such set.

(Ex)(y)(ylx).

b) For every object m in D there exits a set {m} containing m, but only
m, as element,

(x)(Ey)(xey & (z)(zey — (z = x) ) )

c) For all m and n in D there exists a set {m, n} containing m and n, but
only these, as elements.

(x)(y)(Ez)(xez & yez & (u)(uez— *(u =x) v (u = y))) .

Of course b) might be omitted because it follows from c) by putting n =
m.

3. Axiom of separation.
Let C(x) be a prepositional function with x as the only free variable, and m
an arbitrary set. Then there exists a set consisting of all elements x of
m having the property C(x).

(x)(Ey)(z)(zc y— C(z) & zex)
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4. Axiom of the power set.
For every set m there exists a set Um whose elements are just all subsets
of m.

(x) (Ey) (z) (ze y—(u) (ue z -me x))

5. Axiom of the union.
For every set m there exists a set Sm whose elements are just all ele-
ments of the elements of m.

(x)(Ey)(z)(zey-*-^(Eu)(zeu & uex))

6. The axiom of choice.
Let T be a set whose elements are mutually disjoint sets A,B,C,... 4= 0.
Then there exists a set M having just one element in common with each of
the sets A,B,C,...

(x)((y)(z)(yex & zex & y ± z—~(u)(ue~x v uey))—*-(Ev)((w)(wex -*-

(Et)(tev & tew & (s)(sev & sew—s = t)) ).

These are the most general axioms set up by Zermelo (1908). Most of
the general theorems of set theory are proved by the aid of these axioms.
However, in order to ensure the existence of infinite sets Zermelo added:

7. The axiom of infinity.
There exists a set U such that OeU and whenever xeU, {x} is eU as well.

(Ex)(0ex & (y)(yex-^{y} ex) ).

Later Fraenkel introduced a further axiom which is more powerful with
regard to the proof of the existence of large transfinite cardinals, namely the
following.

8. Let the binary relation F(x,y) (= prepositional function of two free vari-
ables x,y and any number of bound variables derived from the membership
relation by the means of the predicate calculus) be such that
(x)(y)(z)(F(x,z) & F(y,z)—*-(y = x)). Then to every set m there exists a
set n such that xen-*—(Ey)(y em & F(x,y)). Or written more completely:

(u)(v)(w)(F(u,w) & F(v,w)—(u = v)) —(x)(Ey)(z)(zey—(Eu)(uex & F(z,u)).

The following development of the Zermelo-Fraenkel set theory is car-
ried out in such a way that it could be formalized in the predicate calculus.
Such a procedure would however be very cumbersome if it were performed in
all details. Therefore I have chosen an exposition that is somewhat more in-
formal and more like the ordinary mathematical procedures.

Theorem 1. (x)(Ey)(yeF x) .

That means that to each set M we may find an object a such that a e M.
Therefore the total domain D is not a set.

Proof: According to the axiom of separation, the xeM for which xex is
true, constitute the diverse elements of a set N. Then Ne M. Otherwise
NeN would imply Ne N and inversely.

Theorem 2. To each M and N there is anM* such that M! ~ M and M' 0
(M UN) = O.
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Proof: Let a be I S(MUN).

The pairs {a,m}, where m runs through M, constitute a set Mf obviously
~ Mbecause the pairs (m, {a,m}) furnish a one-to-one correspondence be-
tween M and Mf. Indeed if {a,mi}4= {a,m2}, then mi =1= m2, and if mi ± m2,
then {a,mi} =f= {a,m2}, because else we must have mi = m2 or mi = a & m2 = a,
whence again mi = m2 . Now MT is disjoint to M U N, because otherwise we
would have an element m of M such that {a,m}eM UN, whence aeS(M UN),
contrary to supposition.

Theorem 3. Let T be a set of sets A,B,C,.... 4 0 Then there exists a set T1

of sets Af,5!,Cf,... together with a one-to-one correspondence between T
and T1 such that the unions ST and ST1 are disjoint while A',131 ,Cf,... are
mutually disjoint and resp. ~ A,B,C,....

Proof: According to the previous theorem a set P exists which is dis-
joint to T U ST, while P ~ T, which means that we have a one-to-one mapping
f(X) = XM such that Xff runs through P when X runs through T. For every
XeT the pairs

tf(X), x},

where x runs through X, constitute a set F(X). The function F has an inverse.
Indeed, as often as Xi 4= X2 , F(Xi) and F(X2 ) will be disjoint, because f (Xx) 4=
f(X2), and if we compare two elements from F(Xi) and F(X2), namely

X l}and (f(X2), x 2 },

we cannot have f(Xi) = x2 , because X2 and P are disjoint. Therefore F and
its inverse Ff give a one-to-one correspondence between T and Tf when Tv is
the set of all F (X) = Xf, X running through T. For every XeT, the pair

{f(X), x} eX'

will correspond uniquely to xeX. If this pair is called gx(x)> then g^ and its
inverse yields a mapping between X and XT. In this way we have obtained a
simultaneous mapping of the elements of X and those of Xf for all X.

Thus the theorem is proved. However we may add the following remark:
The function g is such that if xeX then x1 = g^ (x) is eX' and xex1.

We have: To every xeX the x1 = gx(x) is the element of Xf such that
xex f , and inversely if x reX f is given, the xeX such that gx(x) = xf is the
element of X which is ex f . The simultaneous mapping of the elements x in
the diverse X onto the elements xf of the diverse X1 is therefore here con-
structed so that x e x f when x and xf correspond.

Now according to the axiom of choice there exists a set W having just
one element in common with every set XT. If this element is denoted by
w(XT), being a function of X1 (this function is the set of pairs (X% xf) where
xf = W n XT), then we have

W n X1 = {w(X')}

and g^ (w(X f))eX, i.e. g^ (w(F(X)))eX. Thus we have found a function,

namely g^ wF, of the elements of T which has as its value for each X an

element of X. This is the general principle of choice.
Even without the axiom of choice we can introduce addition and multipli-
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cation of cardinals although only in the case of a finite number of operands.
Indeed if 0 is a set of ordered pairs (a,af) yielding a mapping of a set A onto
a set Af, ^ a similar set furnishing a mapping of B onto Bf, A n B = 0,
Af n Bf = 0, then 0 + i// is a mapping of A + B onto Af + Bf. Therefore we
can just as in the case of the naive set theory define the sum of the cardinals
of two disjoint sets as the cardinal of the sum. Similar remarks are valid
for multiplication.

If we take the more general case, however, of addition, where the num-
ber of cardinal numbers to be added together is infinite; then the definition of
addition is only possible when the axiom of choice is presupposed. If T is a
set of mutually disjoint sets A,B,C,...., Tf a set of disjoint sets Af,B!,Cf...,
while F is a mapping of T onto TT consisting of the pairs (A,Af), (B,Bf),....,
then if A ~ A1, B ~ B1,.... we can prove by the axiom of choice that the union
ST is ~ STf. Indeed according to supposition there is a set 0A of mappings
of A onto Af, a set 0g of mappings of B onto B1,... Then according to the
axiom of choice there exists a set consisting of one element <?& from 0A, ^3
from 0B>--" and the union of these is then a mapping 0 of ST on ST1. With-
out the axiom of choice we can only formulate the following theorem: Let T
and Tf be as mentioned above, and let us assume that a set of mappings is
given consisting of just one mapping of A onto Af, one of B onto Bf, etc., for
all elements X resp. Xf of T resp. Tf; then ST ~ STf.

There is on the other hand one important theorem concerning the com-
parison of cardinals which can be proved without the axiom of choice, namely
the Bernstein Theorem.

Theorem 4. Let M be ~ M1, AT c A^c M. ThenM~Mtl.

Remark: I use for every subset A of M the notation A1 for the image of A by
the same mapping as of M onto Mf.

Proof: We put

Mi = Q + Mf, or in other words Q = MI - Mf.

Let T be the set of subsets A of M which have the properties
1) Q c A 2) A' c A.

T is not empty because at least MeT. Then let A0 be the intersection of all
elements of T. I denote this also by DT. Obviously A0 has still the proper-
ties 1) and 2), i.e., A0eT or

3) Q c Ao 4) A0
f c Ao .

3) and 4) furnish 5) Q U A0
f c A0

whence (Q U A0')f c AO'

whence a fortiori

6) (Q U A0
!)f c Q u Ao' .

From 6) it follows that

Q U Ao1 e T,

whence
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7) Ao C Q U A0
f ,

5) and 7) yield

Ao = Q + A0
f ,

noticing that Q n A i ! = Q n M f = 0. Now we have

Mi = Q + Mf = Q + A!
0 + (Mf - A0

f) = A0 + (Mf - AJ),

whence, A0 being ~ Aof,

Mi ~ A0
f + (Mf - Af

0) = M'

which is the theorem.
An immediate consequence is that if

M ~ Ni c N and N ~ MI c M,

then

M ~N.

Indeed it follows from NI c N and N ~ Ni that Ni ~ M2, where M2 is a certain
subset of MI , so that since M ~ NI

M ~ M2 c MI c M,

whence after the previous theorem

M ~ Mi ~ N.

Corollary: If M ~ Mf c M, m = M, then

m + 1 = m.

It may be remarked that we have not used the axiom of choice in the proof
of this theorem. As an example of another simple theorem of a certain in-
terest, provable as well without the axiom of choice, I will mention Cantor's
theorem and the very simple one below concerning the case m and n = 2.

Theorem 5. (Cantor's theorem). For every set M we have M < UM.

Proof: In the first place the pairs (m,{m}) yield a mapping of M on a
subset of UM, namely the subset consisting of all sets {m} where meM. In
the second, no mapping f of UM into M can exist. Indeed, let us assume the
existence of such^a mapping f and let N be the set of all f(X) for subsets X of
M for which f(X)eX. Then we should have

(X) (X CM-^(f(X) e N-"-f(X)l X).

Putting in particular N into this formula instead of X, we obtain, since N£ M,

f(N)eN-*-f(N)e~N

which is absurd.
Using the cardinal number notation this theorem may be written

2m> m,
because it is seen that the cardinal number of UM must be 2m when m denotes
the cardinal number of M. This is perhaps seen most convincingly in the
following way. Let Mf be ~ M and M H Mf = 0, f being a mapping of M onto
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Mf. We know that such Mf and f exist. For every meM I write f(m) = mf.
Then we can get a one-to-one correspondence between UM and the product of
all the pairs {m,mf}. Let N be CM. Then as often as meM is also eN we
let the corresponding element of the product contain m as element, otherwise
it contains just mf. Since the set of all pairs {m,m f} evidently has the same
cardinal number m as M the product must be of cardinality 2m.

A consequence of this theorem is that a set of sets representing all

cardinals does not exist. Indeed, if T is such a set, then ST = X, X an arbi-

trary element of T, and Cantor's theorem says that UST > ST. Hence UST

> X for all XeT.
It may be suitably mentioned here, that the sum of the cardinals belong-

ing to a set of sets with no greatest cardinal has already a cardinal > all
cardinals in the set.

It is often asserted that the following theorem, also due to Bernstein, can
be proved without the axiom of choice. However, the usual proof, at least,
does not fulfill this requirement, so that I think it is a mistake. The theorem
is, when m and it denote cardinals:

Theorem 6. If m + n = nm, then m and it are comparable.

What is meant is that either m = it or it = m.

Proof: The supposition m + n = mit means that we are given two dis-
joint sets M and N together with a mapping of M + N onto M x N. This
means again that the set of all pairs (m,n), meM, neN, is divided into two
disjoint parts A and B where A is mapped onto M, B onto N. Now, if there
is a particular mf such that all (mf,n), n running through N, are eA, then N
is ~ a subset of A, whence N ~ a subset of M. If no such mf exists, then for
each meM there is at least one n such that (m,n)eB. Then one says, it is
evident that B contains a subset which is ~M, whence M ~ a subset of N.

Theorem 7. Let the cardinals m and it be ^ 2. Then m + it i nut.

Proof: We have two sets M and N with at least two elements and we
can assume M and N disjoint. Let mi =1= m2 be eM, HI ̂  n2eN. Let P be the
set of all {mi, n}, n running through N. Then P is ~ N. Further let Q be the
set of all {m,ni}, m running through M - {mi}, besides the pair {m2,n2}. It
is evident that Q is ~ M. Further P and Q are disjoint. Thus P + Q is a
subset of M • N which is ~ M + N, which proves the theorem.

It is seen that the hypothesis of the theorem can not be weakened. Indeed
if it is only supposed that one of the two cardinals is = 2, the other, say n,
being = 1, the theorem is not valid for finite m.

The theorem can be generalized. Let T be a set of at least 2 elements,
each element of T containing at least two elements, the elements of T being
mutually disjoint. Using the axiom of choice we may assume that we have
chosen two elements of each XeT. Let A,B,C,.... be the elements of T and
let ai, a2,bi,b2,.... be the chosen elements from A,B,C,.... Then the product
PT contains subsets

A! B! Ci

consisting of the elements
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ar,bi, Ci, ai,bs, Ci, ai,bi,ct

r ± 1 s ± 1 t ± 1

and ai,b2, c2, a2,bi,c2, a2,b2, Ci,....

and it is evident that AI~ A, BI ~ B .... This means that PT contains a subset

ST so that ST ^ PT.

Theorem 8. If 0 < m = n, then every set of cardinality n can be divided
into a set T of cardinal m of non-void mutually disjoint subsets.

Proof: Let M c N, M = m, N = n and meM. For each xeM a subset Nx
of N is defined thus: If x =1= m, then NX = {x}, while in the case x = m, Nm =
(N-M) + {m}. It is evident that the NX, x running through M, are all mutually
disjoint and their union (sum) is N.

The inverse of this would be, that if a set N is the union of a set T of non-

void mutually disjoint sets, then T= N. However, without axiom of choice
this can only be proved if T is finite. Indeed, in order to prove this assertion
one has to find a subset of N which is ~ T. This is possible if we can choose
one element a from each element A of T; then the pairs (a,A) yield a map-
ping of T on a subset of N. Otherwise we have no means of proof. On the
other hand we may prove the following theorem. Let N be the sum of mutu-
ally disjoint and non-void sets Nx, xeM, so that to each xeM corresponds
just this single Nx- Then M is ~ a subset of the power set of N, so that

m = M= 2", n = N. To every subset XeM we let correspond the subset NX,
namely the sum of all Nx, x running through X, which is cN. For different
X these corresponding NX are different; therefore 2m = 2". If we had
m = 2", then 2m = m which is not the case, by Cantor's theorem. Thus
m < 2".

Theorem 9. (Zermelo). Let T be mapped on T1 in such a manner that

as often MtT corresponds to M'eT1, M < M*. Then ST < PT.

Proof: We may assume that the elements A,B,C,... of T are =1= 0. Then

F, W ... are all £ 2. By theorem 7 we then know that STf ^ PF'. Further it

is clear that ST i ST"1. Thus ST i FTT and it suffices to prove that PTT can-
not be mapped on a subset S of ST. Let us assume that such a mapping were
possible. The subset S of ST can be written as Ao + B0 + Co + ..., where Ao
is the intersection of S and A,Bo that of S and B,.... The elements of PT
are of the form {af,bf,cf,...}, where af eA f , b feB f,.... Let us take into account
those which correspond to the elements of A0. If af varies, the corresponding
aeA0 varies. Therefore the aT occurring in the elements {a'jb^c*,....} which
are mapped on the elements of Ao can only constitute a proper subset A! of
Af, because else Af would have to be ~ A0 which contradicts the assump-

tion A< A"1. Similarly the bf occurring in the elements {af,bf,cf,...} which
are mapped on the elements of Bo must constitute a proper subset BI of Bf,
and so on. Now PT also contains, according to the axiom of choice, an ele-
ment,
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{ao, b0, c0, ....},

where aoeA'-Ai, b0eB f-Bi, .... However this element cannot correspond to
any element of ST. Indeed it cannot be mapped on an element of A0, for
example, because if it could, ao would have to be one of the elements of AI.

4. The well-ordering theorem

After all this I shall now prove, by use of the choice principle, that every
set can be well-ordered. First I shall give another version of the notion
"well-ordered", different from the usual one.

We may say that a set M is well-ordered, if there is a function R, having
M as domain of the argument values and UM as domain of the function
values, such that if N D 0 is arbitrary and e UM, there is a unique neN
such that NER(n). I have to show that this definition is equivalent to the
ordinary one. If M is well-ordered in the ordinary sense, then every non-
void subset N has a unique first element. Then it is clear that if R(n), neM,
means the set of all xeM such that nix, the other definition is fulfilled by
this R. Let us, on the other hand, assume that we have a function R of the
said kind. Letting N be {a}, one sees that always aeR(a). Let N be {a,b},
a 4= b. Then either a or b is such that NER(a) resp. R(b). If NER(a), then
we put a < b. Since then N is not £ R(b), we have aeR(b). Now let b < c in
the same sense that is, ceR(b), be"R(c). Then it is easy to see that a < c.
Indeed we shall have {a,b,c} E either R(a) or R(b) or R(c), but bFR(c), ae~R(b).
Hence {a,b,c} ER(a) so that {a,c}ER(a), i.e. a < c. Thus the defined rela-
tion < is linear ordering. Now let N be an arbitrary subset of M and n be the
element of N such that NER(n). Then if meN, m =(= n, we have meR(n), which
means that n < m. Therefore the linear ordering is a we 11-ordering.

Theorem 10. Let a function 0 be given such that <!>>(A), for every A such
that OCA EM, denotes an element of A. Then UM possesses a subset
HI such that to every AT EM and D O there is one and only one element
N0of HI such thatN E #o and <t>(N0)eN.

Proof: I write generally Af = A - {0(A)}. I shall consider the sets
P EUM which, like UM, possess the following properties

1) MeP

2) Aep-*A'eP for all A EM

3) T P-*DTeP.

These sets P constitute a subset C of UUM. They are called 9 -chains by
Zermelo. I shall show that the intersection DC of all elements of C is
again a 0 -chain, that is, DC e c. It is seen at once that DC possesses
the properties 1) and 2). Now let TEDC. Then, if PeC, we have TEP, and
since 3) is valid for P, also DTeP. Since this is true for all P, we have
DT e DC as asserted. Thus I have proved that DC e C.


