
Chapter 8

THE SECOND APPROXIMATION THEOREM

1. The two forms of the theorem.

This chapter contains a generalisation of the First Approximation
Theorem which has just been proved. We begin by introducing some notations
that will be used.

If a is any real number, and /3 is any p-adic number, put

I a I* = min(|a|, 1), |/3|* = min(|j8|p, 1),

so that always

Denote by

P1,p2,...,pr; Pr+1»Pr+2»-">Pr+r»; pr+r'+l'pr+rf+2'"'' pr+r'+r"

a fixed system of

r+r'+r", =n say,

distinct primes. It is not excluded that one, two, or all three of the numbers
r, rf , and rlf , are equal to zero.

Let further
£*0, £i+0,..., £ r +0

denote a real algebraic number, a pi-adic algebraic number, etc., a pr-adic
algebraic number, respectively. These algebraic numbers need not satisfy
the same irreducible algebraic equation with rational coefficients, and thus
they may belong to different finite extensions of the rational field.

Next let

F(x), Fi(x),..., Fr(x)

be r+1 polynomials with rational coefficients, which neither vanish at x=0
nor have multiple factors. It is not required that all these polynomials are
distinct, that they are irreducible, or that they are non-constant.

As in previous chapters, let again S ={/cv/, tf(2), «s3),...} be an infinite
sequence of distinct rational numbers

,« = Z^ +0, where P(k) +0, Q(k) *0, (P(k),Q(k)) - 1, H(k)=max(|P(k)|,|Q(k)|).

Finally, put

pj PJ
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and

r r+r* / \ r+r'+r"

j=l * J j=r+l 3 ]=r+rf+l 3

and denote by Id, Ka, and r three positive constants.
The Second Approximation Theorem can now be stated in two different,

but equivalent forms, as follows.

Second Approximation Theorem (I): If for all /r e s,

then T« 2.
Second Approximation Theorem (n): If for all /r 'cS,

*<K(k)) « *HW-T.

ffcew r ^ 2.

For shortness of reference, these two forms of the theorem will be
called the Theorems (2,1) and (2,H), respectively; and we shall similarly call
the two forms of the First Approximation Theorem the Theorems (1,1) and
(l,n), respectively. We shall prove that the two Theorems (2,1) and (2,11)
are equivalent, and that they both imply, and are themselves implied by, the
Theorems (1,1) and (l,n).

2. The Theorem (2,11) implies the Theorem (2,1).

Let S satisfy the hypothesis of Theorem (2,1), and let g, gi,..., gr be
the corresponding real or pj-adic algebraic numbers. Denote by F(x), FI(X),
..., Fr(x) the irreducible monic polynomials which have g, gi,..., gr, respec-
tively, as roots. We begin by showing that there exist positive constants
y> ri>-..,rr such that, for all k,

and

(2): (FjOc(k)) | J < yj U(k)- gj |*j (] = 1,2,...,r).

Consider, for instance, the inequality (1). If E contains no infinite sub-
sequence S such that

(3): lim |ic^k)-g|* = 0,

then the greatest lower bound

M =
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is positive, and it is obvious that for all k,

|F(« (k ))l**rl« (k )-«l* where y - £ » l .

Next assume that S does contain an infinite subsequence £' with the
property (3). Then £ is a zero of F(x), and hence

where G(x) denotes a certain monic polynomial with real coefficients. Denote
by yo > 1 a number such that

|G(x) | < y0 for all real x such that |x-g I < 1 and hence |x |< U 1+ 1.

We have then, for every k.

either U^-4 I > 1 and hence, trivially, |F(/c^) |%y0 k^-{ I* = yo,

or

whence

1 and hence |F(«(k))|<

* min(l,yok(k)-S I) *y0k(k)-« I*,
proving the inequality (1). Each of the inequalities (2) can be proved in ex-
actly the same manner.

From (1) and (2), it follows now that

KaH(k)"T, where Ka = y0y! ... yrKlB

But, by hypothesis,

so that, for all k,

#(K^) « K
The assertion T< 2 of Theorem (2,1) is therefore a consequence of Theorem

3. The Theorem (2,1) implies the Theorem (2,11).

Let S satisfy the hypothesis of Theorem (2,11), We procede in a similar
manner as in § 2; but it now becomes necessary to replace £ by a system of
successive subsequences So, Si,...,Sr.

If the lower bound

L= inf |F(K^)|

is positive, put

and denote by £ an arbitrary real algebraic number distinct from zero. If,



136 . LECTURES ON DIOPHANTINE APPROXIMATIONS

however, L=0, then S contains an Infinite subsequence S' for which

lim |F(«(k)) | = 0.

By Lemma 2 of the last chapter, there exist then an infinite subsequence So
of Sf and hence of S, a real zero $ 4s 0 of F(x), and a constant yd ̂  1, such
that

U(k)-«ky0|F(«(k))! forallK (k)eSo.

It is thus obvious that, in both cases, there also exists a positive constant
yo such that

U(k)-d*<yolF(K
(k))r for all K(k)eSo.

Let us now assume that, for some j=l, 2,..., r, we have already obtained
infinite subsequences So, Si,...,£j_i of S with

S2So2 Si 2 — 2Ej_i,
further real, pi-adic,...,p]_i-adic "zeros"

1*0, £i+0,..., S.-L + 0

of F(x), Fi(x),...,Fj_i(x), respectively, and positive constants y0, yi,..«ir|-i>
such that

fc(k)) Ijj a = 1,2,..., j-i),

for all K €Sj-l- A further sequence Sj is now found by the following con-
struction.

If the lower bound

Lj= inf
K «Sj-l

is positive, put

Sj = Sj_i

and denote by £j an arbitrary pj-adic algebraic number distinct from zero.
If, however, Lj=0, then Sj_i contains an infinite subsequence Sj such that

lim |Fj(K
(k))|p. =0.

J

Therefore, by Lemma 2f of the last chapter, there exist an infinite subsequence
£j of 2] and hence also of Zj-1, further a pj-adic zero Ij of Fj(x), and a
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positive constant r\ > such that

U(k)- Ej lPj «yj lFj(*(k)) IPJ for all /c(k)eSj.

In both cases it is therefore again obvious that there is a positive constant
7j such that

(k) (k) (k)Uk- «, H * yj |F3(K
k) |Jj for all /ckeSj.

By this construction, the elements of the final sequence Sr satisfy the
inequalities

and hence also the inequality

But, by hypothesis, for all k,

and so, for all K 'eSr,

~ , where K i

Hence, on applying Theorem (2,1) to the sequence Sr, we obtain the asser-
tion r^2 of Theorem (2,11).

This concludes the proof that the two forms of the Second Approximation
Theorem are equivalent. The analogous result for the two forms of the First
Approximation Theorem was already proved in the last chapter. It will be
shown in the next sections that also the First and the Second Approximation
Theorems are equivalent. From what has been already obtained, it suffices
to carry out this proof for the first forms of the two theorems.

4. The Theorem (2,1) implies the Theorem (1,1).

Let £, 5", p, or, X, JLI, g, gf, g", S, ci, c2, cs, 04 be defined as in Theorem
(1,1), and let

t)r ner+r!
 ff" - D

er+rf+l r+r+rPr+1 -Pp+ri » g -pr+rf+l -pr+rf+r"

be the factorisations of g, gf, and'g", respectively, into products of integral
powers of distinct primes.

If X<1 and jii < 1, and if we are dealing with the cases d=2 or d=3 of
the theorem, we deduce from the hypothesis that

and hence that all primes pi, P2,...,pn are distinct; here again
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n = r+rf+rff .

For, first, P^ and Q*^ are, for sufficiently large k, divisible by gf and g",

respectively; hence (gf, g f t) = 1 from (P*k\ Q^) = ll Secondly, it was al-
ready found in §1 of last chapter that for X < 1 necessarily (g, gf ) = 1.
Third, if ji < 1, then we have. also (g, g") = 1. For otherwise g and g11 would
have a common prime factor, pi say. Then the hypothesis would imply that

lim |jeW-«ilpl=0, lim |Q(k)lpl=0,
k — » °° k — »°°

where $1 denotes the pi-adic component of S. However, these two limits

contradict one another; for the pi-adic values IK ' |P1 are bounded by the
first limit, but tend to infinity by the second limit.

These remarks no longer hold when X = 1 or y, = 1, and they become
unnecessary in the remaining case when d = 1 because then no g-adic number
E occurs. We shall simply put

r = 0 if d = 1,

and

r1 = 0 for X = 1 and r11 = 0 for p, = 1 if d = 2 or d = 3;

this corresponds to disregarding trivial inequalities.
The proof of Theorem (1,1) procedes now as follows. The g-adic, g'-adic,

and g"-adic pseudo- valuations that occur in the statement of this theorem
allow upper bounds in terms of products of pj-adic valuations. Thus, by
definition,

' logg logg

and hence

ejlogpj

Therefore,

We find in just the same way that

(5): r;n |P
j=r+l

and
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r+r!+r" /. v /. v
(6): H |Q(k)U«|Q(k)|g".

j=r+r'+l Pj -

Here the products

r /. » r+r1 /. v r+r'+r" /. »
n |«w-«, I-., n |P(k)lpj, n |Q<%

j=l * j=r+l J j=r+r'+l J

and the pseudo-valuations

\K
(k)-S\e, |P(k)|g'( (Q(k)|g»

are interpreted as meaning 1 if r=0, r?=0, or r"=0, and hence g=l, g1-!, or
g"=l, respectively.

In the case d=2 the formulation of Theorem (1,1) does not involve any
real algebraic number £ . We may then denote by £ an arbitrary real alge-
braic number not zero and may also use the trivial formula

l*(k)-| |* * 1.

We finally note that, in the cases d=l and d=3.

and in the cases d=2 and d=3,

as soon as k is sufficiently large; for the expressions

|jcW-{|, and UW-Cj|p (j= 1,2,..., r),

respectively, tend to zero as k tends to infinity.
It follows therefore, by (4), (5), (6), and the hypothesis of Theorem (1,1),

that all but finitely many of the elements /c(k) of the infinite sequence £
satisfy the following inequalities:

For d=l: *(K(k)) * clH
(k)^.l.c,H(k)X-1.c4H

(k)'i-1 = KlH
(k>-T

where Ki = cic3C4, T = p-X-/i+2.

For d=2: .Oc«) * iW^-CsH^-1. c4

where KI =c2c3c4, r = a-\-/x+2.

For d=3: ®(K
(k)) * c^-^E^^R-

Where KI= Cic2c3c4, T = p +a-X-/jt+2.

Here, in agreement with the earlier selection of rf , r11, gf, and gM, it is
necessary to put cs=l if A.=l and C4=l if jLt=l.

Theorem (2,1) states in all three cases that

T^ 2.
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Hence
p ^ X + n for d=l; or < A. + jut for d=2; p + a< X + JLI for d=3;

which is the assertion of Theorem (1,1).

5. The integers ej.

In this section and the following ones it will be proved that, conversely,
Theorem (2,1) follows from Theorem (1,1). This proof is a little more dif-
ficult. It is indirect and requires that the sequence be repeatedly replaced by
a suitable infinite subsequence. /,x

Let us assume that all elements K of the infinite sequence £ satisfy
the inequality

but that
T > 2.

Hence r may be written as

T = 2 + 2 6

where € is a positive number; without loss of generality,
0 < e < l .

We may, in addition, assume that

H^ & 2 for all k.

There exists then, for every k, a system of n+1 non-negative real num-
bers

(k). (k) (k). (k) (k) (k) (k)ao , ai ,..., ar

such that

«H<k)-a108Pj - • if j = r+l,r+2,...,r+rf,

if j = r+r'+^r+r'+^.^r+r'+r".

Put

so that
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(k)Since Hv ' tends to infinity with k, and since r~2+2e, it follows that

for all sufficiently large k. On replacing, if necessary, S by an infinite sub-
sequence, it may be assumed that this inequality holds for all k. /. x

By the hypothesis, all n primes PJ are distinct, and all numerators P

and denominators Q are different from zero. It follows then from the basic
inequality for the valuations of a rational integer that

and hence that
r+r? /b-\ t\*\ 1 r+r'+r" /.*

n ipWlp^nW-1, . n |Q(k>|
j=r+l PJ j=r+r!+l

Thus, from the definition of aj,

r+rT /.v r+rf+rM /, v

]=r+l j=r+r?+l

and hence

j=r+l

Next put

Then, for all k,

and

s-2because is an increasing function of s, and 0<e^l. It is, in particular,
s (k)evident from these relations that all a j are bounded,

Q ^ a^ *$ a;

here a is a certain positive constant that does not depend on k.
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Let N be the positive integer

so that

Further put

1 + £ log Pj < V
3=1

Since

0 « e(jp < [a N],

the system of the n+1 non-negative integers

\6o 9 ei ,..., en /

has not more than

possibilities. Hence there exist an infinite subsequence

S' = {/c(il\ K(l2*; K^l3\...} of S, where u < i2 < is <...,
and a system of n+1 non-negative integers

\eo, ei,...,e^J-

which are independent of k, such that

eo = eo, ei K = ei,...,e = en for k=l, 2, 3,... .

Since we may, if necessary, replace L by Sf, there is no loss of generality
in assuming from now on that S1 is identical with S.

This means that, for all k,
fa} (k}

ejw - [Oj
w N] - ej (j=0,l,...,n),

and hence

ej « ajk)N < BJ + 1 (j = 0,1 n).

Thus, first,

e + ? e lo • < faik) + ? a^k)lo V = N </e + 7 e-lo V/1+ 7 lo ^
j=l \ ° j=l J / \° j=l ' / \ j=l /
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whence

n. -| N)< e0 + E ejloSPj * N because 1 + E logPj < ^j~-

Secondly,

and therefore

r n
E

+v
whence

| ajk)logp^N < (<*> + E ejlogpj + (l + £ logpX

6. The numbers g, gf, g f f , p, o,K,n.

Now put again

_
r+1 - r + r .» - r+r '+ l -

where, as before, empty products mean 1. Here we may disregard prime
factors PJ that belong to exponents ej equal to zero.

The inequalities

/; *w v i <M f , ^*N(1 - g )N < e0 + 2j ejloSPj ^ N> eo + L ejlogP] > "H"
j=l 3=1

just proved are equivalent to

(7): (l -^)N < eo + logfeg' g f f ) « N, e0 + logg > ^ > 0.

They imply that at least one of the two numbers

(8): p = —j^-2-, o- = 1^ ,

which evidently are non-negative, must be positive.
By §5, we have

(lf\ (]r\ (lr\ R' 'p« (2-4-eW
fl \ )|e /I \ *•*/ /I \ /« V /OV / /lr^ ** ^lr\ V*''^C/C0 /| '

IK —c | •"• ii = JjL ^ id IN ^ Jti N = H

This result may be strengthened to

(9): U(k)-£l ^H(k)"p i f p > 0 .
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For, by hypothesis, H(k)£ 2 and hence H(k)"p < 1.
Similarly, again by §5, for ] = 1,2,...,r,

_..W.

H
(k> N

«„«

(2-K-)ejlogpj
" - -

Assume, for the moment, that cr> 0, hence that ei,...,er do not all vanish.
We may, simultaneously, renumber the primes pi,...,Pr and their exponents
ei ,..., er. It may thus be assumed that, say,

ej > 0 f or j = 1,2,..., u9 but 6j = 0 f or j = u+1, u+2,...,r.

Here 1 <u<r , and g becomes now the product

Denote by E the g-adic algebraic number

S-— (Si,...,5u)
with only u components; by the hypothesis, none of these components is zero.
Just as in the proof of (9) we find that

(2+€)ejlogpj
k(%lpj*H(k>~ N (J = 1,2,...,U).

Since, by definition,

logg logg

it follows then that

(2-K)lQgg

CIO): U W - f f | g «H W N = H - f f i f < r > 0 .
Next put

(II). x-1 (2+6) lOgg* - (2+6) lOgg"VIA;. A - i - j^. , / X - i - jq.

It was shown in §5 that

r+r1 /. x r+r'+r11 /. x
E a^logp^l, E

j=r+l J j=r+r'+l
Therefore

r+r' r+r' /.» ' r+r'/.» M /.
logg'= E erlogPj*N E « Wpj=-|r E a

j=r+l J J j=r+l J J sW j=r+l 3

/. v
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and similarly

so that

(12): O ^ X ^ l , O ^ j i i ^ l .

In particular, the equation X = 1 holds exactly when gf = 1, and the equation
/i= 1 when g"= 1.

For j = r+1, r+2,...,r+r!,

M M to (2+e)ejlogp1

|p(k)|p. = H(k)-ajk)logPj . H(k)-«jkVk)logPj * H(k)' - £— X
 m

Hence, from

/ logg' logg' \
|p(k)|g =max^|P(k)|p^l^Pr+l ,..., |p<%*r+rUogprH.r^

and from the definition of X, it follows that

(13): ipWlg^H*^1.

For X = 1, hence g' = 1, the proof of this inequality no longer holds; but
the inequality itself remains valid for any integer gf ̂  2 because the gf -adic
value of a rational integer cannot exceed 1.

An analogous proof leads to the inequality

(14): |Qw|g" ^

where, for JLI = 1, gM may again be replaced by any integer ^ 2.

7. The Theorem (1,1) implies the Theorem (2,1).

The proof of the Theorem (2,1) can now easily be concluded. By the
formulae (9), (10), (13), and (14) of § 6, the sequence S has the properties
Ad and B of the last chapter; here

d = 1 if p > 0, a = 0; d = 2 if p = 0, a > 0; d = 3 if p > 0, a > 0.

Now it follows in all three cases, from (7), (8), and (11), that

p + f f ,X^ = (2H-e)^ + 1 °y g t > ) -2>

so that, by 0 < e < 1,

However, by Theorem (1,1),
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p<X + j u i f d = l; cr <X + JLL if d = 2; p + a < X + / j t i f d=3.

The hypothesis that r > 2 leads therefore to a contradiction and is
false. This concludes the proof.


