Chapter 7

THE FIRST APPROXIMATION THEOREM

1. The propertles A_{d}, B, and C.

While the last two chapters depended on purely algebraic ideas, we now introduce real and g-adic algebraic numbers and study their rational approximations with respect to the corresponding absolute value or g-adic value, respectively. Here, as usual,

$$
\mathrm{g}=\mathrm{p}_{1}^{\mathbf{e}_{1}} \ldots \mathrm{p}_{\mathbf{r}}^{\mathbf{e}_{\mathbf{r}}} \geqslant 2
$$

where p_{1}, \ldots, p_{r} are distinct primes, and e_{1}, \ldots, e_{r} are positive integers; the g -adic value $|A|_{\mathrm{g}}$ of $A \rightarrow\left(\alpha_{1}, \ldots, \alpha_{\mathrm{r}}\right)$ is defined by

$$
|A|_{\mathrm{g}}=\max \left(\left|\alpha_{1}\right|_{\mathrm{p}_{\mathrm{l}}}^{\frac{\log \mathrm{g}}{\mathrm{e}_{1} \log \mathrm{p}_{1}}}, \ldots,\left|\alpha_{\mathrm{r}}\right|_{\mathrm{p}_{\mathrm{r}}}^{\frac{\log \mathrm{g}}{\operatorname{lr} \log \mathrm{p}}}\right)
$$

The later occurring g^{\prime}-adic and $g^{\prime \prime}$-adic values $|a| g^{\prime}$ and $|a|_{g^{\prime \prime}}$ are defined analogously.

The letter ξ always denotes a fixed real algebraic number, and the letter Ξ a fixed g-adic algebraic number. Only ξ satisfying

$$
\xi \neq 0
$$

and only $\Xi \longrightarrow\left(\xi_{1}, \ldots, \xi_{r}\right)$ satisfying

$$
\xi_{1} \neq 0, \ldots, \xi_{r} \neq 0
$$

will be considered. We denote by

$$
F(x)=F_{0} x^{f}+F_{1} x^{f-1}+\ldots+F_{f}, \quad \text { where } \quad f \geqslant 1, F_{0} \neq 0, F_{f} \neq 0,
$$

a polynomial of lowest degree with integral coefficients having either ξ, or Ξ, or both ξ and Ξ, as zeros; hence, by Chapter $3, F(x)$ has no multiple factors. As before, we put

$$
c=2 \max \left(\left|F_{0}\right|,\left|F_{1}\right|, \ldots,\left|F_{f}\right|\right), \quad \text { so that } \quad c>1 .
$$

Next we denote by

$$
\Sigma=\left\{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(3)}, \ldots\right\}
$$

a fixed infinite sequence of distinct rational numbers

$$
\kappa^{(k)}=\frac{p^{(k)}}{Q^{(k)}} \neq 0
$$

where $P^{(k)} \neq 0$ and $Q^{(k)} \neq 0$ are integers such that

$$
\left(P^{(k)}, Q^{(k)}\right)=1
$$

We call

$$
\mathbf{H}^{(k)}=\max \left(\left|\mathbf{P}^{(k)}\right|,\left|\mathbf{Q}^{(k)}\right|\right)
$$

the height of $\kappa^{(k)}$. It is obvious that
(1):

$$
\lim _{k \rightarrow \infty} H^{(\mathbf{k})}=\infty
$$

For such sequences Σ we now define three properties A_{d}, B, and C where d is either 1 or 2 or 3.

First, Σ is said to have the property A_{d} if for $d=1$: There exist two positive constants ρ and c_{1} such that
(A_{1}):

$$
\left|\kappa^{(k)}-\xi\right| \leqslant c_{1} H^{(k)-\rho}
$$

for all k ;
for $d=2$: There exist two positive constants σ and c_{2} such that
(A_{2}):

$$
\left|\kappa^{(\mathrm{k})}-\Xi\right|_{\mathrm{g}} \leqslant \mathrm{c}_{2} \mathrm{H}^{(\mathrm{k})-\sigma}
$$

for all k ; and
for $d=3$: There exist four positive constants ρ, σ, c_{1}, and c_{2} such that (A_{3}): $\left|\kappa^{(\mathrm{k})}-\xi\right| \leqslant \mathrm{c}_{1} \mathrm{H}^{(\mathrm{k})-\rho}$ and $\left|\kappa^{(\mathrm{k})}-\Xi\right|_{\mathrm{g}} \leqslant \mathrm{c}_{2} \mathrm{H}^{(\mathrm{k})-\sigma} \quad$ for all k . The property A_{3} includes therefore both properties A_{1} and A_{2}.

If Σ has the property A_{d}, then its elements have for $d=1$ and $d=3$ the real limit ξ, and for $d=2$ and $d=3$ the g-adic limit σ, because $c_{1} H(k)-\rho$ and $\mathrm{c}_{2} \mathrm{H}^{(\mathrm{k})-\sigma}$ tend to zero as k tends to infinity.

Secondly, Σ is said to have the property B if there exist,
(i) two integers $g^{\prime \prime}$ and $g^{\prime \prime}$ satisfying

$$
g^{\prime} \geqslant 2, g^{\prime \prime} \geqslant 2, \quad\left(g^{\prime}, g^{\prime \prime}\right)=1 ;
$$

(ii) two real numbers λ and μ satisfying

$$
0 \leqslant \lambda \leqslant 1, \quad 0 \leqslant \mu \leqslant 1 ; \quad \text { and }
$$

(iii) two positive constants c_{3} and c_{4}, such that
(B): $\quad\left|P^{(k)}\right|_{g^{\prime}} \leqslant c_{3} H^{(k) \lambda-1}$ and $\quad\left|Q^{(k)}\right|_{g^{\prime}} \leqslant c_{4} H^{(k) \mu-1} \quad$ for all k.

The first inequality (B) holds trivially if $\lambda=1$ as we may simply take $c_{3}=1$; and similarly for the second inequality when $\mu=1$.

For later it is important to note that if $\mathrm{d}=2$ or $\mathrm{d}=3$, and if Σ has both properties A_{d} and B, then

$$
\left(\mathrm{g}, \mathrm{~g}^{\prime}\right)=1 \quad \text { if } \quad 0 \leqslant \lambda<1
$$

For $\lim _{k \rightarrow \infty}\left|P^{(k)}\right|_{g^{\prime}}=0$, while $\left(P^{(k)}, Q^{(k)}\right)=1$, hence $\left|Q^{(k)}\right|_{g^{\prime}}=1$, and so also

$$
\lim _{k \rightarrow \infty}\left|\kappa^{(k)}\right|_{g}=0
$$

If now g and g^{\prime} had a common prime factor, p_{1} say, then

$$
\lim _{k \rightarrow \infty}\left|\kappa^{(k)}\right|_{p_{1}}=0 \quad \text { and } \quad \lim _{k \rightarrow \infty}\left|\kappa^{(k)}-\xi_{1}\right|_{p_{1}}=0, \text { hence } \xi_{1}=0
$$

contrary to the hypothesis.
Third, Σ is said to have the property C if there exists a positive constant C_{5} such that

(C):

$$
\left|\kappa^{(k)}\right| \leqslant c_{5} \quad \text { for all } k .
$$

In the two cases $d=1$ and $d=3$ the property C follows from the property A_{d} because

$$
\lim _{k \rightarrow \infty}\left|\kappa^{(k)}\right|=|\xi|
$$

In the remaining case $d=2$ it is, however, independent of A_{d}.
Our first aim in this chapter is to prove the following result.
Main Lemma: If the sequence

$$
\Sigma=\left\{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(3)}, \ldots\right\}
$$

has all three properties $\mathrm{A}_{\mathrm{d}}, \mathrm{B}$, and C , then

$$
\tau \leqslant \lambda+\mu
$$

where
(2):

$$
\tau= \begin{cases}\rho & \text { if } d=1, \\ \sigma & \text { if } d=2, \\ \rho+\sigma & \text { if } d=3 .\end{cases}
$$

The proof of this lemma will be long and involved, and it will be indirect. It will be assumed that
(3):

$$
\tau=\lambda+\mu+4 \epsilon \quad \text { where } \quad \epsilon>0
$$

and from this hypothesis we shall deduce a contradiction.

2. The selection of the parameters.

Since the property A_{d} weakens when the exponents ρ and σ are decreased, we may without loss of generality assume that

$$
\begin{equation*}
0<\epsilon \leqslant \frac{1}{4} \tag{4}
\end{equation*}
$$

For the same reason we are allowed to assume that

$$
\begin{equation*}
c_{1} \geqslant 1, c_{2} \geqslant 1, c_{3} \geqslant 1, c_{4} \geqslant 1, c_{5} \geqslant 1 . \tag{5}
\end{equation*}
$$

Similar to c, c_{1}, \ldots, c_{5} the letters $c_{6}, c_{7}, \ldots, C_{1}, C_{2}, C_{3}, T_{1}, T_{2}$, and T_{3} will be used to denote certain positive constants that depend only on the sequence Σ and the algebraic numbers ξ, Ξ, or ξ and Ξ, respectively; they will, however, be independent of the numbers $\mathrm{m}, \mathrm{s}, \mathrm{t}, \kappa_{1}, \ldots, \kappa_{\mathrm{m}}, \mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}}$
to be defined immediately. The last three constants T_{1}, T_{2}, and T_{3} will not be fixed until the end of the proof.

The parameters are now selected as follows.
First, choose a positive integer m such that

$$
m=\left[2\left(\frac{24 f}{\epsilon}\right)^{2}\right]+1
$$

and in terms of m define the positive number s by
(6):

$$
s=\frac{\epsilon \mathrm{m}}{6} .
$$

Secondly, choose a number t such that
(7):

$$
0<t \leqslant 1, \quad 2^{m+1} t^{2^{-(m-1)}} \leqslant \frac{\epsilon m}{6}
$$

Third, select m distinct elements $\kappa^{\left(i_{1}\right)}, \kappa^{\left(i_{a}\right)}, \ldots, \kappa^{\left(i_{m}\right)}$ of Σ that satisfy certain inequality conditions to be stated at once. To simplify the notation, these elements of Σ are written as

$$
\kappa^{\left(i_{h}\right)}=\kappa_{h}=\frac{P_{h}}{Q_{h}} \quad(h=1,2, \ldots, m)
$$

where the $\mathbf{P}_{\mathbf{h}}$ and \mathbf{Q}_{h} are integers for which

$$
P_{h} \neq 0, Q_{h} \neq 0, \quad\left(P_{h}, Q_{h}\right)=1
$$

Thus κ_{h} has the height

$$
H_{h}=\max \left(\left|\mathbf{P}_{\mathbf{h}}\right|,\left|\mathbf{Q}_{\mathbf{h}}\right|\right) .
$$

The hypothesis of the main lemma imposes, for all suffixes $h=1,2, \ldots, m$, the following inequalities:
$\left(A_{d}\right): \begin{cases}\left|\kappa_{h}-\xi\right| \leqslant c_{1} H_{h}^{-\rho} & \text { if } d=1, \\ \left|\kappa_{h}-\Xi\right|_{g} \leqslant c_{2} H_{h}^{-\sigma} & \text { if } d=2, \\ \left|\kappa_{h^{-}} \xi\right| \leqslant c_{1} H_{h}^{-\rho} \text { and }\left|\kappa_{h}-\Xi\right|_{g} \leqslant c_{2} H_{h}^{-\sigma} & \text { if } d=3 ;\end{cases}$
(B): $\quad\left|P_{h}\right|_{g}^{\prime} \leqslant c_{3} H_{h}^{\lambda-1}$ and $\left|Q_{h}\right| g^{\prime \prime} \leqslant c_{4} H_{h}^{\mu-1} ;$
(C):

$$
\left|\kappa_{h}\right| \leqslant c_{5} .
$$

It is necessary for the proof to add the following conditions:

$$
\begin{equation*}
\left|P_{h}\right| g^{\prime} \leqslant \frac{1}{g^{\prime}} \text { if } 0 \leqslant \lambda<1 \tag{8}
\end{equation*}
$$

$$
(h=1,2, \ldots, m)
$$

(9):

$$
\log H_{h+1} \geqslant \frac{2}{t} \log H_{h}
$$

$$
(h=1,2, \ldots, m-1)
$$

and, depending on the suffix d ,
(10):

$$
H_{1} \geqslant \max \left((20 c)^{\frac{1}{t} m^{2}}, 2^{\frac{1}{t}(m-1) m(2 m+1)}, T_{d}\right)
$$

Since the elements of Σ satisfy the limit formula (1), it is possible to choose $\kappa_{1}, \ldots, \kappa_{m}$ such that all these inequalities are satisfied.

Finally, select m positive integers r_{1}, \ldots, r_{m} such that
(11):

$$
\begin{aligned}
r_{1} & \geqslant \frac{2 \log H_{m}}{\epsilon \log H_{1}}, \\
r_{h} & \geqslant r_{1} \frac{\log H_{1}}{\log H_{h}}>r_{h}-1 \quad(h=2,3, \ldots, m) .
\end{aligned}
$$

Since, by (9) and (10), evidently

$$
2<\mathrm{H}_{1}<\mathrm{H}_{2}<\ldots<\mathrm{H}_{\mathrm{m}}
$$

these formulae imply that

$$
r_{h} \geqslant \frac{2 \log H_{m}}{\epsilon \log H_{h}} \geqslant \frac{2}{\epsilon}, \quad r_{h}-1=r_{h}\left(1-\frac{1}{r_{h}}\right) \geqslant\left(1-\frac{\epsilon}{2}\right) r_{h}>\frac{r_{h}}{1+\epsilon}
$$

because, by (4),

$$
(1+\epsilon)\left(1-\frac{\epsilon}{2}\right)=1+\frac{\epsilon}{2}(1-\epsilon)>1
$$

Hence we find that

$$
\begin{equation*}
r_{1} \log H_{1} \leqslant r_{h} \log H_{h} \leqslant(1+\epsilon) r_{1} \log H_{1} \quad(h=1,2, \ldots, m) . \tag{13}
\end{equation*}
$$

Therefore, for arbitrary non-negative exponents k_{1}, \ldots, k_{m}, it follows that

$$
\begin{equation*}
\mathbf{H}_{H_{1}} \sum_{h=1}^{m} \frac{\mathbf{k}_{h}}{\mathbf{r}_{h}} \leqslant H_{1}^{k_{1}} \ldots H_{m}^{k_{m}} \leqslant H_{1}(1+\epsilon) r_{1} \sum_{h=1}^{m} \frac{k_{h}}{r_{h}} . \tag{14}
\end{equation*}
$$

We also note that, by (9), (11), and (12),
$r_{h} \geqslant \frac{2}{\epsilon}>2, r_{h-1}>\frac{1}{2} r_{h}, \quad \frac{1}{2} r_{h+1} \log H_{h+1}<r_{1} \log H_{1} \leqslant r_{h} \log H_{h}$, hence

$$
\frac{r_{h+1}}{r_{h}}<\frac{2 \log H_{h}}{\log H_{h+1}} \leqslant t
$$

and therefore

$$
r_{h+1}<r_{h} t \quad(h=1,2, \ldots, m-1)
$$

Thus, trivially,
(16):

$$
r_{1}>r_{2}>\ldots>r_{m} \quad \text { and } \quad r_{1}+r_{2}+\ldots+r_{m}<m r_{1}
$$

3. Application of Theorems 1 and 2.

The polynomial $\mathcal{F}(x)$ has no multiple factors. Hence, by Theorem 2, applied to this polynomial and the numbers $m, s, r_{1}, \ldots, r_{m}$, there is a polynomial

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m} x_{1_{1}}^{i_{1}} \ldots x_{m}^{i_{m}} \neq 0
$$

with the following properties.
(17): The coefficients $a_{i_{1}} \ldots i_{m}$ are integers such that

$$
\left|a_{i_{1} \ldots i_{m}}\right| \leqslant 5(4 c)^{r_{1}+\ldots+r_{m}}
$$

and they vanish unless

$$
\frac{1}{2}(m-s)<\sum_{h=1}^{m} \frac{i_{h}}{r_{h}}<\frac{1}{2}(m+s)
$$

(18): The derivative $A_{j_{1}} \ldots j_{m}(x, \ldots, x)$ is divisible by $F(x)$ whenever

$$
0 \leqslant j_{1} \leqslant r_{1}, \ldots, 0 \leqslant j_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{j_{h}}{r_{h}} \leqslant \frac{1}{2}(m-s)
$$

(19): We have the following majorants,

$$
\begin{aligned}
& A_{j_{1} \ldots j_{m}}\left(x_{1}, \ldots, x_{m}\right) \ll 5(8 c)^{r_{1}+\ldots+r_{m}}\left(1+x_{1}\right)^{r_{1}} \ldots\left(1+x_{m}\right)^{r_{m}}, \\
& A_{j_{1} \ldots j_{m}}(x, \ldots, x) \ll 5(8 c)^{r_{1}+\ldots+r_{m}}(1+x)^{r_{1}+\ldots+r_{m}}
\end{aligned}
$$

By (10), (16) and (17), the height of $A\left(x_{1}, \ldots, x_{m}\right)$ does not exceed

$$
5(4 c)^{r_{1}+\ldots+r_{m}} \leqslant 5(4 c)^{m r_{1}} \leqslant(20 c)^{m r_{1}} \leqslant H_{1}^{\frac{1}{m}} r_{1} t
$$

It follows then from the inequalities (10), (12), and (15) that the hypothesis of Theorem 1 is satisfied for the polynomial $A\left(x_{1}, \ldots, x_{m}\right)$ and the numbers m, $\mathrm{s}, \mathrm{t}, \kappa_{1}, \ldots, \kappa_{\mathrm{m}}, \mathbf{r}_{1}, \ldots, \mathrm{r}_{\mathrm{m}}$. But then, by this theorem, there exist suffixes l_{1}, \ldots, l_{m} satisfying the inequalities
(20):

$$
0 \leqslant l_{1} \leqslant r_{1}, \ldots, 0 \leqslant l_{m} \leqslant r_{m}, \sum_{h=1}^{m} \frac{l_{h}}{r_{h}} \leqslant 2^{m+1} t^{-(m-1)}
$$

such that the function value

$$
A_{1_{1}, \ldots 1_{m}}\left(\kappa_{1}, \ldots, \kappa_{m}\right)=A_{1_{1}, \ldots 1_{m}}\left(\frac{P_{1}}{Q_{1}}, \ldots, \frac{P_{m}}{Q_{m}}\right),=A_{(1)} \quad \text { say }
$$

does not vanish,
(21):

$$
A_{(1)} \neq 0 .
$$

This number $A_{(1)}$ is rational and so may be written as a quotient

$$
A_{(1)}=\frac{N(1)}{D_{(1)}}
$$

of two integers $N(1)$ and $D_{(1)}$ satisfying

$$
\mathrm{N}(1) \neq 0, \quad \mathrm{D}_{(1)} \neq 0, \quad\left(\mathrm{~N}(1), \mathrm{D}_{(1)}\right)=1
$$

In the next sections we shall establish upper and lower bounds for $\left|\mathrm{A}_{(1)}\right|$. To express these in a simple form, it is convenient to introduce the following abbreviations,
(22): $\Lambda=\sum_{h=1}^{m} \frac{l_{h}}{r_{h}}, \quad S_{1}=\frac{1}{2}(m-s)-\Lambda, \quad S_{2}=\frac{1}{2}(m+s)-\Lambda, \quad S_{3}=m-\Lambda$.

It is obvious from the formulae (4), (6), (7), and (20), that

$$
\begin{equation*}
0 \leqslant \Lambda \leqslant \frac{\epsilon \mathrm{~m}}{6} \tag{23}
\end{equation*}
$$

(24): $\quad S_{1} \geqslant \frac{1}{4}(2-\epsilon) m \geqslant \frac{7}{16} m, \quad S_{2} \geqslant \frac{1}{12}(6-\epsilon) m \geqslant \frac{23}{48} m, \quad S_{s} \geqslant \frac{1}{6}(6-\epsilon) m \geqslant \frac{23}{24} m$.
4. Upper bounds for $|\mathrm{A}(1)|$.

For real $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$ and arbitrary suffixes $\mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{m}}$ it follows from (16) and (19) that

$$
\begin{aligned}
\left|A_{j_{1} \ldots j_{m}}\left(x_{1}, \ldots, x_{m}\right)\right| & \leqslant 5(8 c)^{r_{1}+\ldots+r_{m}}\left(1+\left|x_{1}\right|\right)^{r_{1}} \ldots\left(1+\left|x_{m}\right|\right)^{r_{m}} \leqslant \\
& \leqslant(40 c)^{m r_{1}}\left\{\left(1+\left|x_{1}\right|\right) \ldots\left(1+\left|x_{m}\right|\right)\right\}^{r_{1}}
\end{aligned}
$$

We apply now the property C of Σ. This property implies, first, that

$$
\begin{equation*}
\left|A_{(1)}\right| \leqslant c_{B}^{m r_{1}} \tag{25}
\end{equation*}
$$

where, for shortness,

$$
c_{8}=40 c\left(1+c_{5}\right)
$$

For

$$
-\left(1+\left|\kappa_{1}\right|\right) \ldots\left(1+\left|\kappa_{m}\right|\right) \leqslant\left(1+c_{5}\right)^{m} .
$$

Secondly, let $d=1$ or $d=3$. Then, again by property C,

$$
|\xi|=\lim _{k \rightarrow \infty}\left|\kappa^{(k)}\right| \leqslant c_{5}
$$

and hence

$$
\begin{equation*}
\left|A_{j_{1}, \ldots j_{m}}(\xi, \ldots, \xi)\right| \leqslant c_{6}^{m r_{1}} \quad \text { for all suffixes } j_{1}, \ldots, j_{m} \tag{26}
\end{equation*}
$$

The inequality (25) is, of course, valid for all three values of d, but will be used only for $d=2$. A much stronger upper bound for $\left|A_{(1)}\right|$ can be proved in the other two cases $d=1$ and $d=3$, using (26).

From Taylor's formula we obtain the identity

$$
A\left(x_{1}, \ldots, x_{m}\right)=\sum_{j_{1}=0}^{r_{1}} \ldots \sum_{j_{m}=0}^{r_{m}} A_{j_{1} \ldots j_{m}}(x, \ldots, x)\left(x_{1}-x\right)^{j_{1}} \ldots\left(x_{m}-x\right)^{j_{m}}
$$

and on repeated differentiation,
(27):

$$
\begin{aligned}
& A_{1_{1}, \ldots 1_{m}}\left(x_{1}, \ldots, x_{m}\right)= \\
& \quad=\sum_{j_{1}=0}^{r_{1}} \ldots \sum_{j_{m}=0}^{r_{m}} A_{j_{1}} \ldots j_{m}(x, \ldots, x)\binom{j_{1}}{l_{1}} \ldots\binom{j_{m}}{l_{m}}\left(x_{1}-x\right)^{j_{1}-l_{1}} \ldots\left(x_{m}-x\right)^{j_{m}-l_{m}} .
\end{aligned}
$$

By putting

$$
\mathrm{x}_{1}=\kappa_{1}, \ldots, \mathrm{x}_{\mathrm{m}}=\kappa_{\mathrm{m}}, \mathbf{x}=\xi,
$$

we find that
(28): $A_{(1)}=\sum_{j_{1}=0}^{\mathbf{r}_{1}} \ldots \sum_{j_{m}=0}^{\mathbf{r}_{m}} A_{j_{1}} \ldots j_{m}(\xi, \ldots, \xi)\binom{j_{1}}{l_{1}} \ldots\binom{j_{m}}{l_{m}}\left(\kappa_{1}-\xi\right)^{j_{1}-1_{1}} \ldots\left(\kappa_{m}-\xi\right)^{j_{m}-1_{m}}$.

In this equation,

$$
\binom{\mathrm{j}_{\mathrm{h}}}{\mathrm{l}_{\mathrm{h}}}=0 \text { if } \mathrm{j}_{\mathrm{h}}<\mathrm{l}_{\mathrm{h}},
$$

while, by (18),

$$
A_{j_{1} \ldots j_{m}}(\xi, \ldots, \xi)=0 \quad \text { if } \sum_{h=1}^{m} \frac{j_{h}}{r_{h}} \leqslant \frac{1}{2}(m-s)
$$

It follows that it suffices to extend the summation in (28) only over those systems of suffixes $(\mathrm{j})=\left(\mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{m}}\right)$ that belong to the set

$$
J: 0 \leqslant j_{1}-l_{1} \leqslant r_{1}-l_{1}, \ldots, 0 \leqslant j_{m}-l_{m} \leqslant r_{m}-1 m, \sum_{h=1}^{m} \frac{j_{h}-l_{h}}{r_{h}}>s_{1} .
$$

It is then evident that

$$
\begin{equation*}
\left|A_{(1)}\right| \leqslant A^{*} A^{* *} \tag{29}
\end{equation*}
$$

where, for shortness,

$$
A^{*}=\sum_{j_{1}=0}^{r_{1}} \ldots \sum_{j_{m}=0}^{r_{m}}\left|A_{j_{1} \ldots j_{m}}(\xi, \ldots, \xi)\right|\binom{j_{1}}{l_{1}} \ldots\binom{j_{m}}{l_{m}}
$$

and

$$
A^{* *}=\max _{(\mathrm{j}) \epsilon \mathrm{J}}\left|\kappa_{1}-\xi\right|^{j_{1}-l_{1}} \ldots\left|\kappa_{\mathrm{m}-\xi}\right|^{\mathrm{j}_{\mathrm{m}}-\mathrm{l}_{\mathrm{m}}}
$$

In the first expression,

$$
0<\binom{j_{h}}{l_{h}} \leqslant \sum_{l=0}^{j_{h}}\binom{j_{h}}{1}=2^{j_{h}},
$$

so that by (16) and (26),

$$
\begin{aligned}
A^{*} & \leqslant \sum_{j_{1}=0}^{r_{1}} \ldots \sum_{j_{m}=0}^{r_{m}} c_{8}^{m r_{1}} \cdot 2^{j_{1}+\ldots+j_{m}}=c_{6}^{m r_{1}}\left(2^{r_{1}+1}-1\right) \ldots\left(2^{r_{m}+1}-1\right)< \\
& <c_{8}^{m r_{1}} \cdot 2^{2 r_{1}} \ldots 2^{2 r_{m}} \leqslant\left(4 c_{6}\right)^{m r_{1}}
\end{aligned}
$$

For the second expression we apply the property
(A_{1}):

$$
\left|\kappa_{h}-\xi\right| \leqslant c_{1} H_{h}^{-\rho} \quad(h=1,2, \ldots, m)
$$

which holds also for $d=3$; here, by (5), $c_{1} \geqslant 1$. Hence

$$
A^{* *} \leqslant \max _{(j) \epsilon J} c_{1}^{\left(j_{1}-l_{1}\right)+\ldots+\left(j_{m}-l_{m}\right)} . \max _{(j) \epsilon J}\left(H_{1}^{j_{1}-l_{1}} \ldots H_{m}^{j_{m}-l_{m}}\right)^{-\rho}
$$

where

$$
\max _{(j) \in J} c_{1}^{\left(j_{1}-l_{1}\right)+\ldots+\left(j m^{-1} m\right)} \leqslant c_{1}^{r_{1}+\ldots+r_{m}} \leqslant c_{1}^{m r_{1}}
$$

Further, by the left-hand side of (14) and the definition of J,

$$
\max _{(j) \in J}\left(H_{1}^{j_{1}-l_{1}} \cdots H_{m}^{j_{m}-l_{m}}\right)^{-\rho} \leqslant \max _{(j) \in J} H_{1}^{-\rho r_{1}} \sum_{h=1}^{m} \frac{j_{h-1} l_{h}}{r_{h}} \leqslant H_{1}^{-\rho S_{1} r_{1}}
$$

so that

$$
A^{* *} \leqslant c_{1}^{m r_{1}} H_{1}^{-\rho S_{1} r_{1}}
$$

We finally put

$$
c_{7}=4 c_{1} c_{6}
$$

and substitute the upper bounds for A^{*} and $A^{* *}$ in (29). We so find that

$$
\begin{equation*}
\left|A_{(1)}\right| \leqslant c_{7}^{m r_{1}} H_{1}^{-\rho S_{1} r_{1}} \quad \text { for } d=1 \text { and } d=3 \tag{30}
\end{equation*}
$$

Here, by (24), the exponent of H_{1} is negative; hence this upper bound is smaller than that given by (25). However, no explicit use of this fact will be made.
5. An upper bound for $|\mathrm{A}(1)| \mathrm{g}$.

In the two cases $d=2$ and $d=3$ there exists an upper bound for $\left|A_{(1)}\right|_{g}$ 'very similar to that for $|\mathbf{A}(1)|$ which has just been proved.

In both cases the sequence Σ has the g-adic limit Ξ, and so

$$
\lim _{k \rightarrow \infty}\left|\kappa^{(k)}\right|_{g}=|\Xi|_{g}
$$

There exists then a constant $c_{8} \geqslant 1$ depending only on Σ such that

$$
\left|\kappa^{(k)}\right|_{g} \leqslant c_{s} \quad \text { for all } k,
$$

and therefore also

$$
|\Xi|_{g} \leqslant c_{8}
$$

This time we substitute the values

$$
\mathrm{x}_{1}=\kappa_{1}, \ldots, \mathrm{x}_{\mathrm{m}}=\kappa_{\mathrm{m}}, \mathrm{x}=\Xi
$$

in the identity (27), so obtaining the equation
(31): $A(1)=\sum_{j_{1}=0}^{r_{1}} \ldots \sum_{j_{m}=0}^{r_{m}} A_{j_{1} \ldots j_{m}}(\Xi, \ldots, \Xi)\binom{j_{1}}{l_{1}} \ldots\binom{j_{m}}{l_{m}}\left(\kappa_{1}-\Xi\right)^{j_{1}-l_{1}} \ldots\left(\kappa_{m}-\Xi\right)^{j_{m}-l_{m}}$.

Here, just as in (28), it suffices to extend the summation only over all systems of suffices $(\mathrm{j})=\left(\mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{m}}\right)$ in J .

The binomial coefficients in (31) are integers, hence their g-adic values are not greater than 1. It follows then from the non-Archimedean property of the g-adic pseudo-valuation that

$$
\begin{equation*}
\left|\mathrm{A}_{(\mathrm{l})}\right|_{\mathrm{g}} \leqslant \mathrm{~B}^{*} \mathrm{~B}^{* *} \tag{32}
\end{equation*}
$$

where, for shortness,

$$
B^{*}=\max _{(j) \in J}\left|A_{j_{1}} \ldots \mathrm{j}_{\mathrm{m}}(\Xi, \ldots, \Xi)\right|_{\mathbf{g}}
$$

and

$$
B^{* *}=\max _{(j) \epsilon J}\left|\kappa_{1}-\Xi\right|_{g}^{j_{1}-1_{1}} \ldots\left|\kappa_{m}-\Xi\right|_{g}^{j_{m}-1_{m}}
$$

The polynomials $A_{j_{1}} \ldots j_{m}(x, \ldots, x)$ have integral coefficients and are at most of degree $r_{1}+\ldots+r_{m} \leqslant m r_{1}$; therefore

$$
\left|A_{j_{1}, \ldots j_{m}}(\Xi, \ldots, \Xi)\right|_{g} \leqslant c_{B}^{m r_{1}}
$$

and hence also

$$
\mathrm{B}^{*} \leqslant \mathrm{c}_{8}^{\mathrm{mr}} \mathrm{r}_{1}
$$

Next, for the second factor, we apply the property
$\left(A_{2}\right):$

$$
\left|\kappa_{h}-\Xi\right|_{g} \leqslant c_{2} H_{h}^{-\sigma} \quad(h=1,2, \ldots, m)
$$

which holds also for $d=3$; here again, by (5), $c_{2} \geqslant 1$. It follows that

$$
B^{* *} \leqslant \max _{(j) \in J} c_{2}^{\left(j_{1}-l_{1}\right)+\ldots+\left(j_{m}-l_{m}\right)} \cdot \max _{(j) \in J}\left(H_{1}^{j_{1}-l_{1}} \ldots H_{m}^{j_{m}-1} m\right)^{-\sigma}
$$

Here

$$
\max _{(\mathrm{j}) \in J} \mathrm{c}_{2}^{\left(j_{1}-1_{1}\right)+\ldots+\left(j_{m}-1_{m}\right)} \leqslant c_{2}^{r_{1}+\ldots+r_{m}} \leqslant c_{2}^{m r_{1}}
$$

while, by the left-hand side of (14) and the definition of J,

$$
\max _{(\mathrm{j}) \in J}\left(\mathrm{H}_{1}^{j_{1}-1_{1}} \ldots H_{m}^{j_{m}-l_{m}}\right)^{-\sigma} \leqslant \max _{(\mathrm{j}) \in J} H_{1}^{-\sigma r_{1}} \sum_{h=1}^{m} \frac{j_{h}-l_{h}}{r_{h}} \leqslant H_{1}^{-\sigma S_{1} r_{1}} .
$$

Hence

$$
B^{* *} \leqslant c_{2}^{m r_{1}} H_{1}^{-\sigma S_{1} r_{1}}
$$

Put

$$
c_{\theta}=c_{2} C_{8}
$$

and substitute the upper bounds for B^{*} and $\mathrm{B}^{* *}$ in (32). We so find that

$$
\begin{equation*}
|A(1)|_{g} \leqslant c_{g}^{m r_{1}} H_{1}^{-\sigma S_{1} r_{1}} \quad \text { for } d=2 \text { and } d=3 \tag{33}
\end{equation*}
$$

6. An upper bound for $\left|D_{(1)}\right|$.

In this and the next sections we shall establish an upper bound for $\left|D_{(1)}\right|$ and a lower bound for $\left|N_{(1)}\right|$; by combining these, a lower bound for $\left|A_{(1)}\right|$ will be obtained.

From the definition of $A\left(x_{1}, \ldots, x_{m}\right)$,

$$
A_{1_{1}} \ldots l_{m}\left(x_{1}, \ldots, x_{m}\right)=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m}\binom{i_{1}}{l_{1}} \ldots\binom{i_{m}}{l_{m}} x_{1}^{i_{1}-1_{1}} \ldots x_{m}^{i_{m}-l_{m}}
$$

so that, in particular,
(34): $A(1)=\frac{N(1)}{D_{(1)}}=\sum_{i_{1}=0}^{r_{1}} \ldots \sum_{i_{m}=0}^{r_{m}} a_{i_{1}} \ldots i_{m}\binom{i_{1}}{l_{1}} \ldots\binom{i_{m}}{l_{m}}\left(\frac{P_{1}}{Q_{1}}\right)^{i_{1}-l_{1}} \ldots\left(\frac{P_{m}}{Q_{m}}\right)^{i_{m}-l_{m}}$.

In this equation,

$$
\binom{i_{h}}{l_{h}}=0 \text { if } i_{h}<l_{h}
$$

while, by (17),

$$
a_{i_{1}} \ldots i_{m}=0 \quad \text { unless } \quad \frac{1}{2}(m-s)<\sum_{h=1}^{m} \frac{i_{h}}{r_{h}}<\frac{1}{2}(m+s) .
$$

It follows then that the summation in (34) need be extended only over those systems of suffixes $(i)=\left(i_{1}, \ldots, i_{m}\right)$ that belong to the set

I: $0 \leqslant i_{1}-l_{1} \leqslant r_{1}-l_{1}, \ldots, 0 \leqslant i_{m}-l_{m} \leqslant r_{m-1}, S_{1}<\sum_{h=1}^{m} \frac{i_{h}-l_{h}}{r_{h}}<S_{2}$.
Each single term in (34) has a denominator

$$
Q_{1}^{i_{1}-l_{1}} \ldots Q_{m}^{i_{m}-l_{m}}
$$

Therefore the least common denominator $D_{(1)}$ satisfies the inequality

$$
|D(1)| \leqslant \underset{(i) \in I}{\operatorname{lcm}} Q_{1}^{i_{1}-l_{1}} \ldots Q_{m}^{i_{m}-l_{m}},=D \quad \text { say }
$$

where the symbol " 1 cm " stands for the least common multiple.
We apply now the second half

$$
\left|Q_{h}\right|_{g^{\prime}} \leqslant c_{4} H_{h}^{\mu-1} \quad(h=1,2, \ldots, m)
$$

of the property B. By this property, Q_{h} is divisible by an integral power of $g^{\prime \prime}$ that is easily proved to be not smaller than

$$
\left(c_{4} g^{\prime \prime} H_{h}^{\mu-1}\right)^{-1}
$$

but may be larger. For each suffix $h=1,2, \ldots, m$ it is then certainly possible to find a factorisation

$$
\mathbf{Q}_{\mathbf{h}}=\mathbf{Q}_{\mathbf{h}}^{*} \mathbf{Q}_{\mathbf{h}}^{* *}
$$

of Q_{h} where Q_{h}^{*} is that integral power of $g^{\prime \prime}$ which is defined by the inequalities

$$
\begin{equation*}
\frac{1}{c_{4} g^{\prime \prime}} H_{h}^{1-\mu} \leqslant Q_{h}^{*}<\frac{1}{c_{4}} H_{h}^{1-\mu} \leqslant c_{10} H_{h}^{1-\mu} \tag{35}
\end{equation*}
$$

and where we have put

$$
c_{10}=\max \left(1, \frac{1}{c_{4}}\right) .
$$

The complementary factor $Q_{h}^{* *}$ then satisfies the inequality

$$
\begin{equation*}
\left|Q_{h}^{* *}\right|=\left|Q_{h}\right| Q_{h}^{*-1} \leqslant H_{h}\left(\frac{1}{c_{4} g^{\prime \prime}} H_{h}^{1-\mu}\right)^{-1}=c_{4} g^{\prime \prime} H_{h}^{\mu} \tag{36}
\end{equation*}
$$

From the factorisations of the $\mathbf{Q}_{\mathbf{h}}$ it is obvious that
(37):

$$
\mathrm{D} \leqslant \mathrm{D} * \mathrm{D}^{* *}
$$

where

$$
D^{*}=\operatorname{lcm}_{(\mathrm{i}) \in \mathrm{I}} \mathrm{Q}_{1}^{* \mathrm{i}_{1}-\mathrm{l}_{1}} \ldots \mathrm{Q}_{\mathrm{m}}^{* \mathrm{I}_{\mathrm{m}}^{-1} \mathrm{l}}
$$

and

$$
D^{* *}=\operatorname{lcm}_{(\mathrm{i}) \in \mathrm{I}} \mathrm{Q}_{\mathrm{I}}^{* * \mathrm{i}_{1}-\mathrm{l}_{\mathbf{1}}} \ldots \mathrm{Q}_{\mathrm{m}}^{* * \mathrm{i}_{\mathrm{m}}-\mathrm{l}_{\mathrm{m}}}
$$

The first factor D^{*} is the least common multiple of certain integral powers of $\mathrm{g}^{\prime \prime}$ and hence is equal to their maximum,

$$
D^{*}=\max _{(\mathrm{i}) \mathrm{EI}} \mathrm{Q}_{1}^{* \mathrm{il}_{\mathrm{I}}-\mathrm{l}_{\mathbf{1}}} \ldots \mathrm{Q}_{\mathrm{m}}^{* \mathrm{i}_{\mathrm{m}}-1 \mathrm{l}}
$$

Ther efore, from (35),

$$
D^{*} \leqslant \max _{(i) \in I} c_{10}^{\left(i_{1}-l_{1}\right)+\ldots+\left(i_{m}-l_{m}\right)} \cdot \max _{(i) \in I}\left(H_{1}^{i_{1}-l_{1}} \ldots H_{m}^{i_{m}-l_{m}}\right)^{1-\mu}
$$

Here $\mathrm{c}_{10} \geqslant 1$ so that

Further, by the definition of I and by the right-hand side of (14),

Hence

$$
D^{*} \leqslant \mathrm{c}_{10}^{m r_{1}} H_{1}^{(1-\mu)(1+\epsilon) S_{2} r_{1}}
$$

For the second factor $\mathrm{D}^{* *}$ we use the trivial estimate

$$
D^{* *} \leqslant\left|Q_{1}^{* * r_{1}-l_{1}} \ldots Q_{m}^{* * r_{m}-l_{m}}\right| \leqslant\left(c_{4} g^{\prime \prime} H_{1}^{\mu}\right)^{r_{1}-l_{1}} \ldots\left(c_{4} g^{\prime \prime} H_{m}^{\mu}\right)^{r_{m}-l_{m}}
$$

Here $\mathrm{c}_{4} \mathrm{~g}^{\prime \prime} \geqslant 1$ and hence

$$
\left(c_{4} g^{\prime \prime}\right)^{\left(r_{1}-l_{1}\right)+\ldots+\left(r_{m}-l_{m}\right)} \leqslant\left(c_{4} g^{\prime \prime}\right)^{r_{1}+\ldots+r_{m}} \leqslant\left(c_{4} g^{\prime \prime}\right)^{m r_{1}}
$$

Further, again by the definition of I and by the right-hand side of (14),

$$
\left(H_{1}^{r_{1}-l_{1}} \ldots H_{m}^{r_{m}-l_{m}}\right)^{\mu} \leqslant H_{1}^{\mu(1+c) r_{1}} \sum_{h=1}^{m} \frac{r_{h}-l_{h}}{r_{h}}=H_{l}^{\mu(1+\epsilon) S_{3} r_{1}} .
$$

Thus it follows that

$$
D^{* *} \leqslant\left(c_{4} g^{\prime \prime}\right)^{m r_{1}} H_{1}^{\mu(1+\epsilon) S_{3} r_{1}}
$$

Finally put

$$
c_{11}=c_{4} g^{\prime \prime} \cdot c_{10}
$$

and substitute in (37) the upper bounds for D^{*} and $D^{* *}$ just obtained. Since $\left|D_{(1)}\right| \leqslant D$, we so find the inequality

$$
\begin{equation*}
\left|D_{(1)}\right| \leqslant c_{11}^{m r_{1}} H_{1}^{(1-\mu)(1+\epsilon) S_{2} r_{1}+\mu(1+\epsilon) S_{3} r_{1} .} \tag{38}
\end{equation*}
$$

7. Lower bounds for $\left|\mathbf{N}_{(1)}\right|$.

We again apply the equation (34) of the last section; by means of it, we shall determine integral powers N^{*} of g^{\prime} and $N^{* *}$ of g that are divisors of $\mathrm{N}(1)$.

These two powers are relatively prime, so that their product likewise divides $\mathrm{N}_{(1)}$. However, in certain cases it becomes necessary to take N^{*} or $\mathbf{N}^{* *}$ equal to 1 , and it may even be convenient to allow lower estimates for these numbers that are smaller than 1.

Assume for the moment that

$$
0 \leqslant \lambda<1 .
$$

Then, by the hypothesis (8), all numerators P_{h} are divisible by g^{\prime}, and hence all denominators Q_{h} are prime to g^{\prime}. The first half

$$
\left|P_{h}\right|_{g^{\prime}} \leqslant c_{3} H_{h}^{\lambda-1} \quad(h=1,2, \ldots, m)
$$

of the property \mathbf{B} implies that $\mathbf{P}_{\mathbf{h}}$ is divisible by an integral power of $\mathbf{g}^{\prime}, \mathrm{P}_{\mathbf{h}}^{*}$ say, which is easily seen to satisfy the inequality

$$
\begin{equation*}
P_{h}^{*} \geqslant\left(c_{3} g^{\prime} H_{h}^{\lambda-1}\right)^{-1} ; \tag{39}
\end{equation*}
$$

here $c_{3} \mathrm{~g}^{\prime} \geqslant 1$. On the other hand, the denominators

$$
Q_{1}^{i_{1}-l_{1}} \ldots Q_{m}^{i_{m}-l_{m}}
$$

of the terms of $\mathbf{A}(1)$ and hence also their least common denominator $D_{(1)}$ is relatively prime to g^{\prime}. It follows that the numerator $N_{(1)}$ of $A_{(1)}$ is divisible by that power N^{*} of g^{\prime} which is defined by

$$
\mathrm{N}^{*}=\underset{(\mathrm{i}) \in \mathrm{I}}{\operatorname{gcd}} \mathrm{P}_{1}^{* \mathrm{i}_{1}-\mathrm{l}_{1}} \ldots \mathrm{P}_{\mathrm{m}}^{* \mathrm{i}_{\mathrm{m}}-\mathrm{l}_{\mathrm{m}}} ;
$$

here the symbol "gcd" denotes the greatest common divisor. All products

$$
P_{1}^{* i_{1}-l_{1}} \ldots P_{m}^{* i_{m}-l_{m}}
$$

are, however, integral powers of g^{\prime}. Their greatest common divisor is then equal to their minimum,

$$
N^{*}=\min _{(i) \in \mathrm{I}} \dot{P}_{1}^{* \mathrm{i}_{1}-\mathrm{l}_{1}} \ldots \mathrm{P}_{\mathrm{m}}^{* \mathrm{i}_{\mathrm{m}}-\mathrm{l}_{\mathrm{m}}}
$$

It follows therefore from (39) that

$$
N^{*} \geqslant \min _{(i) \in I}\left(\frac{1}{c_{3} g^{\prime}}\right)^{\left(i_{1}-l_{1}\right)+\ldots+\left(i_{m}-l_{m}\right)} \cdot \min _{(i) \in I}\left(H_{1}^{i_{1}-1_{1}} \ldots H_{m}^{i_{m}-1_{m}}\right)^{1-\lambda} .
$$

Here

$$
\min _{(i) \in I}\left(\frac{1}{c_{s} g^{\prime}}\right)^{\left(i_{1}-l_{1}\right)+\ldots+\left(i_{m}-l_{m}\right)} \geqslant\left(\frac{1}{c_{s} g^{\prime}}\right)^{r_{1}+\ldots+r_{m}} \geqslant\left(\frac{1}{c_{s} g^{\prime}}\right)^{m r_{1}} .
$$

Further, by the left-hand side of (14) and by the definition of I,

$$
\min _{(i) \in I}\left(H_{1}^{i_{1}-l_{1}} \ldots H_{m}^{i_{m}-l_{m}}\right)^{1-\lambda} \geqslant \min _{(i) \in I} H_{1}^{(1-\lambda) r_{1}} \sum_{h=1}^{m} \frac{i_{h}-l_{h}}{r_{h}} \geqslant H_{l}^{(1-\lambda) S_{1} r_{1}}
$$

Therefore, finally,
(40):

$$
\mathrm{N}^{*} \geqslant\left(\frac{1}{c_{3} \mathrm{~g}^{\prime}}\right)^{\mathrm{m} \mathrm{r}_{1}} \mathrm{H}_{1}^{(1-\lambda) \mathrm{S}_{1} \mathrm{r}_{1}}
$$

In the case $\lambda=1$ so far excluded the right-hand side of this inequality does not exceed 1; hence (40) remains valid without the restriction on λ.

We put
(41):

$$
N^{* *}=1 \quad \text { if } d=1
$$

Next let $d=2$ or $d=3$. Then $|A(1)| g$ possesses the upper bound (33). This upper bound implies that $N_{(1)}$ is divisible by an integral power of $g, N^{* *}$ say, which satisfies the inequality

$$
\begin{equation*}
N^{* *} \geqslant\left(g \cdot c_{9}^{m r_{1}} H_{1}^{-\sigma S_{1} r_{1}}\right)^{-1} \geqslant\left(\frac{1}{c_{9} g}\right)^{m r_{1}} H_{1}^{\sigma S_{1} r_{1}} \text { if } d=2 \text { or } d=3 . \tag{42}
\end{equation*}
$$

First assume again that

$$
0 \leqslant \lambda<1
$$

As was shown in 81, g and $g^{\prime \prime}$ are in this case relatively prime, and so the same is true for their powers $\mathrm{N}^{* *}$ and N^{*}. Hence $\mathrm{N}^{*} \mathrm{~N}^{* *}$ is a divisor of $\mathrm{N}(\mathrm{l})$, whence

$$
\left|N_{(1)}\right| \geqslant N^{*} N^{* *} .
$$

This inequality still remains valid for $\lambda=1$ provided N^{*} is then replaced by its lower bound from (40).

Therefore, depending on the value of d, a lower bound for $\left|N_{(1)}\right|$ is given by the products of either the right-hand sides of (40) and (41), or the righthand sides of (40) and (42). Hence, on introducing the new constant

$$
c_{12}=c_{3} g_{9} g g^{\prime}
$$

we arrive at the following lower estimates,

$$
\left|N_{(1)}\right| \geqslant \begin{cases}\left(c_{3} g^{\prime}\right)^{-m r_{1}} H_{1}^{(1-\lambda) S_{1} r_{1}} & \text { for } d=1, \tag{43}\\ c_{12}^{-m r_{1}} H_{1}^{(1-\lambda+\sigma)} S_{1} r_{1} & \text { for } d=2 \text { or } d=3 .\end{cases}
$$

8. Conclusion of the proof of the Main Lemma.

Put

$$
c_{13}=c_{3} c_{11} g^{\prime}, \quad c_{14}=c_{11} c_{13}
$$

and

$$
C_{1}=c_{7} c_{19}, \quad C_{2}=c_{6} c_{14}, \quad C_{3}=c_{7} c_{14}
$$

The two inequalities (38) for $\left|\mathrm{D}_{(1)}\right|$ and (43) for $\left|\mathrm{N}_{(1)}\right|$ immediately lead to a lower bound for

$$
\left|A_{(1)}\right|=\frac{\left|N_{(1)}\right|}{\left|D_{(1)}\right|}
$$

which, naturally, depends on d. The result is as follows:

$$
\left|A_{(1)}\right| \geqslant \begin{cases}c_{13}^{-m r_{1}} H_{1}^{(1-\lambda) S_{1} r_{1}-(1-\mu)(1+\epsilon) S_{2} r_{1}-\mu(1+\epsilon) S_{3} r_{1}} & \text { for } d=1, \\ c_{14}^{-m r_{1}} H_{1}^{(1-\lambda+\sigma) S_{1} r_{1}-(1-\mu)(1+\epsilon) S_{2} r_{1}-\mu(1+\epsilon) S_{3} r_{1}} & \text { for } d=2, \text { or } d=3\end{cases}
$$

On the other hand, the formulae (25) and (30) asserted that

$$
|A(1)| \leqslant \begin{cases}c_{7}^{m r_{1}} H_{1}^{-\rho S_{1} r_{1}} & \text { for } d=1 \text { or } d=3 \\ \mathrm{Cr}_{6} r_{1} & \text { for } d=2\end{cases}
$$

On combining these inequalities, it follows that

$$
\begin{array}{ll}
c_{13}^{-m} H_{1}^{(1-\lambda) S_{1}-(1-\mu)(1+\epsilon) S_{2}-\mu(1+\epsilon) S_{3}} \leqslant c_{7}^{m} H_{1}^{-\rho S_{1}} & \text { for } d=1, \\
c_{14}^{-m} H_{1}^{(1-\lambda+\sigma) S_{1}-(1-\mu)(1+\epsilon) S_{2}-\mu(1+\epsilon) S_{3} \leqslant c_{6}^{m}} & \text { for } d=2, \\
c_{14}^{-m} H_{1}^{(1-\lambda+\sigma) S_{1}-(1-\mu)(1+\epsilon) S_{2}-\mu(1+\epsilon) S_{3} \leqslant c_{7}^{m} H_{1}^{-\rho S_{1}}} & \text { for } d=3 .
\end{array}
$$

These three formulae may be put into exactly the same form,
(44):

$$
H_{1}^{E} d \leqslant C_{d}^{m} \quad(d=1,2,3)
$$

where, for shortness,
(45):

$$
E_{d}=(1-\lambda+\tau) S_{1}-(1-\mu)(1+\epsilon) S_{2}-\mu(1+\epsilon) S_{3} \quad(d=1,2,3),
$$

and τ denotes the number which was defined in the Main Lemma. We can write the expression for $\mathrm{E}_{\mathbf{d}}$ also as

$$
\mathrm{E}_{\mathrm{d}}=\left(\frac{\tau-\lambda-\mu}{2}-\frac{1+\mu}{2} \epsilon\right) \mathrm{m}-\left(\frac{2-\lambda-\mu+\tau}{2}+\frac{1-\mu}{2} \epsilon\right) \mathrm{s}-(\tau-\lambda-\epsilon) \Lambda .
$$

Here the coefficient of m is equal to

$$
\frac{\tau-\lambda-\mu}{2}-\frac{1+\mu}{2} \epsilon \geqslant 2 \epsilon-\frac{1+1}{2} \epsilon=\epsilon
$$

that of -s is equal to

$$
\frac{2-\lambda-\mu+\tau}{2}+\frac{1-\mu}{2} \epsilon \leqslant(1+2 \epsilon)+\frac{1-0}{2} \epsilon<1+4 \epsilon \leqslant 2,
$$

and that of $-\Lambda$ is equal to

$$
\tau-\lambda-\epsilon=\mu+3 \epsilon \leqslant 1+3 \cdot \frac{1}{4}<2 ;
$$

here we have applied the former assumptions

$$
\tau=\lambda+\mu+4 \epsilon, \quad 0<\epsilon \leqslant \frac{1}{4}, \quad 0 \leqslant \mu \leqslant 1 .
$$

It follows therefore in all three cases $d=1,2$, or 3 that

$$
\mathrm{E}_{\mathrm{d}} \geqslant \epsilon \mathrm{~m}-2 \cdot \frac{\epsilon \mathrm{~m}}{6}-2 \cdot \frac{\epsilon \mathrm{~m}}{6}=\frac{\epsilon \mathrm{m}}{3} .
$$

We finally choose the remaining constants T_{d} such that

$$
T_{d}>C_{d}^{\frac{3}{\epsilon}} \quad(d=1,2,3)
$$

Since, by (10),

$$
H_{1} \geqslant T_{d} \quad(d=1,2,3)
$$

it follows that

$$
H_{1}^{E_{d}}>\left(C_{d}^{\frac{3}{\epsilon}}\right)^{\frac{\epsilon m}{3}}=C_{d}^{m} \quad(d=1,2,3)
$$

contrary to (44).
This proves that the original hypothesis (3) leads to a contradiction and so shows that the Main Lemma is true.

9. The first form of the First Approximation Theorem.

It is now easy to deduce from the main lemma a more general result which we call the First Approximation Theorem. This theorem will be stated in two different forms which, however, are equivalent.

The first form of the theorem is nearly identical with the main lemma, except that the condition C is omitted.

First Approximation Theorem (I): Let $\xi \neq 0$ be a real algebraic number and $\Xi \rightarrow\left(\xi_{1}, \ldots, \xi_{r}\right)$, where $\xi_{1} \neq 0, \ldots, \xi_{\mathrm{r}} \neq 0$, a g -adic algebraic number. Let $\rho, \sigma, \lambda, \mu$ be real constants satisfying

$$
\rho>0, \quad \sigma>0, \quad 0 \leqslant \lambda \leqslant 1, \quad 0 \leqslant \mu \leqslant 1 ;
$$

let $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}$ be positive constants; and let $\mathrm{g}^{\prime} \geqslant 2$ and $\mathrm{g}^{\prime \prime} \geqslant 2$ be fixed integers. Finally let $\Sigma=\left\{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(3)}, \ldots,\right\}$ be an infinite sequence of distinct rational numbers
$\kappa^{(k)}=\frac{P^{(k)}}{Q^{(k)}} \neq 0$, where $P^{(k)} \neq 0, Q^{(k)} \neq 0,\left(P^{(k)}, Q^{(k)}\right)=1, H^{(k)}=\max \left(\left|P^{(k)}\right|,\left|Q^{(k)}\right|\right)$,
with the following two properties.
(A_{d}): For all k ,

$$
\begin{array}{ll}
\left|\kappa^{(\mathrm{k})}-\xi\right| \leqslant \mathrm{c}_{1} \mathrm{H}^{(\mathrm{k})-\rho} & \text { if } \mathrm{d}=1, \\
\left|\kappa^{(\mathrm{k})}-\Xi\right|_{\mathrm{g}} \leqslant \mathrm{c}_{2} \mathrm{H}^{(\mathrm{k})-\sigma} & \text { if } \mathrm{d}=2, \\
\left|\kappa^{(\mathrm{k})}-\xi\right| \leqslant \mathrm{c}_{1} \mathrm{H}^{(\mathrm{k})-\rho} \text { and }\left|\kappa^{(\mathrm{k})}-\Xi\right|_{\mathrm{g}} \leqslant \mathrm{c}_{2} \mathrm{H}^{(\mathrm{k})-\sigma} & \text { if } \mathrm{d}=3 .
\end{array}
$$

(B): For all k,

$$
\left|\mathbf{P}^{(\mathrm{k})}\right|_{\mathrm{g}^{\prime}} \leqslant \mathrm{c}_{3} \mathrm{H}^{(\mathrm{k}) \lambda-1} \quad \text { and } \quad\left|Q^{(\mathrm{k})}\right|_{\mathrm{g}^{\prime \prime}} \leqslant \mathrm{c}_{4} \mathrm{H}^{(\mathrm{k}) \mu-1}
$$

Then

$$
\begin{aligned}
\rho \leqslant \lambda+\mu & \text { for } \mathrm{d}=1, \\
\sigma \leqslant \lambda+\mu & \text { for } \mathrm{d}=2, \\
\rho+\sigma \leqslant \lambda+\mu & \text { for } \mathrm{d}=3 .
\end{aligned}
$$

Proof: We mentioned already in 81 that, for $\mathrm{d}=1$ and $\mathrm{d}=3$, a sequence Σ with the properties A_{d} and B has the real limit ξ and so possesses the third property C trivially. The assertion is therefore in these two cases contained in the main lemma. There remains then only the case $d=2$ in which the assertion has yet to be proved.

First assume that Σ contains an infinite subsequence

$$
\Sigma_{1}=\left\{\kappa^{\left(i_{1}\right)}, \kappa^{\left(i_{2}\right)}, \kappa^{\left(i_{3}\right)}, \ldots\right\}, \text { where } i_{1}<i_{2}<i_{3}<\ldots
$$

such that, for all k and some positive constant c_{5},

$$
\left|\kappa^{\left(i_{k}\right)}\right| \leqslant c_{B} .
$$

The main lemma may then be applied to Σ_{1} and gives the assertion.
Secondly let Σ contain no such subsequence Σ_{1}. Then

$$
\lim _{k \rightarrow \infty}\left|k^{(k)}\right|=\infty
$$

and hence the sequence of the reciprocals

$$
\Sigma_{0}=\left\{\kappa_{0}^{(1)}, \kappa_{0}^{(2)}, \kappa_{0}^{(3)}, \ldots\right\}, \quad \text { where } \quad \kappa_{0}^{(\mathrm{k})}=\kappa^{(\mathrm{k})-1}=\frac{Q^{(\mathrm{k})}}{\mathrm{P}^{(\mathrm{k})}}
$$

has the property C,

$$
\left|\kappa_{0}^{(k)}\right| \leqslant c_{5}^{\prime} \quad(k=1,2,3, \ldots)
$$

for some positive constant c_{5}^{\prime}. It is obvious that $\kappa^{(k)}$ and $\kappa_{0}^{(k)}$ are of the same height $H^{(k)}$. Hence Σ_{0} has also the property B_{0} which is analogous to B, except that λ and μ, and also c_{3} and c_{4}, are interchanged.

We finally show that Σ_{0} has the property A_{2}. By hypothesis, Σ has this property,
(46):

$$
\left|\kappa^{(k)}-\Xi\right|_{g} \leqslant c_{2} H^{(k)-\sigma} \quad(k=1,2,3, \ldots)
$$

Therefore Σ has the g-adic limit Ξ, and so, for $j=1,2, \ldots, r$, this sequence has also the p_{j}-adic limits ξ_{j}. But then the reciprocal sequence Σ_{0} has for all j the p_{j}-adic limits ξ_{j}^{1}, and hence Σ_{0} has also the g -adic limit

$$
\Xi^{-1} \rightarrow\left(\xi_{1}^{-1}, \ldots, \xi_{r}^{-1}\right)
$$

Therefore, in particular,

$$
\lim _{k \rightarrow \infty}\left|\kappa_{0}^{(k)}\right|_{g}=\left|\Xi^{-1}\right|_{g}
$$

and hence there is a positive constant c_{0} such that

$$
\left|\kappa_{0}^{(k)}\right|_{g} \leqslant c_{0} \quad \text { for all } k
$$

From (46) and the identity

$$
\kappa_{0}^{(\mathrm{k})}-\Xi^{-1}=-\kappa_{0}^{(\mathrm{k})} \Xi^{-1}\left(\kappa^{(\mathrm{k})}-\Xi\right)
$$

it follows finally that

$$
\left|\kappa_{0}^{(k)}-\Xi^{-1}\right|_{\mathrm{g}} \leqslant \mathrm{c}_{2}^{\prime} \mathrm{H}^{(\mathrm{k})-\sigma}, \quad \text { where } \quad c_{2}^{\prime}=c_{0}\left|\Xi^{-1}\right|_{\mathrm{g}} c_{2}
$$

We apply now the main lemma to the sequence Σ_{0} instead of Σ and find that $\sigma \leqslant \mu+\lambda$, giving the assertion.

10. Polynomials in a field with a valuation.

The second form of the First Approximation Theorem makes a statement on the values of a polynomial assumed in a sequence of rational numbers. Before enunciating and proving this theorem, it is necessary to discuss first a property of fields with a valuation.

Let K be a field with a valuation $\mathrm{w}(\mathrm{a})$, and let K_{w} again be the completion of K with respect to w. We say that K has the property D if the following compactness condition is satisfied:
(D): Every infinite sequence of elements of K that is bounded with respect to w contains an infinite subsequence which is a fundamental sequence with respect to w , hence has a limit in K_{W}.
Let K have this property D , and let

$$
F(x)=F_{0} x^{f}+F_{1} x^{f-1}+\ldots+F_{f}, \quad \text { where } \quad f \geqslant 1, F_{0} \neq 0
$$

be a polynomial with coefficients in K which has no multiple zero in K_{W}. Put $G(x)=F_{0}^{-1} F(x)=x^{f}+G_{1} x^{f-1}+G_{2} x^{f-2}+\ldots+G_{f}, \quad \gamma=1+w\left(G_{1}\right)+w\left(G_{2}\right)+\ldots+w\left(G_{f}\right)$, so that

$$
\gamma \geqslant 1
$$

and also $\mathbf{G}(\mathbf{x})$ has no multiple zero in K_{W}. Assume now that x is an element of K_{W} such that

$$
\mathrm{w}(\mathrm{x})>\gamma \quad \text { and hence } \quad \mathrm{w}(\mathrm{x})>1
$$

Then

$$
\begin{aligned}
w\left(G_{1} x^{f-1}+G_{2} x^{f-2}+\ldots+G_{f}\right) & \leqslant(\gamma-1) \max \left(w(x)^{f-1}, w(x)^{f-2}, \ldots, w(x), 1\right) \leqslant \\
& \leqslant(\gamma-1) w(x)^{f-1}
\end{aligned}
$$

and therefore
$w\left(G(x) \geqslant w\left(x^{f}\right)-w\left(G_{1} x^{f-1}+G_{2} x^{f-2}+\ldots+G_{f}\right) \geqslant w(x)^{f}-(\gamma-1) w(x)^{f-1}=\right.$

$$
=\{1+(w(x)-\gamma)\} w(x)^{f-1}>1
$$

Conversely, it follows that

$$
\text { if } w(F(x)) \leqslant w\left(F_{0}\right) \text {, then } w(x) \leqslant \gamma,
$$

because the first inequality implies that

$$
w(G(x))=w\left(F_{0}^{-1} F(x)\right) \leqslant w\left(F_{0}^{-1}\right) w\left(F_{0}\right)=1 .
$$

Consider now an infinite sequence $\Sigma=\left\{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(3)}, \ldots\right\}$ of elements of K satisfying

$$
\lim _{k \rightarrow \infty} w\left(F\left(\kappa^{(k)}\right)\right)=0
$$

This assumption implies that

$$
\mathrm{w}\left(\mathrm{~F}\left(\kappa^{(\mathrm{k})}\right)\right) \leqslant \mathrm{w}\left(\mathrm{~F}_{0}\right) \quad \text { and hence } \quad \mathrm{w}\left(\kappa^{(k)}\right) \leqslant \gamma
$$

for all sufficiently large k. Thus the sequence Σ is bounded with respect to w and so, by the property D of K, it contains an infinite subsequence $\Sigma^{\prime}=\left\{\kappa^{\left(i_{1}\right)}, \kappa^{\left(i_{2}\right)}, \kappa^{\left(i_{3}\right)}, \ldots\right\}$, where $i_{1}<i_{2}<i_{3}<\ldots$, which is a fundamental sequence with respect to w and so has a limit

$$
\lim _{k \rightarrow \infty} \kappa^{\left(i_{k}\right)}(w), \quad=\xi \quad \text { say, }
$$

in K_{W}. However, polynomials in $K[x]$ are continuous functions with respect to the metric on K defined by w , and therefore

$$
F(\xi)=\lim _{k \rightarrow \infty} F\left(\kappa^{\left(i_{k}\right)}\right)=\lim _{k \rightarrow \infty} F\left(\kappa^{(k)}\right)=0
$$

This means that ξ is a zero of $F(x)$, hence that $F(x)$ is divisible by the linear polynomial $x-\xi$,

$$
F(x)=(x-\xi) F_{1}(x)
$$

where $F_{1}(x)$ is a polynomial with coefficients in K_{W}. It is obvious that

$$
F_{1}(\xi) \neq 0
$$

because otherwise ξ would be a multiple zero of $F(x)$. From the continuity of the polynomial $F_{1}(x)$, it follows that

$$
\lim _{k \rightarrow \infty} F_{1}\left(\kappa^{\left(i_{k}\right)}\right)=F_{1}(\xi) \neq 0 \quad(w)
$$

and hence that

$$
F_{1}\left(\kappa^{(i k)}\right) \neq 0 \quad \text { for all sufficiently large } k .
$$

There is no loss of generality in assuming that this inequality holds for all suffixes k. Hence a positive constant γ_{1} exists such that

$$
\mathrm{w}\left(\mathrm{~F}_{1}\left(\kappa^{\left(\mathrm{i}_{\mathrm{k}}\right)}\right)\right) \geqslant \gamma_{1}^{-1} \quad(\mathrm{k}=1,2,3, \ldots)
$$

The equation

$$
F\left(\kappa^{\left(i_{k}\right)}\right)=\left(\kappa^{\left(i_{k}\right)}-\xi\right) F_{1}\left(\kappa^{\left(i_{k}\right)}\right)
$$

leads therefore at once to the following result.
Lemma 1: Assume that K has the property D . Let $\mathrm{F}(\mathrm{x})$ be a polynomial in $\mathrm{K}[\mathrm{x}]$ which has no multiple zeros in K_{w}, and let $\Sigma=\left\{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(3)}, \ldots\right\}$ be an infinite sequence in K such that

$$
\lim _{k \rightarrow \infty} w\left(F\left(\kappa^{(k)}\right)\right)=0
$$

There exist an infinite subsequence $\Sigma^{\prime}=\left\{\kappa^{\left(\mathrm{i}_{1}\right)}, \kappa^{\left(\mathrm{i}_{2}\right)}, \kappa^{\left(\mathrm{i}_{3}\right)}, \ldots\right\}$ of Σ, a zero ξ of $\mathrm{F}(\mathrm{x})$ in K_{W}, and a constant $\gamma_{1}>0$ such that

$$
\mathrm{w}\left(\kappa^{\left(\mathrm{i}_{\mathrm{k}}\right)}-\xi\right) \leqslant \gamma_{1} \mathrm{w}\left(\mathrm{~F}\left(\kappa^{\left(\mathrm{i}_{\mathrm{k}}\right)}\right)\right) \quad(\mathrm{k}=1,2,3, \ldots)
$$

11. Two applications of Lemma 1.

In Lemma 1 choose for K the rational field Γ and for $w(a)$ either the absolute value $|a|$ or any p-adic value $|a|_{p}$ where p is an arbitrary prime. The completion K_{W} becomes then either the real field, or the p-adic field.
Both the real field and every p-adic field have the compactness property D^{1}. Hence the following two results are contained in Lemma 1.

[^0]Lemma 2: Let $\mathrm{F}(\mathrm{x})$ be a polynomial with rational coefficients which has no multiple zeros, and let $\Sigma=\left\{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(3)}, \ldots\right\}$ be an infinite sequence of rational numbers such that

$$
\lim _{k \rightarrow \infty}\left|F\left(\kappa^{(k)}\right)\right|=0
$$

There exist an infinite subsequence $\Sigma^{\prime}=\left\{\kappa^{\left(\mathrm{i}_{1}\right)}, \kappa^{\left(\mathrm{i}_{2}\right)}, \kappa^{\left(\mathrm{i}_{3}\right)}, \ldots\right\}$ of Σ, a real zero ξ of $F(x)$, and a constant $\gamma_{1}>0$, such that

$$
\left|\kappa^{\left(i_{k}\right)}-\xi\right| \leqslant \gamma_{1}\left|F\left(\kappa^{\left(i_{k}\right)}\right)\right| \quad \text { for all } k .
$$

Lemma 2': Let $\mathrm{F}(\mathrm{x})$ be as in Lemma 2, and let $\Sigma=\left\{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(3)}, \ldots\right\}$ be an infinite sequence of rational numbers such that

$$
\lim _{k \rightarrow \infty}\left|F\left(\kappa^{(k)}\right)\right|_{p}=0
$$

There exist an infinite subsequence $\Sigma^{\prime \prime}=\left\{\kappa^{\left(\mathrm{j}_{2}\right)}, \kappa^{\left(\mathrm{j}_{2}\right)}, \kappa^{\left(\mathrm{j}_{3}\right)}, \ldots\right\}$ of Σ, a p -adic zero ξ_{p} of $\mathrm{F}(\mathrm{x})$, and a constant $\gamma_{2}>0$, such that

$$
\left|\kappa^{\left(j_{k}\right)}-\xi_{p}\right|_{p} \leqslant \gamma_{2}\left|F\left(\kappa^{\left(j_{k}\right)}\right)\right|_{p} \quad \text { for all } k
$$

The second lemma may be extended to g-adic values and g-adic numbers,
Lemma 3: Let $\mathrm{F}(\mathrm{x})$ be as in Lemma 2, and let $\Sigma=\left\{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(\mathrm{s})}, \ldots\right\}$ be an infinite sequence of rational numbers such that

$$
\lim _{k \rightarrow \infty}\left|F\left(\kappa^{(k)}\right)\right|_{g}=0
$$

There exist an infinite subsequence $\Sigma^{\prime \prime \prime}=\left\{\kappa^{\left(\mathrm{h}_{1}\right)}, \kappa^{\left(\mathrm{h}_{2}\right)}, \kappa^{\left(\mathrm{h}_{3}\right)}, \ldots\right\}$ of Σ, a g -adic zero Ξ of $\mathrm{F}(\mathrm{x})$, and a constant $\gamma_{3}>0$, such that

$$
\left|\kappa^{\left(h_{k}\right)}-\Xi\right|_{g} \leqslant \gamma_{\mathrm{a}}\left|F\left(\kappa^{\left(h_{k}\right)}\right)\right|_{g} \quad \text { for all } k
$$

Proof: From the hypothesis and the definition of the g-adic value, it follows that also

[^1]$$
\lim _{k \rightarrow \infty}\left|F\left(\kappa^{(k)}\right)\right|_{p_{j}}=0 \quad(j=1,2, \ldots, r)
$$

We now apply Lemma 2 ' repeatedly, once for each prime factor p_{j} of g. First, there exist an infinite subsequence $\Sigma_{1}=\left\{\kappa^{\left(\mathrm{h}_{11}\right)}, \kappa^{\left(\mathrm{h}_{12}\right)}, \kappa^{\left(\mathrm{h}_{13}\right)}, \ldots\right\}$ of Σ, a p_{1}-adic zero ξ_{1} of $F(x)$, and a constant $\gamma^{(1)}>0$, such that

$$
\left|\kappa^{\left(h_{1 k}\right)}-\xi_{1}\right|_{p_{1}} \leqslant \gamma^{(1)}\left|F\left(\kappa^{\left(h_{1 k}\right)}\right)\right|_{p_{1}} \quad \text { for all } k .
$$

Secondly, there exist an infinite subsequence $\Sigma_{2}=\left\{\kappa^{\left(h_{21}\right)}, \kappa^{\left(\mathrm{h}_{22}\right)}, \kappa^{\left(\mathrm{h}_{23}\right)}, \ldots\right\}$ of Σ_{1}, a p_{2}-adic zero ξ_{2} of $F(x)$, and a constant $\gamma^{(2)}>0$, such that

$$
\left|\kappa^{\left(h_{2 k}\right)}-\xi_{2}\right|_{p_{2}} \leqslant \gamma^{(2)}\left|F\left(\kappa^{(h 2 k}\right)\right|_{p_{2}} \quad \text { for all } k
$$

while, naturally, also

$$
\left|\kappa^{\left(h_{2 k}\right)}-\xi_{1}\right|_{p_{1}} \leqslant \gamma^{(1)}\left|F\left(\kappa^{\left(h_{2 k}\right)}\right)\right|_{p_{1}} \quad \text { for all } k .
$$

Continuing in this manner, we obtain for every suffix $\mathrm{j}=1,2, \ldots \mathrm{r}$ an infinite sequence $\Sigma_{j}=\left\{\kappa^{\left(h_{j 1}\right)}, \kappa^{\left(\mathrm{h}_{\mathrm{j} 2}\right)}, \kappa^{\left(\mathrm{h}_{\mathrm{j} 3}\right)}, \ldots\right\}$, where

$$
\Sigma_{1} \supseteq \Sigma_{2} \supseteq \ldots \supseteq \Sigma_{r}
$$

a p_{j}-adic zero ξ_{j} of $F(x)$, and a constant $\gamma_{j}>0$, such that

$$
\left|\kappa^{\left(h_{j k}\right)}-\xi_{i}\right|_{p_{i}} \leqslant \gamma^{(i)}\left|F\left(\kappa^{\left(h_{j k}\right)}\right)\right|_{p_{i}} \quad \text { for } i=1,2, \ldots, j \text { and for all } k .
$$

Let $\Sigma^{\prime \prime \prime}$ be the sequence Σ_{r}; further put

$$
\gamma_{3}=\max \left(\gamma^{\frac{\log g}{(1)}}, \quad, \ldots, \gamma^{(r)^{\frac{\log g}{e_{r} \log p_{1}}}}\right),
$$

and denote by Ξ the g-adic number

$$
\Xi \leftrightarrow\left(\xi_{1}, \ldots, \xi_{\mathrm{r}}\right),
$$

which is algebraic and a zero of $F(x)$. We have then

$$
\max _{i=1,2, \ldots, r}\left(\left|\kappa^{\left(h_{r k}\right)}-\xi_{i}\right|_{p_{i}}^{\frac{\log g}{e_{i} \log p_{i}}}\right) \leqslant \max _{i=1,2, \ldots, r}\left\{\left(\gamma^{(i)}\left|F\left(\kappa^{\left(h_{r k}\right)}\right)\right|_{p_{i}}\right)^{\frac{\log g}{e_{i} \log p_{i}}}\right\}
$$

for all k
and hence
whence the assertion.

12. The property $A_{d^{-}}^{\prime}$

As earlier in this chapter, let again
$F(x)=F_{0} x^{f}+F_{1} x^{f-1}+\ldots+F_{f}, \quad$ where $\quad f \geqslant 1, F_{0} \neq 0, F_{f} \neq 0$, be a polynomial with integral coefficients which does not vanish at $x=0$ and has no multiple factors, hence also no multiple zeros in any extension field of the rational field. Further denote again by ξ a real zero and by Ξ a g-adic zero of $F(x)$, and by ρ and σ two positive constants. Finally let again $\Sigma=\left\{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(3)}, \ldots\right\}$ be a sequence of distinct rational numbers

$$
\kappa^{(k)}=\frac{P^{(k)}}{Q^{(k)}} \neq 0 \quad \text { of heights } \quad H^{(k)}=\max \left(\left|P^{(k)}\right|,\left|Q^{(k)}\right|\right)
$$

such that

$$
P^{(k)} \neq 0, Q^{(k)} \neq 0,\left(P^{(k)}, Q^{(k)}\right)=1
$$

For $d=1,2$, or 3 , we define a property A_{d}^{\prime} of Σ as follows.
The sequence Σ is said to have the property A_{d}^{\prime} if for $d=1$: There exist two positive constants ρ and c_{1}^{\prime} such that ($\mathrm{A}_{1}^{\mathrm{i}}$):

$$
\left|F\left(\kappa^{(k)}\right)\right| \leqslant c_{1}^{1} H^{(k)-\rho} \quad \text { for all } k ;
$$

for $d=2$: There exist two positive constants σ and c_{2}^{\prime} such that (A_{2}^{\prime}):

$$
\left|F\left(\kappa^{(k)}\right)\right|_{\mathrm{g}} \leqslant \mathrm{c}_{2}^{\prime} \mathrm{H}^{(\mathrm{k})-\sigma} \quad \text { for all } \mathrm{k} ; \text { and }
$$

for $\mathrm{d}=3$: There exist four positive constants $\rho, \sigma, c_{1}^{\prime}$, and \mathbf{c}_{2}^{\prime} such that ($\left.A_{3}^{\prime}\right): \quad\left|F\left(\kappa^{(k)}\right)\right| \leqslant c_{1}^{\prime} H^{(k)-\rho}$ and $\left|F\left(\kappa^{(k)}\right)\right|_{g} \leqslant c_{2}^{\prime} H^{(k)-\sigma} \quad$ for all k. The property A_{3}^{\prime} includes therefore both properties A_{1}^{\prime} and A_{2}^{\prime}.

The two properties A_{d} and A_{d}^{\prime} are closely connected, as the following lemma shows.

Lemma 4: If the sequence Σ has the property A_{d} with respect to ξ, or Ξ, or ξ and Ξ, then it also has the property A_{d}^{\prime} with respect to $F(x)$. Conversely, if Σ has the property A_{d}^{\prime} with respect to $F(x)$, then there exist an infinite subsequence Σ^{\prime} of Σ and either a real zero ξ of $F(\mathbf{x})$, or a g -adic zero Ξ of $\mathrm{F}(\mathrm{x})$, or both, such that Σ^{\prime} has the property A_{d} with respect to ξ, or to Ξ, or to both ξ and Ξ.
Proof: First let Σ has the property A_{d}. The quotient

$$
\Phi(x, y)=\frac{F(x)-F(y)}{x-y}
$$

is a polynomial in x and y with integral coefficients. Evidently

$$
\begin{array}{ll}
\left|F\left(\kappa^{(k)}\right)\right|=\left|\kappa^{(k)}-\xi\right|\left|\Phi\left(\kappa^{(k)}, \xi\right)\right| & \text { if } d=1 \text { or } 3 \\
\left|F\left(\kappa^{(k)}\right)\right|_{g}=\left|\kappa^{(k)}-\Xi\right|_{g}\left|\Phi\left(\kappa^{(k)}, \Xi\right)\right|_{g} & \text { if } d=2 \text { or } 3
\end{array}
$$

Further, by the hypothesis,

$$
\begin{array}{ll}
\kappa^{(k)} \text { has the real limit } \xi & \text { if } d=1 \text { or } 3, \\
\kappa^{(k)} \text { has the g-adic limit } \Xi & \text { if } d=2 \text { or } 3 .
\end{array}
$$

This means that Σ is a bounded sequence with respect to the absolute or g-adic values, and hence that the numbers

$$
\left|\Phi\left(\kappa^{(k)}, \xi\right)\right| \quad \text { for } d=1 \text { or } 3, \text { and } \quad\left|\Phi\left(\kappa^{(k)}, \Xi\right)\right|_{g} \quad \text { for } d=2 \text { or } 3
$$ are bounded. Let their upper bounds by Γ_{1} and Γ_{2}, respectively; it follows then that Σ has the property A_{d}^{\prime} with the constants

$$
c_{1}^{\prime}=c_{1} \Gamma_{1} \quad \text { and } \quad c_{2}^{\prime}=c_{2} \Gamma_{2}
$$

respectively.
Secondly let Σ have the property A_{d}^{\prime}. If $d=1$ or $d=2$, the assertion is contained in Lemmas 2 and 3, respectively. If, however, $d=3$, both lemmas must be applied one after the other. First, by Lemma 2, there is a real zero ξ of $F(x)$ and a subsequence Σ_{1} of Σ which has the property A_{1} with respect to ξ. Secondly, by Lemma 3, there exists also a g-adic zero Ξ of $F(x)$ and a subsequence Σ^{\prime} of Σ_{1} which has the property A_{2} with respect to Ξ. Since Σ^{\prime} still has the property A_{1} with respect to ξ, it has then the property A_{3} with respect to both ξ and Ξ, whence the assertion.

13. The second form of the First Approximation Theorem.

By combining the lemma just proved with the first form of the First Approximation Theorem we immediately obtain the following second form of the theorem.

First Approximation Theorem (II): Let $\mathrm{F}(\mathrm{x})$ be a polynomial with integral coefficients which does not vanish for $\mathrm{x}=0$ and has no multiple factors. Let $\rho, \sigma, \lambda, \mu$ be real constants satisfying

$$
\rho>0, \quad \sigma>0, \quad 0 \leqslant \lambda \leqslant 1, \quad 0 \leqslant \mu \leqslant 1 ;
$$

let $\mathrm{c}_{1}^{\prime}, \mathrm{c}_{2}^{\prime}, \mathrm{c}_{3}, \mathrm{c}_{4}$ be positive constants; and let $\mathrm{g}^{\prime} \geqslant 2$ and $\mathrm{g}^{\prime \prime} \geqslant 2$ be fixed integers. Finally let $\Sigma=\left\{\kappa^{(1)} \kappa^{(2)}, \kappa^{(3)}, ..\right\}$ be an infinite sequence of distinct rational numbers

$$
\begin{aligned}
\kappa^{(k)}=\frac{P^{(k)}}{Q^{(k)}} \neq 0, \text { where } P^{(k)}+0, Q^{(k)}+0,\left(P^{(k)}, Q^{(k)}\right) & =1 \\
H^{(k)} & =\max \left(\cdot\left|P^{(k)}\right|,\left|Q^{(k)}\right|\right),
\end{aligned}
$$

with the following two properties.
($\left.\mathrm{A}_{\mathrm{d}}^{\mathrm{d}}\right)$: For all k ,

$$
\begin{array}{ll}
\left|\mathrm{F}\left(\kappa^{(\mathrm{k})}\right)\right| \leqslant \mathrm{c}_{1}^{\prime} \mathrm{H}^{(\mathrm{k})-\rho} & \text { if } \mathrm{d}=1, \\
\left|\mathrm{~F}\left(\kappa^{(\mathrm{k})}\right)\right|_{\mathrm{g}} \leqslant \mathrm{c}_{2}^{\prime} \mathrm{H}^{(\mathrm{k})-\sigma} & \text { if } \mathrm{d}=2,
\end{array}
$$

$\left|\mathrm{F}\left(\kappa^{\prime}(\mathrm{k})\right)\right| \leqslant \mathrm{c}_{1}^{\prime} \mathrm{H}^{(\mathrm{k})-\rho}$ and $\left|\mathrm{F}\left(\kappa^{(\mathrm{k})}\right)\right|_{\mathrm{g}} \leqslant \mathrm{c}_{2}^{\prime} \mathrm{H}^{(\mathrm{k})-\sigma} \quad$ if $\mathrm{d}=3$.
(B): For all k ,
$\left|P^{(k)}\right|_{g^{\prime}} \leqslant \mathrm{c}_{3} \mathrm{H}^{(\mathrm{k}) \lambda-1}$ and $\left|Q^{(\mathrm{k})}\right|_{\mathrm{g}^{\prime \prime}} \leqslant \mathrm{c}_{4} \mathrm{H}^{(\mathrm{k}) \mu-1}$.
Then

$\rho \leqslant \lambda+\mu$	for $d=1$,
$\sigma \leqslant \lambda+\mu$	for $d=2$,
$\rho+\sigma \leqslant \lambda+\mu$	for $d=3$.

Proof: It suffices to apply the first form of the theorem to the sequence Σ^{\prime} and the zero or zeros ξ, Ξ obtained by Lemma 4.- By the same lemma, the new second form of the theorem implies also the original first form; both forms are thus equivalent.

[^0]: ${ }^{1}$ This is a classical theorem in the real case, and it may be proved in the p-adic case as follows.
 Denote by $\Sigma=\left\{\kappa^{(1)}, \kappa^{(2)}, \kappa^{(3)}\right.$, . . $\}$ any bounded sequence of p-adic numbers. Let its elements, without loss of generality, be p-adic integers; thus they can be written as series

 $$
 \kappa^{(k)}=a^{(k)}+a_{1}^{(k)} p+a^{(k)} p^{2}+\ldots(p) \quad(k=1,2,3, \ldots)
 $$

[^1]: where the digits $a_{n}^{(k)}$ assume only the values $0,1, \ldots, p-1$. The set of the first n digits of each $\kappa^{(k)}$ has thus only p^{n} possibilities. It follows that it is possible to select successively
 an infinite subsequence $\Sigma_{1}=\left\{\kappa_{1}^{(1)}, \kappa_{1}^{(2)}, \kappa_{1}^{(3)}, \ldots\right\}$ of Σ,
 an infinite subsequence $\Sigma_{2}=\left\{\kappa_{2}^{(1)}, \kappa_{2}^{(2)}, \kappa_{2}^{(3)}, \ldots\right\}$ of Σ_{1},
 an infinite subsequence $\Sigma_{3}=\left\{\kappa_{3}^{(1)}, \kappa_{3}^{(2)}, \kappa_{3}^{(3)}, \ldots\right\}$ of Σ_{2} etc., such that, for every n , the n first digits of all elements of Σ_{n} are identical. The diagonal sequence $\Sigma^{\prime}=\left\{\kappa_{1}^{(1)}, \kappa_{2}^{(2)}, \kappa_{3}^{(3)}, \ldots\right\}$ is still a subsequence of Σ, and it has the property that, for every n, the first n digits of all but finitely many of its elements are identical. Hence Σ^{\prime} is a fundamental sequence, as asserted.

