
Chapter 7

THE FIRST APPROXIMATION THEOREM

1. The properties Ad, B, and C.

While the last two chapters depended on purely algebraic ideas, we now
introduce real and g-adic algebraic numbers and study their rational approx-
imations with respect to the corresponding absolute value or g-adic value,
respectively. Here, as usual,

g = pf1...prr *2,
where pi ,...,pr are distinct primes, and ei ,..., er are positive integers;
the g-adic value \A\g of A**+~(ai,...,ar) is defined by

lo

The later occurring gf-adic and gfl-adic values |a|gf and |a|g" are defined
analogously.

The letter £ always denotes a fixed real algebraic number, and the
letter E a fixed g-adic algebraic number. Only £ satisfying

and only -a"-— (£i,...,£r) satisfying

«i+0,-, « r + 0

will be considered. We denote by

F(x) = Foxf + Fix*'1 + ... + Ff, where f > 1, F0 + 0, Ff + 0 ,

a polynomial of lowest degree with integral coefficients having either £, or
JET, or both £ and S, as zeros; hence, by Chapter 3, F(x) has no multiple
factors. As before, we put

c = 2max(|F0|, |Fi|,..., |Ff|), so that c > 1.

Next we denote by
s= {jcW |JCW |JCW,...}

a fixed infinite sequence of distinct rational numbers

(k) (k)

"
where P % 0 and Q * 0 are integers such that

(P(k),Q(k)) = l.
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108 LECTURES ON DIOPHANTINE APPROXIMATIONS

We call

H<k> = max(|P<k>UQ(k>|)

the height of *(k). It is obvious that

(1): lim H(k) = oo.
k-*»

For such sequences E we now define three properties A^, B, and C
where d is either 1 or 2 or 3.

First, 2 is said to have the property Ad if
for d=l: There exist two positive constants p and ci such that

(Ai): U ( k )-Sl^ ClH
(k)'p for all k;

for d=2: There exist two positive constants or and c2 such that

(A2): U(k)-£lg « c2H
(k)~a for all k; and

for d=3: There exist four positive constants p, a, ci, and c2 such that

(A,): k(k)-||*ClH
(k)-p and UW-ff|g « erf00"* for aU k.

The property As includes therefore both properties AI and A2 .
If S has the property Ad, then its elements have for d=l and d=3 the

real limit £ > and for d=2 and d=3 the g-adic limit or, because CiHfc)-p and

c2IT ^"^tend to zero as k tends to infinity.
Secondly, £ is said to have the property B if there exist,

(i) two integers gf and gft satisfying

g' £2, g" £2, (g',g")=l;

(ii) two real numbers X and ju satisfying

0 < A < 1, 0 < p < 1; and

(iii) two positive constants c3 and c4, such that

(B): |PW|g(*c,H(k)X-1 and |Q(k)|g» * (^H^'1 for all k.

The first inequality (B) holds trivially if A=l as we may simply take c3 = l;
and similarly for the second inequality when ju=l.

For later it is important to note that if d=2 or d=3, and if S has both
properties Ad and B, then

(g, g1) = 1 if 0 ^ A < 1.

For lim |P(k)L, =0, while (P(k),Q(k)) = 1, hence |Q(k)Li = 1, and so also
k — »°° ^ °

lim l/c(k)L, =0.
k— »oo &

If now g and gf had a common prime factor, pi say, then
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l i m k l = 0 a n d l i m U - { i L = 0 , hence £ i=0 ,
k-->«> Pi k-*°o P1

contrary to the hypothesis.
Third, S is said to have the property C if there exists a positive con-

stant c5 such that

(C): U^N c5 for all k.

In the two cases d-1 and d=3 the property C follows from the property Ad
because

In the remaining case d=2 it is, however, independent of Ad-
Our first aim in this chapter is to prove the following result.

Main Lemma: If the sequence

has all three properties Ad, B, and C, then

r ^ A + p,

where

rp if d=l,

(2): T ~ J or if d=2,

LP-KT if d=3.

The proof of this lemma will be long and involved, and it will be indirect.
It will be assumed that

(3): r = A.+/n4e where e > 0,

and from this hypothesis we shall deduce a contradiction.

2. The selection of the parameters.

Since the property Ad weakens when the exponents p and a are de-
creased, we may without loss of generality assume that

(4): 0 < e ^ | .

For the same reason we are allowed to assume that

(5): ci & 1, c2 > 1, ca ^ 1, c4 ^ 1, c5 ^ 1.

Similar to c, CI,...,CB the letters cf l, c7,...,Ci, C2, C3, TI, T2, and T8
will be used to denote certain positive constants that depend only on the se-
quence S and the algebraic numbers {, S, or £ and S9 respectively; they
will, however, be independent of the numbers m, s, t, Ki,...,Km, ri,..., rm
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to be defined immediately. The last three constants TI, T2, and T3 will not
be fixed until the end of the proof.

The parameters are now selected as follows.
First, choose a positive integer m such that

and in terms of m define the positive number s by

(6): s = f .

Secondly, choose a number t such that

1 o-to-D
(7): 0 < t * 1, 2m+1 12 « -SL .

Third, select m distinct elements K^ll\ K^,...,K(im) of Z that satisfy
certain inequality conditions to be stated at once. To simplify the notation,
these elements of S are written as

where the Ph and Qh are Integers for which

Ph * 0, Qh + 0,
Thus Kb has the height

Hh = max(|Phl,|Qhl).
The hypothesis of the main lemma imposes, for all suffixes h=l, 2,..., m,

the following inequalities:

~Uh-$l'sc1Hn
p ifd=l,

(Ad): < Uh-Slg^caH^ if d=2,

J Kh~ ? I *CiHhP and I «h-sl g«ca Hn
ff if d=3;

(B): |Phlg' -scaHh"1 and

(C):

It is necessary for the proof to add the following conditions:

(8): |Ph|g' « g V i f O < X < l (h= l,2,...,m),

(9): log Hh+1 * | log Hh (h = 1,2 ..... m-1),

and, depending on the suffix d,
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/ £m2 £(m-l)m(2m+l) \
(10): Hi £ maxV(20c)t , 2 l , Td/ .

Since the elements of S satisfy the limit formula (1), it is possible to
choose Ki,...,/cm such that all these inequalities are satisfied.

Finally, select m positive integers ri,..., rm such that
O Irw* TI

ri & 21ogHmri e log Hi '

(12): rh ̂  ri Jjj|j- > ̂  (h = 2,3,..., m) .

Since, by (9) and (10), evidently

2 < Hi < H2 < ... < Hm,
these formulae imply that

because, by (4),

Hence we find that

(13): rilogHi ^ rhlogHh ^ (l+e)rilog HI (h = 1,2,..., m).

Therefore, for arbitrary non -negative exponents ki,..., km, it follows that

We also note that, by (9), (11), and (12),

rh * - > 2, rh-1 > 2rb 2rh+1 logHh+l < rilogHi ^ rh l°S Hh,

hence

rh+1 < 2 log Hh < t
rh logHh+1 " '

and therefore

(15): rh+i< rht (h = 1,2,..., m-1).

Thus, trivially,

(16): ri > ra >... >rm and ri + r2 + ... + rm <



112 LECTURES ON DIOPHANTINE APPROXIMATIONS

3. Application of Theorems 1 and 2.

The polynomial !fl(x) has no multiple factors. Hence, by Theorem 2,
applied to this polynomial and the numbers m, s, ri ,..., rm, there is a poly-
nomial

... 2 »i1...lmii=0 im=0

with the following properties.

(17): The coefficients ai^^ are integers such that

and they vanish unless

11=1

(18): The derivative Ajx i (x,...,x) is divisible by F(x) whenever

0 « ji ̂  r!,...,0 < im*rm, t ft ^ |(m-s).
h=l rh *

(19): We have the following majorants,

Aji...Jm(xi'"->xm) « 5(8c)ri+-+rm(l+xi)ri...(l+xm)rm,

A,lMjm(Kf...fx) « 5(8c)ri+-+rm(l+x)ri+-+rm.

By (10), (16) and (17), the height of A(x1,...,xm) does not exceed

5(4c)ri+-+rm < 5(4c)mri < (20c)mri < H?** .

It follows then from the inequalities (10), (12), and (15) that the hypothesis of
Theorem 1 is satisfied for the polynomial A(xi,...,xm) and the numbers m,
s, t, KI ,..., /cm, ri ,..., rm. But then, by this theorem, there exist suffixes
li,...,lm satisfying the inequalities

(20): O^l^n^O^l^rm, £ - * 2m+1t2£ m

h=l

such that the function value

= A say>
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does not vanish,

This number A/,, is rational and so may be written as a quotient

(21): A(1) * 0.

Dd)
of two integers N(i) and D(i) satisfying

In the next sections we shall establish upper and lower bounds for I Am |.
To express these in a simple form, it is convenient to introduce the following
abbreviations,

m i 1 1
(22): A = £ ik Sl =i(m-s)-A, S2 = i(m+s)-A, S8 = m-A .

h=l rh * *

It is obvious from the formulae (4), (6), (7), and (20), that

(23): 0 ^ A ^ 3? 9

1 7 1 9 < l 1 9 ^
(24): Si £ j(2-e)m £ ̂ m, S2 ^ j|(6-e)m £ |gm, S3 ^ ^(6-e)m ^ ||m.

4. Upper bounds for |A(|)| .

For real xi,...,xm and arbitrary suffixes ji,...,]m it follows from (16)
and (19) that

* (40c)mri{(H-lxil)...(l+|xm|)}ri.

We apply now the property C of S. This property implies, first, that

(25): |A(1)l«cemri

where, for shortness,

ce = 40c(l+Cs) .
For

k !)...(!+ 1 *m I) « (l+c5)m.

Secondly, let d=l or d=3. Then, again by property C,

m=l imk ( k ) | * c5k-*«>
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and hence

(26): | A4 ...jm(«,...,£) I < cemri for all suffixes ji ,..., jm.

The inequality (25) is, of course, valid for all three values of d, but will
be used only for d=2. A much stronger upper bound for | A(i) I can be proved
in the other two cases d=l and d=3, using (26).

From Taylor's formula we obtain the identity
ri rm .

A(xi,...,xm)= £... E AJ .s (x,...,x)(xi-x);!l...(xm-x):lm,
jm=0 Jm

and on repeated differentiation,

(27): (xi'

. 0
By putting

Xi = KI ,...,xm = Km, x =

we find that

(28): A(1) .

In this equation,

while, by (18),

.O-O if

It follows that it suffices to extend the summation in (28) only over those
systems of suffixes (]) = (ji,..., jm) ^at belong to the set

J: 0 ̂  h-u < n-lif..., 0 ̂  jm-lm ^ rm-lm, ^ ^^ > Si.
h=l rh

It is then evident that

(29): |A(1)|<A*A**

where, for shortness,
ri rmA * • • • " . . . . .
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and

A** = max k - {|jl-K.. km-« |Ji»-lm _
Vjj€j

In the first expression,

1=0

so that by (16) and (26),

A* * £ •» iT ca
mri • 2il+-+j"a = c?*1 (2ri+1-l) ... (2rm+1-l) <

ji=0 jm=0

<c.mri.22ri...22rm*(4ca)
mri.

For the second expression we apply the property

(Ai): Uh-£|< ClHj; (h= 1,2,..., m),

which holds also for d=3; here, by (5), GI ^ 1. Hence

A**
)eJ (j)eJ m

where

Further, by the left-hand side of (14) and the definition of J,

max (H1 '1 ... tfm-'P ^ max Hl h=l
(j)eJ m (j)eJ

so that

We finally put

C7 = 4ci CB

and substitute the upper bounds for A* and A** in (29). We so find that

(30): I A(1) | < c7
mri Hr^1* for d=l and d=3.

Here, by (24), the exponent of Hi is negative; hence this upper bound is
smaller than that given by (25). However, no explicit use of this fact will be
made.
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5. An upper bound for

In the two cases d=2 and d=3 there exists an upper bound for
'very similar to that for I A(i) I which has just been proved.

In both cases the sequence S has the g-adic limit S, and so

Urn k(k)L=|SL.
k-»oo 6 5

There exists then a constant ca > 1 depending only on S such that

IK Ig < c8 for all k,

and therefore also
l-5lg« c8.

This time we substitute the values

in the identity (27), so obtaining the equation

r i r m / - \ A \ - i - i
(31): A(1) = £ ... £ A1 1 (S,...&fa}J m)(/c1-5)]l"ll...(/cm-5')3m"lm.

ji=0 jm=0 Jl"°m w ^lm/

Here, just as in (28), it suffices to extend the summation only over all systems
of suffices (j) = (ji,..., jm) in J.

The binomial coefficients in (31) are integers, hence their g-adic values
are not greater than 1. It follows then from the non-Archimedean property of
the g-adic pseudo-valuation that

(32): |A(1)|g<B*B**

where, for shortness,

and

B** max k1-5|

The polynomials Aji(.,jm(x,...,x) have integral coefficients and are at
most of degree ri+...+rm ^ mri- therefore

and hence also

Next, for the second factor, we apply the property
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which holds also for d=3; here again, by (5), c2 ^ 1. It follows that

B** < max C2
(3l"ll)+-+(3m"lm). max (Hi!1""11 ...H3™"1^)"*.

Here

maxc^^-^^m^m) < c^+-+rm<

(j)eJ

while, by the left-hand side of (14) and the definition of J,

... ! aSiri

(])eJ (j)eJ

Hence

max (H1""1 ...H"1""1)^ ^ max H! h=l rh < Hr
(])eJ (j)eJ

Put

C9 = C2 CB

and substitute the upper bounds for B* and B** in (32). We so find that

(33): I A(i) |g * c9
mriH;aSiri for d=2 and d=3.

6. An upper bound for | D / 1 1 1 .

In this and the next sections we shall establish an upper bound for I Dm |
and a lower bound for |N(i) I ; by combining these, a lower bound for | AQQI
will be obtained.

From the definition of A(XI ,...,xm),

so that, in particular,

In this equation,

while, by (17),
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«V..lm-° UnleSS l<"i-s)< £ J; < |(m+s).
h=l

It follows then that the summation in (34) need be extended only over those
systems of suffixes (i) = (ii,..,, im) that belong to the set

I: Q< ii-1^ ri-li,..., 0 < im-lm « rm-lm, Si < £
h=l

Each single term in (34) has a denominator

Therefore the least common denominator D^ satisfies the inequality

|D(i)|^ tagql1"11...Qfe1"1"1, =D say,

where the symbol "1cm" stands for the least common multiple.
We apply now the second half

iQhlg11 * c4Hh" Oh = 1,2,..., m)

of the property B. By this property, Qh is divisible by an integral power of
g" that is easily proved to be not smaller than

but may be larger. For each suffix h=l,2,.,., m it is then certainly possible
to find a factorisation

of Qh where Qj* is that integral power of gtf which is defined by the in-
equalities

(35): ^-Hj-M«Q*< IH^

and where we have put

c10 = max^l, — j .

The complementary factor Qh* then satisfies the inequality

(36): lQh*l= iQhlQh"1**

From the factorisations of the Qh it is obvious that

(37): D

where
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and

D** = 1cm (
(i)el

The first factor D* is the least common multiple of certain integral
powers of gu and hence is equal to their maximum,

. ± 1 ^.S 1

D* =

Therefore, from (35),

D* ^ max Cin """ • max
m (Oel

Here Ci0 ̂  1 so that

Further, by the definition of I and by the right-hand side of (14),

m
• i i l l (l-]Lt)(l+c)ri £}

max (Hi1" r ...Hj?1" m) "^ < max Hi h=I
m (Dd

Hence

For the second factor D** we use the trivial estimate

D**

Here cig" >1 and hence

(C4g")mri.

Further, again by the definition of I and by the right-hand side of (14),

m
(i \ V r

(El l^ ...H^-S^ * Hl h=l

Thus it follows that

Finally put

Cn = C4g' ! '
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and substitute in (37) the upper bounds for D* and D** just obtained. Since
|D(i) |<D, we so find the inequality

(38): |D(|)|

7. Lower bounds for |N

We again apply the equation (34) of the last section; by means of it, we
shall determine integral powers N* of g1 and N** of g that are divisors of

These two powers are relatively prime, so that their product likewise
divides N(j). However, in certain cases it becomes necessary to take N* or
N** equal to 1, and it may even be convenient to allow lower estimates for
these numbers that are smaller than 1.

Assume for the moment that

0 < A< 1.

Then, by the hypothesis (8), all numerators Pn are divisible by g1, and hence
all denominators Qh are prime to g' . The first half

IPfalg' ^CsHh"1 (h=l,2,...,m)

of the property B implies that Pn is divisible by an integral power of gf, P*
say, which is easily seen to satisfy the inequality

(39): P£

here c3g
f >1. On the other hand, the denominators

of the terms of A(i) and hence also their least common denominator Dfl) is
relatively prime to g'. It follows that the numerator NQJ of Am is divisible
by that power N* of g1 which is defined by

here the symbol "gcd" denotes the greatest common divisor. All products

rin

are, however, integral powers of g1 . Their greatest common divisor is then
equal to their minimum,

N* = min P?11"11 ... P*im"lm.m

It follows therefore from (39) that
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Here

Nri+...+rm . - N mri

"(shr) •
Further, by the left-hand side of (14) and by the definition of I,

m
fi \\* V

min (Hi-1' ... HJf-S1-* * min H! > &

Therefore, finally,

(40):

In the case X=l so far excluded the right-hand side of this inequality does
not exceed 1; hence (40) remains valid without the restriction on X.

We put

(41): N** = 1 if d=l.

Next let d=2 or d=3. Then |A(i)|g possesses the upper bound (33). This
upper bound implies that N(i) is divisible by an integral power of g, N** say,
which satisfies the inequality

(42): N**> ( g - c H r 1 ) ' * - E 1 i f d = 2 o r d=3.
\Cog/

First assume again that

0 ^X < 1.

As was shown in §1, g and gT are in this case relatively prime, and so the
same is true for their powers N** and N*. Hence N*N** is a divisor of
N(i), whence

This inequality still remains valid for X=l provided N* is then replaced by
its lower bound from (40).

Therefore, depending on the value of d, a lower bound for |NQ) I is given
by the products of either the right-hand sides of (40) and (41), or the right-
hand sides of (40) and (42). Hence, on introducing the new constant

Cl2 = Csgogg',

we arrive at the following lower estimates,

lCl2

for d=l,

ciT*1Hr~""rv/M1*1 for d=2 or d=3.
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8. Conclusion of the proof of the Main Lemma.

Put

Cis = CsCiig1, CM = CuCis

and

Ci = C7ci3, C2 = cflcl4, C3 =

The two inequalities (38) for |D(i)| and (43) for |N(i)| immediately lead
to aJower bound for

which, naturally, depends on d. The result is as follows:

1 for d=2, or d=3.

On the other hand, the formulae (25) and (30) asserted that

for d=1 Qr d=3j

for d=2.

On combining these inequalities, it follows that

c-m jj

c-m H(

These three formulae may be put into exactly the same form,

(44): HxE<Ucm (d=l,2,3),

where, for shortness,

(45): Ed = (l-X+T)S1-(l-]Li)(l-K)S2-M(l«)S3 (d=l, 2, 3),

and T denotes the number which was defined in the Main Lemma. We can
write the expression for £4 also as

+^e)s- (T-X-e)A.

Here the coefficient of m is equal to

that of -s is equal to
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2,

and that of -A is equal to
1

r-X-e = jLt+3e ^ 1+3-j < 2;

here we have applied the former assumptions

T = X+jLi+4€, 0 < e< j, 0 < JLI < 1.

It follows therefore in all three cases d=l, 2, or 3 that

, em o.25_ - €m

We finally choose the remaining constants Td such that

Td > Cd
T (d=l,2,3).

Since, by (10),

Hi £Td (d=l,2,3),

it follows that

em
3 =C™ (d=l,2,3),

contrary to (44).
This proves that the original hypothesis (3) leads to a contradiction and

so shows that the Main Lemma is true.

9. The first form of the First Approximation Theorem.

It is now easy to deduce from the main lemma a more general result
which we call the First Approximation Theorem. This theorem will be stated
in two different forms which, however, are equivalent.

The first form of the theorem is nearly identical with the main lemma,
except that the condition C is omitted.

First Approximation Theorem (I): Let £ * 0 be a real algebraic number
and jis—^((;iv>£r)> where £1* 0,...,£r * 0, a g-adic algebraic number.
Let p, a, A, ju be real constants satisfying

p > 0 , a > 0, O ^ X ^ l , 0 < / * < ! ;

let ci, ca, c3, c4 be positive constants,• and let g&2 and g" ^ 2 be fixed
integers. Finally let S = {/r1', /P2s «W,...,} be an infinite sequence of
distinct rational numbers

» Where P(k) * °' Q(k) * °' <p(k)^(k)) = !. H(k)= max( I
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with the following two properties.

(Ad): For all k,

U(k)- ll^eiH00-* */d=l,

U(k)-SlgW
k)-* «/d=2,

U(k)- $| * CiH(k)-P and U(k)-S|g* C2H
(k)-" if d=3.

(B): jFor all k,

Then

/or d=l,

for d=2,

P-KT <X + ju /or d=3.

Proof: We mentioned already in §1 that, for d=l and d=3, a sequence
S with the properties A& and B has the real limit £ and so possesses the
third property C trivially. The assertion is therefore in these two cases
contained in the main lemma. There remains then only the case d=2 in which
the assertion has yet to be proved.

First assume that S contains an infinite subsequence

Si = {/c(il), K(ia)' K(i3),...}, where it < i2 < i3<...,

such that, for all k and some positive constant c5,

The main lemma may then be applied to Si and gives the assertion.
Secondly let £ contain no such subsequence Ei . Then

lim |/c(k)| = co,
k-*»

and hence the sequence of the reciprocals

So=rfU°US),..}, where .fr> .. .W-l . 9J£ ,

• has the property C,

5 (k = 1,2,3,...)

for some positive constant Cs. It is obvious that ff and K are of the
(k)same height H . Hence So has also the property Bo which is analogous to

B, except that X and ju, and also c3 and c4, are interchanged.
We finally show that So has the property A2 . By hypothesis, S has this

property,
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(46): U(k)-S|g < c2H
(k)"a (k = 1,2,3,...).

Therefore S has the g-adic limit S, and so, for j=l,2,...,r, this sequence
has also the pj-adic limits £j. But then the reciprocal sequence So has for
all j the pj-adic limits fj1, and hence So has also the g-adic limit

Therefore, in particular,

UrnJim
k — >oo

and hence there is a positive constant GO such that

ko Ig ̂  c» for ^ k«
From (46) and the identity

it follows finally that

g , where c = c0 I*'1 |g ca.

We apply now the main lemma to the sequence So instead of- S and find
that a ^ jit + X, giving the assertion.

10. Polynomials in a field with a valuation.

The second form of the First Approximation Theorem makes a statement
on the values of a polynomial assumed in a sequence of rational numbers. Be-
fore enunciating and proving this theorem, it is necessary to discuss first a
property of fields with a valuation.

Let K be a field with a valuation w(a), and let Kw again be the comple-
tion of K with respect to w. We say that K has the property D if the follow-
ing compactness condition is satisfied:

(D): Every infinite sequence of elements of K that is bounded with re-
spect to w contains an infinite subsequence which is a fundamental
sequence with respect to w, hence has a limit in Kw.

Let K have this property D, and let

F(x) = F0x
f+Fixf"1+...+ Ff, where f > 1, F0+ 0,

be a polynomial with coefficients in K which has no multiple zero in Kw. Put

G(x) = Fo1F(x) = xf+GiXf-1+G2xf-2+...+Gf, y= t+w(Gi)+w(G2)+...+w(Gf),

so that
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and also G(x) has no multiple zero in Kw. Assume now that x is an element
of Kw such that

w(x) > y and hence w(x) > 1.

Then

w(G1x
f-1+Gax

f-2+...+Gf) ^ (y-l)max(w(x)f-1, w(x)f-2,...,w(x), 1) <

< (y -Dwtx)*'1,

and therefore

w(G(x)s>w(x*) - w(Gixf-1+G2x
f"2+...+Gf) ^

Conversely, it follows that

if w(F(x)) < w(F0), then w(x) «y,

because the first inequality implies that

w(G(x)) = vrCFo1 F(x)) ^ wfFj'MFo) = 1.

Consider now an infinite sequence 2 = {ic'1', ic2', K'S',...} of elements
of K satisfying

lim w(F(/c(k))) = 0.

This assumption implies that

))) < w(F0) and hence

for all sufficiently large k. Thus the sequence 2) is bounded with respect
to w and so, by the property D of K, it contains an infinite subsequence

S1 ={/c(il), /c(ia), /c(is),...}, where i1<ia<i8<..., which is a fundamental
sequence with respect to w and so has a limit

lim K^ (w), = | say,1
k— »°°

in Kw. However, polynomials in K[x] are continuous functions with respect
to the metric on K defined by w, and therefore

F(5) = lim F(K(ik)) = lim F(<c(k)) = 0.
k_»oo k— »<»

This means that £ is a zero of F(x), hence that F(x) is divisible by the
linear polynomial x-£ ,

where Fi(x) is a polynomial with coefficients in Kw. It is obvious that



THE FIRST APPROXIMATION THEOREM 127

because otherwise £ would be a multiple zero of F(x). From the continuity
of the polynomial Fi(x), it follows that

lim Fi(KVkO = Fi(£)*0 (w),

and hence that

v) 4s 0 for all sufficiently large k.

There is no loss of generality in assuming that this inequality holds for all
suffixes k, Hence a positive constant 74 exists such that

)) £ yf1 (k = 1,2,3,...).

The equation

leads therefore at once to the following result.

Lemma 1: Assume that K has the property D. Let F(x) be a polynomial
in K[x] which has no multiple zeros in Kw, and let S = {*W, *W, K(*\..}
be an infinite sequence in K such that

lim w(F(*(k))) = 0.
k->°o

There exist an infinite subsequence S1 = {irll% K™\ *risV..} of S, a
zero g of F(x) in Kw, ane? a constant n > 0 SMC& ^o^

w(/c(ik)-g) ^ nw(F(fc(ik))) (k = 1,2,3,...).

11. Two applications of Lemma 1.

In Lemma 1 choose for K the rational field F and for w(a) either the
absolute value |a| or any p-adic value |a|p where p is an arbitrary
prime. The completion Kw becomes then either the real field, or the
p-adic field.

Both the real field and every p-adic field have the compactness property
D1 . Hence the following two results are contained in Lemma 1.

1This is a classical theorem in the real case, and it may be proved in the p-adic case as
follows.
Denote by 2)= {K^, j^W, K($9 . . .} any bounded sequence of p-adic numbers. Let its
elements, without loss of generality, be p-adic integers; thus they can be written as
series

«**= a^ + a<P P+ a<£> P2+. . . (p) <k= 1,2,3, . . .)
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Lemma 2: Let F(x) be a polynomial with rational coefficients which has
no multiple zeros, and let S = {K^' , /r2^, fr3',... } be an infinite sequenceno
of rational numbers such that

lim

There exist an infinite subsequence Sf = {tc^\ jc , ic ,...} of S,
a real zero | of F(x), and a constant yi > 0, such that

kftk).{|<yi|F(jcftk))| for all k.

Lemma 2': Le* F(x) be as in Lemma 2, and let S = {«W K® K^, ... }
be an infinite sequence of rational numbers such that

lim|F(K
(k))|p = 0.

k— »«> F

There exist an infinite subsequence S" = {*(Jl\ fi*\ $3\...} of S, a
p-adic zero £p o/ F(x), and a constant y2 > 0, such that

for ^ k-

The second lemma may be extended to g-adic values and g-adic numbers,

Lemma 3: Let F(x) be as in Lemma 2, and let S = {K(I] K^, K®,...}
be an infinite sequence of rational numbers such that

lim I F(*(k)) !„ = ().
k-

There exist an infinite subsequence S1" = {fc(hl), ic(h2), K(hs),...} of S,
a %-adic zero E of F(x), and a constant ys > 0, such that

for all k.

Proof: From the hypothesis and the definition of the g-adic value, it
follows that also

where the digits a^ assume only the values o, 1,. . ., p-1. The set of the first n digits
of each KW has thus only pn possibilities. It follows that it is possible to select suc-
cessively

an infinite subsequence ^ = {K^, 1$, 1$, . . .} of L.

an infinite subsequence Z, = {$, $, $, . . .} of %

an infinite subsequence % = {icty, $, '$, . . .} of Ly etc.,

such that, for every n, the n first digits of all elements of Zn are identical. The diag-

onal sequence L'= (tc^, K^\ ^ , . . .} is still a subsequence of L, and it has the

property that, for every n, the first n digits of all but finitely many of its elements are
identical. Hence 2' is a fundamental sequence, as asserted.
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lim
k—>°°

We now apply Lemma 21 repeatedly, once for each prime factor p] of g.

First, there exist an infinite subsequence Si = {K , K , JT ,...} of
S, api-adiczero £1 of F(x), and a constant y(0 >0, such that

for all k.

2 i )Secondly, there exist an infinite subsequence S2 = ...
of Si, a p2-adic zero £2 of F(x), and a constant y W > 0, such that

p2 forallk,

while, naturally, also

I <c(h2k)- «i !PI * r(1) I F0c(h2k>) |pj for aU k.

Continuing in this manner, we obtain for every suffix j=l, 2, ...r an infinite

sequence Sj = frM, K(^\ fc(hi3),.-}, where

Si 2 S22 ... 2 Sri
apj-adiczero gj of F(x), and a constant y j > 0, such that

|K(hjk)-*ilpi^ yft)lF&c(hlk))liil for i=l,2,...,j andfor all k.

Let S t f f be the sequence Sr; further put

/ logg logg \
maxU(1)eilogpl (r)erlogpr )maxyy ,..., y / ,

and denote by E the g-adic number

S —(?!,..., |r),

which is algebraic and a zero of F(x). We have then

max

for all k

and hence

logg \ f logg 1
^^^lg10^1^ max ^ (y

(i)|F(^hrk))lp>1OgPi f
i=l,2,...,r ^ j

for all k,

whence the assertion.
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12. The property A'd.

As earlier in this chapter, let again

F(x) = Fox* + Fix*'1 + ... + Ff, where f > 1, F0* 0, Ff * 0,

be a polynomial with integral coefficients which does not vanish at x=0 and
has no multiple factors, hence also no multiple zeros in any extension field
of the rational field. Further denote again by $ a real zero and by S a
g-adic zero of F(x), and by p and or two positive constants. Finally let
again S = {ft'1', /c'2', /r3',...} be a sequence of distinct rational numbers

«W - 5jjJ + 0 of heights H<k> = maxdP^I, |Q(k>|)

such that

P (k>*0,Q (k )+0, (P<Vk))=l.

For d=l, 2, or 3, we define a property A^ of S as follows.

The sequence S is said to have the property Ad if for d=l: There exist
two positive constants p and ci such that

(Ai): I F(*(k)) | « cl H(k)"p for all k;

for d=2: There exist two positive constants or and c'2 such that

(Ai): |F(K(k))lg < ciH^"0" for all k; and

for d=3: There exist four positive constants p, cr, ci, and cL such that

(A'3): |F(K
(k))U ciHW-p and |F(*(k))|g ^ ciH(k)"a for aU k.

The property As includes therefore both properties Ai and Ai .
The two properties A<j and Ajj are closely connected, as the following

lemma shows.

Lemma 4: If the sequence S has the property Ad with respect to {, or
S9 or | and S, then it also has the property A^ with respect to F(x).
Conversely, if S has the property Ajj with respect to F(x), then there
exist an infinite subsequence Sf of S and either a real zero £ of F(x),
or a g-adic zero S of F(x), or both, such that S1 has the property Ad
with respect to 4, or to S, or to both 4 and S.

Proof: First let S has the property Ad- The quotient

is a polynomial in x and y with integral coefficients. Evidently

I F(K
(k)) | = U«-« | |*(K

(k),«) I if d=l or 3,

I F(/c(k)) | - | «W- S| _ |*(/c(k), S) | _ if d=2 or 3.'g
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Further, by the hypothesis,

K^ has the real limit £ if d=l or 3,
(k)

KV ' has the g-adic limit S if d=2 or 3.

This means that S is a bounded sequence with respect to the absolute or
g-adic values, and hence that the numbers

l*(jc^,{)| for d=l or 3, and \^k\S)\s for d=2 or 3

are bounded. Let their upper bounds by Fi and r2 , respectively; it follows
then that S has the property Ad with the constants

ci = ciTi and ci = car2 ,

respectively.
Secondly let S have the property Ajj. If d=l or d=2, the assertion is

contained in Lemmas 2 and 3, respectively. If, however, d=3, both lemmas
must be applied one after the other. First, by Lemma 2, there is a real
zero £ of F(x) and a subsequence Si of S which has the property Ai with
respect to £ . Secondly, by Lemma 3, there exists also a g-adic zero S of
F(x) and a subsequence Sf of £1 which has the property A2 with respect to
S. Since S1 still has the property Ai with respect to £ , it has then the
property A3 with respect to both £ and S, whence the assertion.

13. The second form of the First Approximation Theorem.

By combining the lemma just proved with the first form of the First Ap-
proximation Theorem we immediately obtain the following second form of the
theorem.

First Approximation Theorem (II): Let F(x) be a polynomial with inte-
gral coefficients which does not vanish for x=0 and has no multiple
factors. Let p, a, X, in be real constants satisfying

p > 0 , a>0, 0 < X < 1, O ^ j u t ^ l ;

let ci, c!
2, c8, c4 be positive constants; and let gf & 2 and gM ^ 2 be

fixed integers. Finally let S = -fro1/ K\2\ K^,...} be an infinite sequence
of distinct rational numbers

K(k) = ? * 0, where P(k)+ 0, Q(k)+ 0, (P(k),Q(k)) = 1,

with the following two properties.

(A|j): For all k,

t/d=l,

)-ff t/d=2,



132 LECTURES ON DIOPHANTINE APPROXIMATIONS

|F(ie(k))l * ciH(k)-p and |F(*(k))|g * ciH(k)-a if d=3.

(B): For all k,

and

Then

for d=l,

v ^ \+p, for d=2,

p+a ^ A. + JU for d=3.

Proof: It suffices to apply the first form of the theorem to the sequence
2' and the zero or zeros $ , E obtained by Lemma 4.- By the same lemma,
the new second form of the theorem implies also the original first form; both
forms are thus equivalent.


