
Chapter 1

VALUATIONS AND PSEUDO-VALUATIONS

It is shown in abstract algebra that there are only the following two dis-
tinct types of simple extensions of a field K.

A simple transcendental extension of K is obtained by adjoining an in-
determinate x to K and forming the field K(x) of all rational expressions in x
with coefficients in K. Apart from isomorphisms there is only one such ex-
tension of K.

Next there are the simple algebraic extensions of K of which there may
be many. These may be obtained as follows. Denote again by x an indeter-
minate, further by K [x] the ring of all polynomials in x with coefficients in
K, and by f(x) an element of K[x] which is monic (i.e. has highest coefficient
1) and irreducible over K. The polynomials divisible by f(x) form a prime
ideal p in K[x]. Divide the elements of K[x] into residue classes modulo p
by putting two elements into the same class if their difference is in p. These
residue classes form together the residue class ring K[X]/JI which, in fact,
turns out to be a field. Furthermore, the residue class, \ say, that contains
the polynomial x, satisfies the equation f (£) = 0. In this way K has been ex-
tended to a field K[x]/p = Kg) in which the equation f (£) = 0 has at least one
root (; . Apart from isomorphisms there is again only one such extension;
but different monic irreducible polynomials f(x) will generate different simple
algebraic extensions.

The construction of both extension fields K(x) and K(£) does not require
that K was already imbedded in a larger field, and it uses only algebraic pro-
cesses. More important for the theory of Diophantine approximations is a
non-algebraic method of field extension that is based on ideas from topology.

This non-algebraic method is applied already in elementary analysis
where it serves to extend the field F of the rational numbers to the larger
field P of the real numbers. Of the different variants of this method we se-
lect the one which has the advantage of easy generalization.

Define a real number a as the limit

a = lim am
m—•* oo

of a convergent sequence {am} = {ai > aa, as,...} of rational numbers; here the
sequence is said to be convergent or a fundamental or Cauchy sequence if

lim |am-anl=0.
m—>°°
n—*°°

Further two fundamental sequences {am} and {bm} have the same limit if and
only if

lim lam-bm 1 = 0,
m—*«>

and the special sequence {a, a, a,...} has the rational limit a.
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4 LECTURES ON DIOPHANTINE APPROXIMATIONS

In this manner the rational field F becomes inbedded in the real field P.
We may now study subfields of P, and in particular simple extensions F (a) of
F where a is any chosen element of P. This construction of a simple exten-
sion of F naturally is completely different from that by the abstract algebraic
method. It becomes now an interesting problem to decide whether T(a) is a
transcendental or algebraic extension of F, or, as we say, whether a is a
transcendental or an algebraic real number. This problem will be studied in
several of the later chapters.

1. Valuations and pseudo-valuations.

The construction Just mentioned of the real numbers depends essentially
on the fact that the function |a| is a valuation of F. Here a valuation w(a) of
an arbitrary field K denotes any real-valued function of the elements a of K
which has the following properties,

(1): w(0) = 0, but w(a) > 0 if a 4 0;

(2): w(ab) = w(a)w(b) (product equation);

(3): w(a=Fb) < w(a)+w(b) (triangle inequality).

If w(a) has the properties (1) and (3), but instead of (2) satisfies the
weaker relation

(2f): w(ab) ̂  w(a)w(b) (product inequality),

then w(a) is said to be & pseudo-valuation of K. It is clear that every valua-
tion is also a pseudo-valuation; but the converse need not be true.

From these definitions the following properties follow easily. When w(a)
is a valuation:

W(T 1) = 1, w(-a) = w(a),

w(a) - w(b) ^ w(a-b) ^ w(a) + w(b), |w(a) - w(b) I * w(a-b),

w(ft aj) = n wfa,,), wf 2 a*} * E
V=l / *=1 " \v=i I v=

When w(a) is a pseudo-valuation:

W(T 1) £ 1, w(-a) = w(a),

w(a) - w(b) < w(a-b) < w(a) + w(b), |w(a) - w(b) I < w(a-b),

w( S aj\ < n w(a^), w ( 2 sty) < Z
\v=l I v=l \i;=l / i;=

Here n may be any positive integer.
Each field has at least one valuation, viz. the trivial valuation defined by

0 if a = 0,
w0 (a) =

1 if a 4 0.
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For the trivial valuation the triangle inequality (3) holds in the strengthened
form

Wo(aTb) ^ max{wo(a), Wo(b)].

This we express by saying that wo(a) is Non-Archimedean. More generally,
any valuation or pseudo-valuation w(a) of K is called Non-Archimedean if

(3') : w(aTb) ^ max[w(a), w(b)] ;

but w(a) is said to be Archimedean if this inequality is not satisfied for all
a and b. Thus the valuation |a| of F is Archimedean.

2. The p-adic valuations of r.

In addition to |a| and w0(a), the rational field F possesses yet infinitely
many other valuations. For let p be any one of the infinitely many primes
2,3,5, ..... Denote by |a|p the function on F defined as follows,

(i): l o l p - 0 ;
(ii): if a 40 is any other element of F, let n be the unique integer such than

p-n a = - where both integers r and s are prime to p; then puts

It is not difficult to prove that | alp is a valuation of F, and that it is Non-
Archimedean. For | a |p has the property (1); and if at least one of a and b
vanishes, then properties (2) and (31) are trivially satisfied. If, however,
both a 4 0 and b 4 0, let v be the integer such that p~v b = B. where p and or
are prime to p. Now (2) follows from ff

since rp and SCT are prime to p. Assume further that, say n *&v. Then

p-n(aTb) =j*L±jp!o

where sa is prime to p, but ra T pI/"nsp may still be divisible by a posi-
tive power of p, so that

We call |a|p the p-adic valuation of F, and also say that |a|p is the
p-adic value o/a.

If q is an arbitrary prime, evidently

hip- -
1 if q4p .

This means that p-adic valuations belonging to different primes p are distinct.
Therefore F possesses an infinite set of distinct valuations,

w0(a), |a|, |a|p for all primes p.
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These valuations are related to one another by the

FUNDAMENTAL IDENTITY: |a| U |a|p = w0(a) if ae F,
P *

a formula which is equivalent to the fundamental theorem of arithmetic on the
unique factorisation of integers. The product H in this identity runs over all
primes; note that for a ^ 0 all but finitely many of the factors la L are equal
tol.

Of particular interest is the case when a is an integer distinct from
zero when evidently

Wo(a) = 1, lal^l, |a|p < 1 for all primes p.

Denote by pi, p2,...., pr an arbitrary set of finitely many distinct primes.
The fundamental identity leads then immediately to the

FUNDAMENTAL INEQUALITY: |a| H |a|p. *1.

This inequality is basic for our whole theory.
Remark: It is shown in valuation theory1) how valuations of a field K can

be continued into simple algebraic extensions of K. If K is the rational field,
these extensions become finite algebraic number fields A. One finds that,
apart from the trivial valuation, A possesses finitely many Archimedean
valuations and an enumerably-infinite set of Non-Archimedean valuations.
These valuations satisfy again both a fundamental identity and a fundamental
inequality very similar to those for F. It is therefore possible to develop a
theory of Diophantine approximations over A which is completely analogous
to that over F which is treated in these lectures. Very little new is re-
quired for the more general theory; but formulae naturally become rather
more involved. For this reason I shall not deal with the more general theory
except in Appendix C.

3. A further example.

There is yet another class of fields for which a theory of Diophantine
approximations may be developed. This are the simple transcendental ex-
tensions K = S(x) of an arbitrary field S.

Of main interest for the theory are those valuations of K that become
identical with the trivial valuation when a lies in the ground field S. The
following construction produces infinitely many of them.

Denote again by S[x] the ring of polynomials in x with coefficients in S;
let further p be any "prime", i.e., a monic irreducible polynomial in S[x],
Also let 0 be a real constant such that 0 < 6 < 1.

If r 4 0 is an arbitrary element of £[x], we shall write deg r for the
degree of r and ordp r for the order of r at p, i.e., the largest integer g
such that pS is a factor of r.

Every element a =1= 0 of K may now be written in a unique way as a
quotient a = § of two polynomials r and s in S[x] that are relatively prime
and where s is monic and not the zero polynomial. In terms of r and s put

1. See e.g. the 10th chapter of Modern Algebra by van der Waerden.
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0 if a = 0,

0 degs-degr if a M>

0 if a = 0,

00rdpr-ordps tf a ^ Q

There is no difficulty in proving that these two functions of a are Non-Archi-
medean valuations of K and that

wo(a), ||a||, I (a I |p for all "primes" p

form a system of distinct valuations. One may adapt Euclid's method for
proving that there are infinitely many rational "primes" and so prove2 that
this system has infinitely many elements.

Since the polynomials in S[x] satisfy the law of unique factorisation.into
"primes", there is again a fundamental identity. It takes in this case the
form

where the product II extends over all "primes" p. There is also a funda-

mental inequality: if pi , p2 ,..., pr are finitely many distinct "primes" and
a ^ 0 is an element of S[x], then

IklljJ IkllJ"* * 1 .

These two properties allow to develop a theory of Diophantine approxi-
mations over K = S(x) which proves to be very similar to that for T treated
in these lectures. Although we shall not deal with this theory, the valuations
of K will occasionally be used by way of example.

4. Valuations and pseudo- valuations derived from given ones.

Let K be any field and w(a) any valuation or pseudo-valuation of K. If
X is any constant such that

0< \ < 1,

put

w*(a) = w(a)\

Then w*(a) is likewise a valuation or pseudo- valuation of K, respectively.
For that w*(a) has the properties (1) and (2) or (2f ) is obvious, but we

still have to prove that also the triangle inequality (3) is satisfied. Now one
shows easily that if x and y are non-negative real numbers, then3)

Hence from the properties (1) and (3) of w(a),

2. If pi, pai. . ., pr are finitely many distinct "primes" in S [x], pipa . . .pr +1
is divisible by a ''prime" distinct from the given ones.

3. For fixed x ^ 0 and variable y > 0 the function f (y) = (x + y)^ - y^ has the

derivative --p* = \{(x +y)^~:Lyk-1} <o. Hence f (y) assumes its maximum at y = 0,

and this maximum is f (0) = x\
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w*(a+b) = w(a+b)x < {w(a) + w(b)}x ̂  w(a)x + w(b)x = w*(a) + w*(b),

as asserted.
If w(a) is Non- Archimedean, this proof becomes superfluous. It is, in

fact, now obvious from (3f) that, if X is any positive constant, w*(a) = w(a)x

is likewise a Non- Archimedean valuation or pseudo- valuation, respectively. -
Next let Wi (a) ,..., Wr(a), where r ^ 2, be finitely many valuations or

pseudo-valuations of K. Then the maximum

,3=1,2,. ,.,r
is again a pseudo- valuation of K.

For ws(a) trivially has the property (1). Next,

ws(ab)= max wj(ab)< max Wi(a)wi(b)^ max wi(a) . max Wi(b) =
j=l,2,...,r j=l,2,...,r J j=l,2,...,r j=l,2,...,r

=ws(a)ws(b),

and so w^(a) has the property (2T). Finally,

ws(a=Fb)= max wj(aTb)< max (wj(a)+wj(b)}<
j=l,2,...r j=l,2,...,r

ax Wj(a)+. max Wj(b)=ws(a)+wy(b),
,2,...,r J j=l,2,...,r J * ^

which shows that ws(a) also satisfies the triangle inequality (3).
We say that w^(a) is the sum of Wi (a),..., wr(a), and we call Wi (a),...,

wr(a) the terms of ws(a).
If all these terms are Non -Archimedean, it is again easy to see that their

sum is likewise Non- Archimedean; for now

= max

=max

max max{wj(a),Wjfti)} =
j=l,2,...,r

max Wf(a), max wi(b)7=max{ws(a),W2;(b)}.
j=l,2,...,r j=l,2,...,r J

Of particular interest for us is the case when all terms Wi (a),..., wr(a)
of ws(a) are valuations. This does not imply that w^(a) is necessarily also
a valuation. For instance, in the trivial example

K = r, ws(a) = max(|a|, |a|¥),

we have

ws(f-) = (*•)*, ws(2) = 2, ws(f 2) = 1 ± (|-)^-2.

But although ws(a) need not be a valuation, it does have two simple prop-
erties that a general pseudo-valuation need not have:

(I): If n is a positive integer, then for all a in K,

ws(a
n) = ws(a)n.

(II): // g =(= 0 is an element of K such that

... = Wr(g) = WS(g),
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and if a is an arbitrary element of K, then

ws(ag) = ws(a)ws(g)

and more generally,

wj^ag11) = ws(a)ws(g)n for all integers n.

These properties follow immediately from the product equation (2) for the
terms Wj(a) of w^(a).

By way of example, the rational field F has the pseudo- valuations

and

max( la l X I a l^1 la l&r }UldA.V|d| , | a, |p ,..., l**lpl, /

where pi,..., Pr are finitely many distinct primes and X, Xi,..., Xr are real
constants satisfying

0<X * 1, X i > 0 , ... ,Xr >0.

These pseudo-valuations of r have then the properties (I) and (n).
The constructions of this section are by no means the only ones that al-

low to derive new valuations or pseudo-valuations from given ones, but they
suffice for the purpose of these lectures. For other operations the reader is
referred to a joint paper by P. Cohn and myself4).

5. Bounded sequences, fundamental sequences, and null sequences.

In the next few sections we shall now generalise the method of the intro-
duction for defining real numbers as limits of convergent sequences of ration-
al numbers.

Let K be an arbitrary field with the valuation or pseudo-valuation w(a),
and let

be an arbitrary infinite sequence of elements of K.
Such a sequence is said to be a bounded sequence with respect to w(a) if

there exist two positive numbers p and M such that

w(am) < M for all m ^ p;

it is said to be a fundamental sequence with respect to w(a) if, given any
e > 0, there is a positive number q(e) such that

w(am-an) < e for all m ^ q(e) and all n ^ q(e);

and it is said to be a null sequence with respect to w(a) if, given any e > 0,
there is a positive number r(e) such that

w(am) < e for all m ^r(e).

4. Nieuw Archief voor Wiskunde (3), 1 (1953), 161-198.
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It is obvious that z/ {am} is a bounded, or a fundamental, or a null se-
quence, then

{-ai» -a2, -as,—}
is a sequence of the same kind. The following lemmas also are easy con-
sequences of the definitions.

(a): Every fundamental sequence is bounded.
For let p be an integer not less than q(l), and let m ^ p. Then

w(am) = w{ap + (am-ap)} < w(ap) + w(am-ap) < w(ap) + 1, = M say.

(b): Every null sequence is a fundamental sequence.
For let m ^ r(f-e) and n ^ r(|-e). Then

w(am) < re, w(an) < f-e, w(am-an) ̂  w(am) + w(an) < |-e + f-e = e.
(c): If {am} is a fundamental sequence, but not a null sequence, there

exist two positive numbers s and N such that

w(am) > N for all m ^ s.
For assume that {am} is a fundamental sequence, but that there are no

such numbers s and N. Then, however small e > 0 is chosen, there exist
arbitrarily large suffixes n such that w(an) < je. There is then also a
suffix n of this kind satisfying n ^q(f-e), and now also

w(am-an) < |-e for all m^q(f-e) .
Hence, for all m ^q(|-e),

w(am) = w{an+(am-an)} * w(an) + w(am-an)< f-e + ^-€ = e,
and so {am} is a null sequence.

In the next two lemmas we denote by p', M1, qf(e), and r f(e) the numbers
corresponding to p, M, q(e), and r(e), respectively, that belong to the second
sequence {bm}.

(d): If {am} and {bm} are fundamental sequences, so are

{am+bmK {am-bm}i and {ambm}.
For first,

w{(amTbm)-(an
:Fbn)}=w{(am-an)=F(bm-bn)hw(am-an)+w(bm-bn)<i-€+|-€ = e

provided that

m ^max{q(re), qf(|-e)} and n ^max{q(|-e), qf(|-e)}.
Secondly, by (a) the sequences are bounded and therefore

w(ambm-anbn)^(am-an)bm+an(bm-bn)}^w(am-an)w(bm)+w(an)w(bm-bn)<

provided that
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^ I I € \ t/ € \ fl
m > max q[-^n= 1, qf[ «^ 1 , p,pf and

(e): If {am} and {bm} fl^e ̂ ^^ sequences, so are {am+bm} «^ {am-bm}
If {am} te « null sequence, and {bm} te bounded, then {ambm} te fl
null sequence.sequence.
The first assertion holds because

w(am) + w(bm)< g c + 2C = c is m * mH3\2c) >r \2e) J

and the second one because

w(ambm) * w(am) w(bm) < ^ M1 = e if m > max rh^ j , p1 .

6. The ring {Kjw and the ideal j> .

Denote by {K}W the set of all fundamental sequences of K with respect
to the valuation or pseudo- valuation w(a). On account of (d) we may then de-
fine for the elements of {K}w operations of addition, subtraction and multi-
plication by the formulae,

{amMbm} = {am+bm}» {am}- {bm} = {am-bm}i {amHbm} = {ambm} -
It is easily verified that, with respect to these operations, {K}w satis-

fies the commutative, associative, and distributive laws of addition and multi-
plication, and that subtraction is the inverse operation to addition; further

{0} = {0,0,0,...} and {1} = {1,1,1,...}

are the zero and unit elements of {K}w. Since, e.g.

{1,0,0,0,...} {0,1,0,0,...} ={0},

{K}w is then a commutative ring with unit element, but is neither a field nor
even a domain of integrity on account of these zero divisors.

Let ft denote the subset of {K}w consisting of all null sequences.

(f): The set p is an ideal of {K}w. // w(a) is a valuation, then jt is a
prime ideal of Ww.
From (e), if {am} and {bm} are elements of p, so are {am} + {bm} and

{am} - {bm}; if further {am} belongs to f and {bm} to {K}m, then {am}{bm}
is an element of f. Hence jt is an ideal.

Next assume that w(a) is a valuation. It suffices to show that if {am}
and {bm} belong to {K}w, but not to p, then their product likewise is not an
element of p . By fc), the hypothesis implies that there are four positive
numbers s, N, s' , and N* such that

w(am) > N if m ^s and w(bm) > N» if m ̂ s1.

Hence

w(ambm) = w(am)w(bm) > NN1 if m ^ max(s,sf),

and hence {am} {bm} is not a null sequence.
When w(a) is not a valuation but only a pseudo-valuation, this proof is

not valid, and then p need not be a prime ideal.
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7. The residue class ring Kw.

If the difference {am} - {bm} = {am-bm} of two fundamental sequences
{am} and {bm} lies in p , i.e., is a null sequence, then the two sequences
are said to be congruent modulo p , and we write

{am} = {bm} (mod *t), or simply {am} ={bm}-

This is in agreement with the usual notation of congruence modulo an ideal.
It is also well known that such congruence is an equivalence relation; i.e., in
the present case the following three laws hold:

{am} s{am}j

if {am} s {bm}, then {bm} s {am};
if {am} s {bm} and {bm} a {cm}, then {am} a {cm}-

For {am} - {am} = {0} is a null sequence; if {am} - {bm} is a null sequence,
so is {bm} - {am} = -({am} - {bm}) > and if {am} - {bm} and {bm} - {cm} are
null sequences, so is

{am} - {cm} = ({am} - {bm}) + ({bm} - {cm}) .
On account of this property, we may subdivide the elements of {K}w

into classes by putting into the same class all fundamental sequences that
are congruent modulo ft to one given fundamental sequence. Denote by Kw
the set of all such residue classes modulo ft; in the notation of algebra,

Let a and 0 be two elements of Kw, and let, say, {am} and {afm} be
any two fundamental sequences in the residue class a and {bm} and {bm}
any two fundamental sequences in the residue class |3. Hence both
and {bm-b'm} are null sequences. It follows then that also

{(anrFbm)- (am*bm)} = {am-a'm} T {bm-bm}

and

{ambm-ainbm} = {am-am} {bm} + {am} {bm - bm}

are null sequences, and that therefore

{am}-{bm}={am}-{bm}, {am}{bm}

We have thus proved that the residue classes, a+]8, a-)3, and a/3 say,
that contain the fundamental s equences {am+bm}> {am-bm}> and {ambm}>
respectively, remain unchanged if {am} is replaced by any congruent sequence
{am}, and {bm} is replaced by any congruent sequence {bm}.

Hence Kw admits the operations of addition, subtraction, and multipli-
cation and so is a ring. It is also obvious, from the definitions of these
operations, that addition and multiplication in Kw are commutative, associa-
tive, and distributive, and that subtraction is the inverse operation to addi-
tion.

If a is any element of K, the ring Kw contains the special residue class,
(a) say, that is defined by the fundamental sequence {a} = {a, a, a,...}. In
particular, (0) is the zero element of Kw and is identical with the set of all
null sequences, and (1) is the unit element of Kw. Since, evidently,
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(a) + (b) = (a+b), (a)- (b) = (a-b), (a)(b) = (ab) ,

the elements (a) of Kw form a ring that is isomorphic to K. In fact, they
form afield isomorphic to K, (K) say. For (a) is distinct from (0) if and
only if a k 0, and then (a) has the inverse (a"1 ) because (a)(a"1) = (1).

From now on we shall not distinguish between the element (a) of (K) and
the corresponding element a of K, thus shall identify (K) with the original
field K. It may then be said that the ring KW of all residue classes modulo
p contains K as a subfield. We call KW the completion of K with respect
to w(a).

8. The completion of a field with respect to a valuation.

Of particular interest is the case when w(a) is a valuation.

(g): If w(a) is a valuation of K, then the completion Kw is afield.
It suffices to show that if a is any element of Kw distinct from zero,

there exists a second element of KW, of1 say, such that a a'1 = 1. Let {am}
be an arbitrary fundamental sequence in the residue class a ; since of 4 0,
this sequence is not a null sequence. There are then by (c) two positive num-
bers s and N such that

w(am) > N and hence am 4 0 if m ̂  s.

Put

am = 0 if 1 ^ m <s, am = — if m > s.
am

The new sequence {aĵ } is likewise a fundamental sequence because, for
m ^s and n ^ s,

»«*-"«> - « - - < •<>»-*>•
and hence

w(am-a$) < e if m ^max{q(N2e),s), n ^max{q(N2e),s}.

Denote by a"1 the residue class of {am}. Then a a"1 = 1, since

{am} {am} = {amamK where amam = 1 if m ^ s.
When w(a) is only a pseudo-valuation, K^ in general will not be a

field, but may contain divisors of zero. One such case will soon be discussed.

9. The limit notation.

Let again K be a field, w(a) a valuation or pseudo- valuation of K, and
Kw the completion of K with respect to w(a). It is convenient, and in agree-
ment with the usual convention for the real field, to adopt the following nota-
tion.

If {am} is any fundamental sequence, and if a is its residue class in
KW, then we say that a is the limit of am with respect to w(a) as m tends
to infinity, and we write
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a = lim am (w).m —»oo

From the definition of a, this limit is naturally unique. For the fundamental
sequence of the special form {a} = {a, a, a,...} we have

a= lim a (w)
m—>°°

since this sequence lies in the residue class (a) which we have identified with
the element a of K.

The definition of the operations in Kw immediately implies that, if

]8 = lim bm (w)
m-* <»

is a second limit, then

of + ]8= lim (am+km)(w), « - |3= lim (am-bm)(w), aj8 = lim (ambm)(w).
m—* °o m—* °o m—»°°

Let, in particular, w(a) be a valuation, and assume that ]3 4 0 and that
all bm are distinct from zero. It follows then from (g) that

IS'1 = lim * (w).
m—> °° "iXL

Hence in this case also

? = a fl"1 = lim

10. The continuation of w(a) onto Kw.

Let

a = lim am(w) .
m—»°o

From the definition of a fundamental sequence with respect to w(a),

lw(am) - w(an) | ̂  w(am-an) < c if m ̂  q(e) and n ̂  q(e) .

Hence {w(am)} is a convergent sequence of real numbers, and the real limit

lim w(am), = W(a) say,
m—»°°

exists.

(h): W(a) depends only on a, and not on the fundamental sequence as the
limit of which a is defined.

For let also

a = lim am(w).
m—»°°

Then {am-afin} is a null sequence and therefore

lim w(am-am) = 0.
m—»°°

It follows then that
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0^1 lim w(am)- lim w(am)| = lim |w(am)-w(am)|< lim w(am-am) = 0,
m->«> m-»°o m-**> m-+°o

whence

lim w(am) = lim w(am).
m— » °o

(i): W(a) = w(a) when a is any element of K.
For now a = (a) is the limit of the fundamental sequence {a} and hence

W(a) = lim w(a) = w(a).
m— >°°

(j): W(a ) is a pseudo-valuation of Kw. It is a valuation if w(a) is a val-
uation; it is Archimedean if w(a) is, and it is Non-Archimedean if
w(a) is.

First, the definition of W(a) implies that this function vanishes only if
a = 0 and is otherwise positive. Secondly,

W(aj3)= lim w(ambm)< lim w(am)w(bm)= lim w(am) lim
m— »°o m-»«> m->°° m— »°°

with equality if w(a) is a valuation. Third,

lim w(am=Fbm)^ lim (w(am)+w(bm)) = limw(am)+ lim w(bm) =

<= W(a) + W(/3) .

When w(a) is Non-Archimedean, we have instead

W(ofTj3) = lim w(amTbm) ^ Jim_ max{w(am),w(bm)} :

m—*°°

= max{ lim w(am), lim w(bm)} = max(W(a),
m—>°° m—*°°

and it is trivial that if W(a) is Non-Archimedean, so is w(a).
The valuation or pseudo-valuation W(a) is called the continuation of

w(a) onto the completion Kw. Since Wfe) and w(a) are identical on K, and
w(a) has so far only been defined on K, we shall in future write w(a) for
W(a) whether a is an element of K or of Kw.

11. The elements of K lie dense in Kw.

In real analysis, the limit a of a convergent sequence {am} of rational
numbers satisfies the limit relation

lim I a - an I = 0.
m—*°o

We show now that an analogous relation holds also for K and Kw.
Let

Q? = lim am (w) .
m—*°o
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Since also

it follows that

and hence

an = lim an(w) (n = 1,2,3,...),
m—*°°

tf-an = lim (am-an)(w) (n = 1,2,3,...)
m—>°°

w(a-an) = lim w(am-an) (n = 1,2,3,...).
m—»°°

Now, by the hypothesis,

w(am-an) < e if m ^ q(e) and n ^ q(e),

and therefore

0 < w(a - an) = lim (am-an) <eit n & q(e).
m—»°°

Since e > 0 may be arbitrarily small, this means that

lim w(a - an) = 0.
n—*°°

Thus the elements of Kw may be approximated arbitrarily closely with re-
spect to w(o?) by the elements of K.

12. Fundamental sequences in Kw.

The construction in §§ 5-9 of Kw, the completion of K with respect to
w(a), is independent of the hypothesis that K is afield and remains valid
when K is any commutative ring. In particular, even under this more gen-
eral assumption the following properties still remain true:

Null sequences are fundamental sequences; sum and difference of two
fundamental sequences are fundamental sequences; and sum and difference
of two null sequences are null sequences.

Let us apply this remark to the ring Kw and its valuation or pseudo-
valuation w(a). We may form "new" fundamental sequences and null sequenc-
es consisting of elements of KW instead of K, and by means of these con-
struct the completion, (Kw)w say, of Kw with respect to w(a). However, as
will now be proved, the "new" fundamental sequences have already limits in
Kw itself, and so this complicated procedure is unnecessary.

(k): Let {am} = {ai, a2, a3,.«-} be ajundamental sequence of Kw with
respect to w(a). There exists an element a. of Kw such that

lim w(a-am) = 0.
m—»oo

By what was proved in § 11, we can find for each am an element am of
K such that w(«m-am) is arbitrarily small, say

w(am-am) < -5 (m = 1'2'3>—)•

The sequence
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is therefore a "new" null sequence and hence also a "new" fundamental se-
quence. The difference of the two fundamental sequences,

{ami = {^m} - {«m"am}
is therefore likewise a "new" fundamental sequence. But since its elements
am belong to K, and because w(ff) is the continuation of w(a), it follows that
{am} is a fundamental sequence of K with respect to w(a). Let

a = lim am(w)
m—»«>

be its limit in Kw. Then, by § 11,

lim w(ff-am) = 0,
m—>°°

so that {of-am} is a "new" null sequence. But then the difference of the two
null sequences

{a-flm} = fa-am} - {«m-am}

is likewise a "new" null sequence, whence the assertion.
This result shows that every "new" fundamental sequence {am} differs

only by a "new" null sequence {a-flm} from a "new" fundamental sequence
of the special form {a} = {a, a, a,...} where aeK. Thus the completion (Kw)w
of KW is isomorphic to, and may be identified with, Kw. We may also write

a = lim om(w),
m—>«>

just as is done in real analysis. Then these "new" limits satisfy the same
rules as did the limits of fundamental sequences {am} of K. It is for these
reasons that KW was called the completion of K with respect to the valuation
or pseudo-valuation w(a).

13. Equivalence of valuations and pseudo-valuations.

Let again K be a field, and let w(a) and w' (a) be two distinct valuations
or pseudo-valuations of K. We say that w(a) and w! (a) are equivalent and
write w(a)~w'(a) if every null sequence of K with respect to w(a) is also
a null sequence with respect to wf (a), and vice versa.

This definition implies that also every fundamental sequence of K with
respect to w(a) is a fundamental sequence with respect to w* (a), and vice
versa. For assume jam} were a fundamental sequence with respect to w(a),
but not with respect to w* (a). There would then evidently exist an infinite
sequence of pairs of suffixes

(mi,ni), (m2,n2), (m3,n3),...

such that

^im mk = lim n^ = «>,

and that further
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is a null sequence with respect to w(a), but not with respect to w'(a)» against
the hypothesis.

It follows that equivalent valuations or pseudo-valuations w(a) and wf(a)
generate identical and not only isomorphic completions of K: KW=KW< . From
the standpoint of valuation theory alone there would then be no need to dis-
tinguish between such equivalent valuations or pseudo-valuations.

Two equivalent valuations w(a) and wT(a) can be proved to be connected
by an identity

w'(a) = w(a)x

where X is a positive constant. Such a simple relation need not hold between
two equivalent pseudo-valuations. For instance, in the case of the rational
field T,

|a| andmax(|a|, |a|*)

are equivalent. This trivial example also shows that a valuation may well be
equivalent to a pseudo- valuation.

14. The valuations and pseudo-valuations of F.

The relation w(a)~w'(a) is an equivalence relation in the algebraic
sense. We may therefore subdivide all valuations and pseudo-valuations of
a given field K into equivalence classes, and then the problem arises of
determining all distinct equivalence classes.

A. Ostrowski was the first to determine a full system of nonequivalent
valuations of any finite algebraic number field5), and I did the same for the
classes of non- equivalent pseudo-valuations of such a field6 ).

For our purpose the most important case is that of the rational field F.
Then the result is that every valuation of T is equivalent to one of the valua-
tions

Wo(a), |a|, and |a|p
where p runs over all primes p = 2, 3, 5,...; and every pseudo-valuation of
F which is not already equivalent to one of these valuations must be equiva-
lent to a pseudo-valuation of the form

Wl (a) = max( |a ) , . . . , |a| or wa(a) = max(|a x

Here PI,..., Pr are finitely many distinct primes, with r ^ 2 in the case of
Wi(a) and r **1 in that of w2(a); and X, Xi,..., Xr are constants satisfying

0 < X *1, Xi > 0,..., Xr > 0.

An alteration of these constants has only the effect of replacing Wi(a) or
w2(a) by an equivalent pseudo- valuation, and so, from the standpoint of
valuation theory, it would suffice to put

5. Acta math. 41 (1919), 271-284.
6. Acta math. 67 (1936), 51-80.
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X = Xi = ... = Xj» = 1.

However, for the later applications to Diophantine approximations, a different
choice of these constants is of advantage.

For let g ** 2 be an arbitrary integer, and let

g = Pie'...pfr

be its factorisation into a product of powers of different primes Pi ,•••> Pr
with exponents ei ,..., er that are positive integers. Fix now Xi,..., Xr such

that |g |^=. . .= lg£ r - J , i.e., take...
PI Pr

Jog_g_ logg
1 erlogpr '

and put

log g log g

|a|g=max(|a|£logpl,..., lalj10"*)

and

log g log g

|a|g* = max(|a|, |a|^logpl ',..., |a|glogpr ) = max(|a|,|a|g).

We call |a|g,and |a|g* the g-adic and the g*-adic pseudo-valuations, re-
spectively, and also speak of the g-adic and g*-adic values of a.

The definition of |a|g implies that

for all a in F and all integers n. This is easily verified and is also con-
tained in the property (II) of § 4.

If g' ^ 2 is a second integer, it is obvious that |a|g and |a|gf are
equivalent if and only if g and gf have the same prime factors Pi,..., Pr and
differ only in their exponents; and just the same holds for |a|g* and |a|g»*.
Furthermore,

|a|g = |a|p

if g is a positive integral power of the single prime p.
In these lectures, P will denote the real field, i.e., the completiorkof P

with respect to |a|; and similarly Pp. Pg, and Pg* will stand for the com-
pletions of F with respect to I alp, |a[g, and |a|g*, respectively. Then
Pp, Pg, and Pg* are the field ofp-adic numbers, and the rings of g-adic
and g*-adic numbers, respectively. This field and these two rings were in-
troduced by K. Hensel7 ) in 1892 and have proved of fundamental importance
in many branches of mathematics. *

We shall study the elements of Pp, Pg, and Pg* in detail in the next

7. HensePs little book Zahlentheorie (Berlin 1913), which gives an elementary
introduction to the theory of p-adic and g-adic numbers, may be particularly recom-
manded on account of its many examples of actual computations with such numbers.
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chapter; and they will form both the object and a tool in most of the later
work.

It is clear that, while |a| and |a|g* are Archimedean, I alp and |a|g %
are Non- Archimedean. This was proved for |a|p in §4 and so follows for
|a|g from the definition.

It is sometimes convenient to define |a|g also in the excluded case when
g = 1, by putting |a|i = w0(a).

15. Independent pseudo-valuations.

The g-adic ring Pg and the g*-adic ring Pg* can be decomposed into
finitely many field P and Pp, as was already proved by Hens el7). We shall
prove this decomposition as a special case of a more general theorem on
ps eudo- valuations .

Denote by K a field, by wi (a),..., wr(a) finitely many valuations or
pseudo- valuations of K, and by

1 if h = k,

0 if h 4 k

the well-known Kronecker symbol. Then wi(a),..., wr(a) are said to be in-
dependent if there exists for each suffix h = 1, 2,..., r an infinite sequence

{da(hU(h);dlh),...} in K such that

lim Wk(dj?- 6hk) = 0 (k = l,2,...,r),

or, what is the same, that

ejik = lim djj (wk) (k = l,2,...,r).
m — >°°

From this definition, it is immediately clear that, if

wi(a)~ wi(a),..., w'r(a)~ wr(a),

then also wi(a),..., wr(a) are independent.
By way of example, let us consider the rational field F. Here the follow-

ing result holds.

(1): y ?!»•••> Pr are finitely many distinct primes, then the valuations

la l , la|pl,..., lalpr

and hence also the valuations

|a|pl,..., |a|pr

are independent.

First, the sequence

\v>\ whprp rf - — Pr)m
lm>, where dm - (plpa ...
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is easily seen to have the limits 1 with respect to I a I and 0 with respect
to |a|pl,..., |a|pr, respectively. Secondly, select for each suffix h = 1, 2,
...,r a positive integer a^ such that

Phh > PiPa-.Pr-
Then it is not difficult to verify that the sequence

/>)} where dfr) (piP2...Pr)m

idm J , where dm/ - (Plp2...pr)m +pahm »

has the limit 1 with respect to lalp^, but is a null sequence with respect to
I a |, as well as with respect to all I a |pk where k 4 h.

Kgi^2,..., gr ^ 2 are finitely many integers which are relatively prime
in pairs, one shows by a similar proof that also

|a|, |a|gl,..., |a|gr

and hence also

|a|gl,..., |a|gr

are independent.

16. The decomposition theorem.

Let again K be a field, and let wi(a) ,..., wr(a), where r ^ 2, be finitely
many independent valuations or pseudo- valuations of K. As in § 4, we put

ws(a) = max[wi(a),..., wr(a)]

and further write

wjtya) = max wk(a) (h = l,2,...,r).

These functions are likewise valuations or pseudo-valuations of K, and
w«(a) is, what we call the sum of Wi (a),..., wr(a).

The following lemma gives the justification for the term of "independent"
valuations or pseudo- valuations.

(m): Let ^eK^,..., areKWp be arbitrary elements of the completions of
K with respect to Wi (a),..., Wr(a), respectively. Then there exists an
infinite sequence {am} in K such that, simultaneously,

lim am = an(wh) ^h = 1>2v>r)«

First, ai,..., ar are defined as the limits

lim a} (wh) (h =
m— »°°

of certain infinite sequences {aW},..., {a^ty in K. Secondly, by the defini-
tion of independence, there also exist r infinite sequences {dm)},..., {dW}
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in K satisfying

) (h,k = l,2,...,r),

In particular, each such sequence {dmT» is a null sequence with respect to
all wk(a) where k ± h, and so it is a null sequence also with respect to

w<2
h>(a).

There exists then, for each h, an infinite sequence of strictly increasing
suffixes mfci, mh2> mh3>— such that

Thus

and hence, from the definition of wyO (a),

(A): Ihn d^ ajh) = 0 (wk) (h,k = l,2,...,r; h*k).

On the other hand8),

? = 1 (wh) (h

so that

(B): ^m d a! = Urn d £m a = 1. «h = «h(wh) (h = l,2,...,r).

On combining (A) with (B), it follows that the new sequence {am} where

ai= Z dmhiaih) (1 = 1,2,3,...)
h=l

has the required limits a\ ,..., ar with respect to Wi (a),..., wr(a), 'respec-
tively.

We finally prove the following decomposition theorem which establishes
the connection between the completions KW, KWl,..., KWr of K.

(n): There is a one-to-one correspondence

8. Let-fbuj} be a fundamental sequence with respect to w(a), and let (bm]}i where
nii < m2 <ms < . . ., be an infinite subsequence of-fb^. Then {to -bm , b2-b

bs-bm » . . .} evidently is a null sequence with respect to w(a), whence
lim bm = lim bmi(w) .

m—»oo l—> oo
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between the elements a of Kws and the ordered sets («i ,..., «r)
of one element in each of KWl ,..., KWr such that, if

a— -(ai,,.., ar) and /3 — -(ft,..., /3r),

$&en also

correspondence is defined by

lim am(ws), a^ = lim am(wh) (h = l,2,...,r),

{am} te a sequence in K wfo'cfe is a fundamental sequence
with respect to all of wi (a),..., wr(a), and ws(a).

• First, we note that it is obvious from the definition of w^(a) that a se-
quence {am} in K which is a fundamental sequence with respect to each of
Wi(a),..., wr(a) is also a fundamental sequence with respect to ws(a), and
vice versa; similarly, if the sequence is a null sequence with respect to each
of Wi(a),..., Wr(a), then it is also one with respect to ws(a), and vice versa.
Now, by lemma (m), the arbitrary elements aj.eKWl ,..., areKWr can be de-
fined as limits

an = lim am(wh) (h = 1,2,. ..,r)
m— » °°

of the same sequence {am} in K, and then the limit

a= lim am(w;s)

defines an element a of Kw^. Conversely, if a is given as the limit with

respect to w^(a) of such a sequence .{am}> then the limits of {am} with re-
spect to wi(a),..., Wr(a) likewise exist and define elements ai,..., ar of
KWl,..., KWr, respectively.

The relation a -*^(ai ,..., ar) is independent of the special sequence
{am} used in the definition of a, ai9..., ar. For if

(C): lim am= lim am(wn) (h = l,2,...,r),
m— *°° m— »°o

then {am-am} is a null sequence with respect to each of wi(a),..., wr(a) and
hence also with respect to w^(a); therefore

(D): lim am = Um a
m— »«)

Conversely, (D) implies again (C).
The formulae for a+0, a-0, and a/3 finally follow at once from the rules

for limits proved in § 9.
If a-*^(ai,..., ar), oJi,..., ar are called the components of a.
All the completions KWl,..., KWr, and KWS are extensions of K, and

every element a of K lies simultaneously in each of these r+1 rings or
fields. For such and only for such elements the correspondence relation takes
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the simple form

a ~ "̂"̂ " \a, a,..., a j.

In particular,

0-~<0,0,...,0) and 1—(1,1,...,!)
are the zero element, and the unit element, of KWs.

We note that, since r ^ 2, KWs is not a field because by

afi = 0, where a—-(1,0,...,0), |3—-*(0,1,...,0),

KWs contains non-trivial zero divisors. This also implies that ws(a) cannot

be equivalent to a valuation since then KW would be a field.
In the special case when Wi(a),..., wr(a) are valuations, the completions

KWl,..., KWr (but, of course, not KWS) are fields. If now

a is divisible by 0, with the quotient

a

The for us must important case of the decomposition theorem concerns
the g-adic and the g*-adic numbers. If g has the distinct prime factors
pi,..., Pr, the correspondence

relates the g-adic number a to the ordered set of one pi-adic number oti ,
one pz-adic number a2j etc., and one pr-adic number ar; g*-adic numbers

ot*++.(a0,ai,..., ar)

in addition have also a real component a0.
The components (a0), «i,-«, «r of a or a* are independent of one

another and may be any numbers in the corresponding fields (P), Ppl ,..., Ppp.
It is thus in general impossible to deduce from properties of one of the
components any properties of the other components.

17. Convergent infinite series.

Let again K be an arbitrary field with the valuation or pseudo-valuation
w(a). As in real analysis, it is convenient to introduce the notion of a con-
vergent series.

The infinite series

GO

Z am = ai+a2+as + ..., where am^K for all m,
m=l

is said to be convergent with respect to w(a) to the sum a if

/ m \
\ E ak? = {ai,ai+a2,ai+a2+a3,...}
lk=l )
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is a fundamental sequence with respect to w(a) of limit a, and it is other-
wise called divergent. From this definition, the series converges if and only
if» given any e > 0, there is a positive number q(e) such that

( m n v
£ ak - £ at) = w(an+i + an+2 + ... + am)< e
k=l k=l /

for all integers m, n satisfying m > n ^ q(e).
Since

w(an+i + an+2 + ... + am) * w(an+l) + w(an+2) + ... + w(am),
00

the series ^ am certainly converges if the series of real numbers
oo

E w(am)
m=l

converges; but the converse need not even be true in real analysis where
w(a)=|a | .

On taking m=n+l, it is also obvious that Y am cannot be convergent
m=lunless

lim am = 0 (w);
m—>°o

but, just as in real analysis, this condition is not in general sufficient for con-
vergence. There is, however, one important case when it is sufficient, viz.
that when w(a) is Non-Archimedean. For now

w(an+l + an+2 + ... + am) ^ max[w(an+l),w(an+2),.-, w(am)].

and so, if {am} is & null sequence with respect to w(a), the righthand side
is smaller than e f or all m > n

In the following chapter these simple remarks on convergent series will
be applied to series for p-adic, g-adic, and g*-adic numbers.

Final remark: The sketch of valuation theory given in this chapter has
been strictly limited to those facts that are to be applied later. For further
study of this interesting and important theory the following texts may be re-
ferred to:

E. Art in, Algebraic numbers and algebraic functions I, Princeton 1951.
H. Hasse, Zahlentheorie, Berlin 1949.
O. F. G. Schilling, Theory of valuations, Math. Surveys IV, Amer. Math. Soc.

1950.
H. Weyl, Algebraic theory of numbers, Princeton 1940.


