
Chapter III

QUANTIFIERS

In this chapter we consider the extension of the ideas in
the preceding chapter to quantifiers. This requires that we
use term extensions in the sense of Chapter I § 8. The principal
difficulty consists in formulating precisely the conditions gov-
erning such term extensions. When this is taken care of, we
shall find that the principal theorems of Chapter II are valid
for the enlarged systems LA*, LC*, etc.; except that the number
of possibilities in the decision process of Chapter II § 6 is no
longer finite, so that the systems are not decidable. The sys-
tem TA* and the predicate calculuses HA* and HC* are considered
in §7.

This chapter contains necessarily a lot of fussy detail. It
will not be needed in the following chapters except for parts
relating to variables and quantifiers.

The treatment is carried out with greater explicitness than
usual.1 Particular attention is paid to the range of variables
for which a theorem is valid. In the theorem of § 8 for example,
it is shown that a theorem can be proved without using any free
variables not occurring in the theorem itself.

Two additional assumptions regarding 6 are introduced at the
end of § 4.

1. Preliminary Analysis. In an intuitive way it is clear
what we want to mean by (x)A(x) and (3x)A(x). We cart get rules
analogous to those in Chapter II § 2 as follows. Let e1 be an
extension of 6, and let x not be a term in G1. Let A(x) be a
proposition of 6»(x) involving x. Then we should say (x)A(x) and
(Jx)A(x) are propositions of 6f; further

a5) (x)A(x) is true in 6« if A(x) is true in 6'(x), x being
an indeterminate in 6»(x).2

a6) (3x)A(x) is in 6' if, for some term t of 6f,A(t) is in
S1.

The parallel rules for introduction as hypothesis are:

b5) B is a consequence of (x)A(x) in 6' if, for some term t
of€>t, B is a consequence of A(t).

1. Gentzen did not formulate the conditions on his "Gegenstandsvarla'blen11

with as much care as he did many other matters.
2. Note this is not the same as saying that A(t) Is true In 6' for every

term t. The latter -would not be Invariant under extension.
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b6) B is a consequence of (3x)A(x) in 61 if B Is a conse-
quence of A(x) i n 6 » ( x ) .

Although these rules are simple enough, yet their precise
working out involves difficulties. Thus, suppose A(x) is.itself
a quantified proposition, say of the form (3y )B(x ,y ) j is it or
is it not in accord with our intentions to admit forming A(t )
when t contains y? One can easily see that it is not. In fact,
the intuitive combination of a5 and b6 admits only such t's as
can replace x in a valid argument o f e f ( x ) . But in ordinary
number theory

(By) • x < y

is intuitively true for all x; on the other hand

(By) . y + i < y
is false.

This example shows that we must exercise care in formulating
rules. Indeed a rather complicated analysis is necessary.3

The analysis is considerably facilitated by the recognition
that the role of "x" in the two statements

A(x) holds in 6f(x)

(x)A(x) holds in 6f

is quite different, Just as it is quite different in the equa-
tions

x + x = 2x

i
/ xdx = 1/2.

We can distinguish two classes of variables, and agree to keep
them separate throughout. Thus we shall use "a", "b", "c" for
the first usage, "x", "y"* "z" for the second. Then the rule
a5, for instance, can be stated: if A(a) is in 6f(a), then
(x) A (x) is in 6 f.

Even with this help, however, we must be quite explicit in
connection with phrases such as "--.-i occurs in 2% " 1 is
bound in 2", " 1 is the result of substituting 2 for

3 in 4", etc. The precise definitions will concern us in
the next sections.

2. Conventions of the B-language. The complexity of the an-
alysis of variables requires that we introduce into the U-lan-
guage some technical terminology. This will be Introduced, of
course, as we proceed; but it will add to clearness if we first
examine It as a whole, and dispose of some matters of a general

3. This conogplexity arises wherever "bound variables occur. For careful
formulations of various Ideas connected with "bound variables the work of
Church should be consulted. See [13].
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nature. The new terminology constitutes a language which will
be called the B-language.

The basic nominal phrases of the*B-language are summarized
in Table 4. Here the symbols in Column 1 constitute the A-lan-
guage of the system 6* (cf. I, § 8) obtained by adjoining the
term variables to 6. The symbols in Column 2 are proper names
for the categories listed at the left. Some of these can also
be used as functors as in Column 3* with arguments taken from
Column 5. Columns 4 and 5 give various classes of U-variables.
Symbols in parentheses are not used until later chapters.

Table 4

Name of Category

Primitive constants

Term variables

Primitive operators

Primitive predica-
tors

Real variables

Apparent variables

Terms

Null class of terms

Elementary proposi-
tions

Propositions

Axioms

Elementary theorems

Theorems

Null class or pro-
sequence

Null system

U-constants

Elements

1

61,62* . . •

qi , qa * • • •

Ul,W2, ...

<Pl 9 VS. » • • •

EI , Ea 9 • . .

(P)(M)

Classes

2

e

<r
£

$
*
f
t
0

®

*
U

6

£

0

0

Subclasses

5

^

t(ii)

<§(u)

HiUUg)
a(u)
e(u)
£U,u)
£(?)

U- variables

Elements

4

u,v,w

a,b,c,f,g,h

x,y,z
r,s,t

A,B,C,

Subclasses
(or sequences)

5

u, b, to

a, b, c,a

£,$,3

£S,3,&,»,8,
K,§.

Besides the notions defined in Table 4, we have already de-
fined in Chapter II the notion of a pro sequence and the follow-
ing predications:

(la) A e X
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(Id) X £ 8

(le) X = 8

(If) A!,...,Am |-B

All but the last of these will be taken over In this chapter
without change. We shall also define here the morphological
predications

(2a) u occurs in t

(2b) u occurs free in A

(2c) u is bound in A,

and the morphological operations

(3a) (Sb')t

(3b) (SbJ)A.

The elementary statements now are (see below)

X I a |-8.

The predicators " --- ie --- 2", " --- 1 S --- 2" will be used in
the customary manner for indicating class membership and class
inclusion respectively; also " --- i = --- 2" for class identity.
This usage does not conflict with (la), (Id), (le) but it is
rather consistent with them. We shall also write the logical
sum of classes a and b as "a + b" or "a,*". Since cardinal num-
bers are not involved, it is unnecessary to distinguish between
a unit class and its sole element.

The predicator " --- i = --- 2" will be used to indicate iden-
tity in meaning; - i.e., if one will, identity of translation
into the A- language. The negation of this relation will be in-
dicated by " --- 1 £ --- 2". Thus we have ei s ej. but ei ̂  e2.
This predicator will also be used in making definitions. The
usage does not conflict with (le) (in view of Remark 4 in II §4)

The letters "i", "j", "k", "1", "m", "n" will be used for
natural numbers (as subscripts, etc.). The predicators
" --- x = --- 2» and " --- 1 ̂  --- 2" will be used in their usual
senses in that connection.

The B- language is not the same as the A- language of any of
the episystems LA, LC, TA, etc. The latter is obtained simply
by adding to Column 1 phrases sufficient to state particular
elementary statements. If we exclude infinite classes and pro-
sequences such an elementary statement for LC* is of the form

Ai,A2,...,Am | ai,a2, . . .,ak |Bi,B2, . . .,Bn.

The B- language is to state not only the elementary statements
but the rules and morphology. Further the B- language is an
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interpreted language. Although we attempt to be precise as to
its use, we do not attempt either to formalize it in any sense
of the word, or to exhaust all the possibilities of the U-lan-
guage in it.

3. Rules for Terms and Propositions. The formulation is
given here in great detail because this appears to be the first
time this has been done explicitly without assuming we are talk-
ing about symbols. Naturally this entails some prolixity. All
that is necessary for the further developments is the validity
of Theorems 1 and 2; and the reader may, if he prefers, take
these as intuitively evident.

PRIMITIVE IDEAS FOR 6* . As stated in I § 8 we suppose that 6
is a completely formalized system. We form 6* by adjoining an
Infinite set of term variables as new primitive terms. Then the
primitive ideas of 6* are as follows:

Primitive terms of 6, (e): ei,e2,e3,...

Term variables (<j): qi,q2,qa,...

Primitive adjunctives: &)i,(i>2,(i)3j • • ., where w^ has m^ arguments

Primitive predicates: <pi,qp2,<p3, • • •» where <pi has n^ arguments.

Primitive propositions: Ei,E2,E3,...

FORMULATION OF 6(«). If u £ q, e(u ) is the system obtained
by confining the term variables to u. Then 6(q) is 6*, while
6(0) is 6. The formulation of 6(u) is then as follows:

I. Terms t (u) :

(a) *S t(u).

00 « S t(«).

(c) If ti,t2,...,tmie t (u), then wi(ti,t2, . . .,tm ) e t(u).
4

II. Elementary Propositions, (§(u):

(a) E± e <i(u) for all (u) C («).

(b) If ti,t2,...,tnie t(u), then

t2,...,tn)e S(u).
5

III. Theoretical Rules. These are the same as for G, and
are assumed to be of the form (6) in Chapter II, where Ai,A2,...,
Am, B are in 6 (u ) .

Certain further assumptions concerning G are stated at the
end of §4.

k. Note that an mi is sttpposed associated with each 01 and an ni with each

*!•
5. Of. the preceding footnote.
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DEFINITION 1. For each u e 4 and t e t (4) we define the
predication

u occurs in t6

by recursion as follows:

(a) If t e e , then u does not occur in t.

(b) If t e q , then u occurs in t if and only if u & t.

(c) If t = «i(ti,t2,...,tm ), then u occurs in t if and only

if u occurs in some tj.

DEFINITION 2. For each u e q and any terms s and t we de-
fine the operation

(Sb-)t

as follows:

(a) (Sb *)e± s e±.

(b) If v e q and v ̂  u, then (Sb^)v= v.

(c) (SbS)uEE s.

(d) If t = O)1(t1,t2,..,,tmi),

and (SbJ)tJ = tjf 3 - 1,2,..., n^5

then (Sbjpt s ttl(ti,ta, ...,t̂).

DEFINITION 3- We define simultaneously the predications

A is in $(u)

u occurs free in A

x is bound in A

as follows: -

(a) If A is in S(u), then A is ln$(u). No variable occurs,
free or bound, in Ê . If

A = 91(ti,t2, ...,tn ),

then u occurs free in A if and only if u occurs in some tj in the
sense of Definition 1, and no variable is bound in A.

(b) If A s BO C, where B e $ ( u ) and C e $ ( u ) , then A • V ( « ) .
The variables which occur free in A are those which occur free
in either B or C or both. Likewise the variables bound in A are
those bound in B or C or both.

6. At a later stage it is desirable to hare also "ei occurs In t." For this
we simgply change (a)("b) to"ei occurs in ei "but not in ej or in any t e ^"
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(c) If A s (x)B or A = (3x)B, where B e$(u,x), x occurs free
in B7 and x is not bound in B, then Ae$(u). The variables which
occur free in A are those which are distinct from x and occur
free in B; those bound in A are x together with those bound in B.

DEFINITION 4. A term belonging to t(c) will be called a
real term; a proposition belonging to ^i(i>) a real proposition.
Likewise a term or proposition of 6(0) will be called a constant.

THEOREM 1. The class sg(u) has the following properties;

(a) For each u e <r and A esg(u) it is definite whether u occurs
in A. If it does occur, then u eu.

(b) If u is the class of all u which occur free in A, where
A e»(«), then A «» (u ).

(c) If uC b , then »(u) C* (»).

The proof of Theorem 1 is by induction on the construction
of A, using Definition J.

DEFINITION 5. For each A e $ (<r), s e t (q) and u e q we define

(Sb 8 )A\ u /

as follows:

(a) If A s E-p (Sb s )A s A.

(b) If A = ̂ (tî ta,...,̂  ),

and (Sb s )tj = t!^ J = 1,2,...,n±;

then (Sb s )A = 91(ti,t
i
2,.. .,t

f
n ).

(c) If A s BoC; then

(Sb^)A =((Sb̂ )B)o((Sb̂ )C).

(d) If A s (x)B or (3x)B, then (Sbl)A ~ A. If u ̂  x, and s
is a real term, or if s = y, y ̂  x, then

(Sb s)(x)B e (x)(Sb s)B
u u

(Sb s)(3x)B • (3x)(Sb 8)B.

Remark. It follows that (Sb 8 )A may not be defined if A con-
tains bound variables and s is a variable bound in A, or if s is
a composite term containing apparent variables.

7. This clause is optional. I shall accept it lor the saice of generality,
although it makes some of the later work slightly more difficult.
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THEOREM 2. The substitution operation has the following
properties;

(a) If u does not occur free In A,

(Sb* )A s A.

(b) If A e8(u,w) and s etU), then (Sb v )A, If defined, is
in

(c) If B e t ( u ) , t E t (b)»and neither u e a nor v e u.then

( S b * ) ( S b * ) A m ( S b * ) ( S b « ) A .

(d) If se t f t t h t e t (b )»and b is not in a,

(SbJ )(Sb* )A . (Sb* ' ) (SbJ[)A,

where t' s (Sba )t.

(e) ( S b £ ) A - A.

Remark. In the following we often represent substitution In
the following more convenient manner. Let As A(U), then:

(Sb")A(u) s A(s).

The statements of Theorem 2 are also true if we replace "A"
by V, and "ip" by "t". The proof is by induction, using Def-
initions 2 and 5.8

8. lor instance the proof of (c) is as follows: We prove first the anal-
ogous formula for a term r, thus: If r is e.j_ or a variable distiict from u,v,

(Sb I ) (Sb *)P 9 (Sb£)rSr-

(ST) v)(ST)u)r s (Sb^Jr = r.

If r m u,

(Sb )(Sb)u= (Sb)u - s;

If r •w1(ri,ijB,...,ijlll)axid if

pj = (Sb B)(SD *)p±; rj m (Sb B)(BD *)p±|

then

.̂ ) s (ST>*)(ST)*)p.

Then if A is %, both sides of (c) are Ej. If the above analog holds for

ri,ite,...,rni, then (c) holds for <P±(PI,. ..̂ r̂ ). Assuming (c) f or B, C, it

then follows for BoC, (x)B, and (3x)B.
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PROSEQUENCES. No changes, other than the obvious ones, are
required in the definition of a prosequence. We shall say that
u occurs free in a prosequence X, if it occurs free in a con-
stituent of X; it is bound in X if it is bound in a constituent

of X. We also define (Sb £)x as the prosequence formed by re-

placing every constituent A of X by (Sb ̂ )A.

4. The Systems LA* and LC*. We modify the formulations of
the systems LA and LC to admit that the rules hold for a term
extension with respect to an arbitrary class of real variables.
The modified systems will be called LA* and LC*; and generally
we shall use a "*" to indicate modification so as to admit quan-
tifiers.

ELEMENTARY STATEMENTS. These are now of the form

where o is a class of real variables, and

(5) X S p(a) S S ?(a).

(Thus statement (4) expresses the fact that the entailment be-
tween X and 9) holds relative to the basic system 6(a)). The
class a will be called the range.

PRIME STATEMENTS. These are the same as before except that
(4) replaces II (4) and the restrictions ('5) have 'to be satis-
fled.

RULES OF DERIVATION. The rules Er, C, W, Ofc and Or hold
with the above modification for any fixed a. We have the follow-
ing additional rules for the new connectives. In these it is
supposed b actually occurs in A(b).

n Universal Quantifier: If X, g), 3 £ $( a), A(b) e $( o, b ),
b is not in a, x is not bound in A(b), and t e t(a):

X,A(t) I a hS X I a,b h A(b),3
&(x)A(x) | a l-f) X | a (• (x)A(x),3

2 Existential Quantifier; Under the same restrictions as in
E:

X,A(b) | a,b hg X | a I- A(t),3
X,(lx)A(x) | a (-9 X | a [• (3x)A(x),3

Remarks on these rules, 1) The remarks of II § 4 hold without
change. In particular the distinctions as to parametric, prin-
cipal, and component constituents all hold.

2) The only rules which make a change in a are flr and 24. In
these cases the variable b, which occurs in A(b) of the component,
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but cannot occur in any other constituent, will be called the
characteristic variable for that application of the rule.

3) The definitions of deduction, derivation, etc., go over
without change.

ASSUMPTIONS CONCERNING 6. In addition to the assumptions
already made, we now suppose the following:

A3. The class e is not void. This enters in Theorem 3 below.

A4. 1
i.e., if"

A4. The rules of 6 are invariant of a real substitution,9

Ai(a),A2(a),...,Am(a) [- B(a),

then for any real t,

Ai(t),A2(t),...,Am(t)|-B(t).

This assumption is essential for Lemma 1 and hence for Theorem
5. This is part of the intention of the phrase "structural
characterization" in I§1. On a reasonable interpretation it
follows from Definitions 5a, 5b, and 2d.

A PINITENESS RESTRICTION. We shall postulate a certain in-
finite class ̂  of real variables f,g,h, ... with subclasses
9, t,... . We shall then impose the restriction that only a fin-
ite number of variables belonging to fr occur in the range of an
elementary statement. It is only necessary to make this restric-
tion for, the prime statements; it will then hold automatically
for any elementary theorem.

This restriction is only significant in case we wish to ad-
mit infinite prosequences and infinite classes a in (4). For
only a finite number of variables of any kind can occur in a
term or elementary proposition.

5. Theorems on Extensions. The first difficulty to be over-
come is that elementary statements are not immediately extensi-
ble. That is, if we have an instance of (4), and if

x C x', 9 C $',

then we cannot conclude immediately that

This is because the additional parametric constituents, which it
would be necessary to add to the rules to carry through a proof
of Rule K, might contain the characteristic variable; and this
would invalidate the inference.

9. The rules of the episystem have this character. If we are to consider
a generalized approach, as in footnote10 to H§ 5, this property is required
of the rules of the episystem.
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LEMMA 1. Let ( i ) A = T i,T 2, . . ^T & where Fk is

*k I < % ! - D k >
be a normal derivation; (ii) b be a class of real variables such
that no characteristic variable of A is in 6; (ill) set (b ) ;
(iv) a e gn.

Then the sequence A ' = T i1, T2S • • • *r^, such that r^ is

where fc ̂ is obtained from a^ by dropping a and then adding fc , is
a normal derivation.

Proof. We first note that our rules are such that the range
of the conclusion of a rule is never larger than that in the
premises. It follows from this that a characteristic variable
in a normal derivation cannot occur in t'he final conclusion.
Hence neither a nor any element of fc is a characteristic vari-
able; also a occurs in every a^.

Next we observe that if the restriction (5) is fulfilled
for Tfc, then it is forT^. This follows by Theorem 2b. We can
therefore Ignore this condition.

If Tk is prime so also is I^1 . This is clear if rk is of
type pi; if it is of type p2 then it follows since an axiom is
unchanged by substitution (Theorem 2a).

If rk follows from r^ ,..., Tip by a rule of Chapter II, then

Tk follows from T±lf Ti^* • • ->rip by the same rule. (In the case

of Rule Er this requires assumption A4.)

If Tk follows from Ti by Rule n r, then by the remark follow-
ing Theorem 2 the inference is:10

Ii 3E± | ak ,a ,b |- A(b) ,3 i

|- (x) (Sb * )A(b) , 3 ±

The transformed inference is:

Pi X'j | a'k,b,b

where x[ = (Sb|)3ei,Si s (Sb|)Si, and B(b) = (Sb|)A(b). But
by Definition 5 and Theorem 2c

(Sb |)(x)(Sb J ) A ( b ) B (x)(Sb| ) ( S b 5 ) A ( b )

(x)B(x).

10. Here a£ Is the result of deleting a ftom afc. Note that aj = ai
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Hence the inference from T± to r£ is valid by the same ruleHr.
A similar proof holds if 1^ follows from T± by 24 .
Suppose now r^ follows from T± by a rule 2r. Then for suit-

ably chosen b the inference is:

I1! 3E± I ai,a h(Sb£)A(b),Sl

Tk X± | ai,a P (3x)(Sb£)A(b),8l

Then the transformed inference is (using the same notation as in
proof for n r) :

r±' Si1 | ftj, » i- (sb
ri *; I 4,* |-(sb* )(3x)(sb*)A(b),s'i

But by Theorem 2d

(Sb|)(Sb£)A(b) » (Sb*')(Sb*)A(b)

= B(tt),

where t» a (Sb J )t. Also

• (3x)(Sbf )(Sb

- (3x)B(x).

Thus the Inference from r^ to rk is also valid by 2r.

A similar proof applies if r^ follows from T± by n4.

Thus A is a derivation. Since it uses the same rules in
the same places as A does, it is a normal derivation.

LEMMA 2. If A = ri*r2,...,rn is a normal derivation, and g
is a given infinite subclass of ̂ , then there exists a normal
derivation Af = TI , r2

!, . .., rn
f, such that In = Tn , 1^ is obtained

from Fjj. by changing certain variables, and the characteristic

variables of A1 are distinct from one another and belong to g.

Proof. Let A^ be that part of A which constitutes a normal
derivation of T^. Then we show, by induction on k, that we can
find a At related to Ajj. as A is to A in the lemma.

If Tk is prime, then A^ consists of J^ alone. Since no vari-
able is characteristic, we can take A£ = Ak.

Let P^ be the conclusion derived from premises r̂ ,!1 ,̂ ...,ri_

by a rule R of Chapter II. Then by the hypothesis of the induc-
tion there exist normal derivations, as in the lemma, of
T *ri2 *...fFi with characteristic variables belonging to
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arbitrary subclasses g^ ,g l2 , . . . *8i of $ . Take these as sub-

classes of 9 , no two of which have an element in common. Then
if we follow Aj^ , . . •jAip by an inference from r±1 , . • .*ri to nk

by R, we have a A k .
The same argument applies if R is one of the rules E4 or 2r.
Finally let r^ be obtained from r^ by a rule R which is ei-

ther flr or 24. By the hypothesis of the induction there is a
Aias stated in the lemma. Then by the argument of the first
paragraph of the proof of Lemma 1 the characteristic variable,
b, of R is not a characteristic variable of At. Let g e 9 be
also not a characteristic variable of A 3.. By Lemma 1 we can
find a normal derivation AJ[ of (Sb f )n • This is obtained by
operating on each statement of AI with (Sbf ), and has the same
characteristic variables as A^. Then AI followed by R leading
from T± to 1^ is the At sought.

THEOREM 3- I£

* I a h g),

and if b is any class of variables such that

X S <|i(i>) g) Csp(*)5

then

X | b I- g) -

Proof. Let A = ri,r2> • • .^In be a normal derivation of (4),
such that the characteristic variables of A are distinct from
one another and do not occur in x or g . This is possible by
Lemma 2 and the finiteness restriction at end of §4. Let 1^ be

We show, by an induction on k, that if we define rk as

where 6^ is any class satisfying the finiteness restriction
such that

then rk is derivable.

If Tifc is prime, T^ is prime also.
LetTfc be derived from premises n(and Tj) by a rule R which

is one of the rules Or, 04, W of Chapter II. Then all the
variables which occur in any of the premises occur also in the
conclusion. Hence, if b k satisfies (6), then Xi(Xj),Di(g)j) are
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all in sp (bjj.) (Theorem 1, (b) and (c-)). Hence, by the hypothesis
of the induction, we can derive T± and 3?j with ̂  = fcj = bk .
From these we can derive r£ toy R.

If Tfc is derived by a Rule R which is Er, Sr, or H^ , then
variables may occur in the premises or premise which do not
occur in the conclusion. But these are not characteristic var-
iables, and in fact we can replace all of them by ei11 without
affecting the validity of the Inference. This replacement can
be made by successive applications of Lemma 1 with s = ei and
a one of the adventitious variables. (If necessary we can apply
Lemma 2 to change the characteristic variables.) Then the same
argument as in the preceding paragraph applies.

If rk is derived from T± by a rule n r or 24, then the varia-
bles in the premise, other than the characteristic variable, also
occur in the conclusion. Let the characteristic variable be g,
and let bk satisfy (6). Then by the hypothesis of the induction
we have rj with b± = fck + g. From this r£ follows by the same
rule as before .

THEOREM 4. JEf

X | a I- »,

and if

x1 S ̂ (a
f) j,1 C j(a').

then

X1 I a' I- g)f.

Proof. By Theorem "5 we can replace o by a1 in (4). Let 9
be the class of variables in ̂  and not occurring in X',91- Then
by Lemma 2 we can find a derivation A of

X I a' h 8

such that all characteristic variables of A are in 9. Then the
proof of Chapter II, Theorem 2 applies.

THEOREM 5. If

* I a h 9,
and if s e t (fc ) , then

(7) (Sb2)3G | ajD h (SbS)8,

where a1 is obtained by removing a from a.

11. Here we use Assumption A3. If there Is a variable occurring in T ̂
we can use It Instead of ei.
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Proof. If a is not in a, then (7) is

X | a,b |-8

(Theorem 2a). Hence (7) follows by Theorem 3.
We suppose then a e a. Let g be a class of variables in ̂

such that none occur in b. Then by Lemma 2 we can find a deriv-
ation of (4) such that no characteristic variable occurs in b.
Then we have (7) by Lemma 1.

6. B a s i c Theorems of the LA* and LC* Systems. We are now in
a position to see that the principal theorems of §5 5*6,7 in
Chapter II can be carried over to the present case.

THEOREM 6. The theorems 2,3,4,5,8,9,10,11 of Chapter II
hold for the enlarged LA* and LC* systems of this chapter, pro-
vided each elementary statement is assigned a range consistent
with the present rules.12

Proof. So far as Theorem II 2 is concerned this was shown
in Theorem 4. This theorem and those of § 5 show we can always
have a sufficiently large class of variables, and characteristic
variables can be taken so as not to bother us.

The proofs of Theorems II 3,4,5,138,9,10 and the first two
stages of the elimination theorem are valid without change. It
is only necessary to supplement the proof of the elimination
theorem with two new cases, as follows:

Case n . A & (x)B(x). Then the premises are:

I'i 3G,B(t) | a (• p,

Fa * | a,b h B(b),3, S5».

Prom T 3 and Theorem 5 (since b does not occur in 3C,3)

X | a |-B(t),3.

From this and ri we have by the hypothesis of the induction

X | a h g).

Case I . A s (3x)B(x). Then the premises are:

l\ X,B(b) | a, b h 8,

where b does not occur in 3C,$, and

Fa * I « hB(t),3.

12. This range is uniquely determined in any derivation "by the range of
the conclusion, and the latter can he anything satisfying Theorem 4. lii the
case of the elimination theorem we can suppose "both hypotheses have the same
range.

13. In regard to II Theorem 5, the range can also "be finite "by Theorem 4.
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From r i and Theorem 5

X,B(t) | a h g .

From this and r 3 we have by the hypothesis of the induction

X | a 1-8-
As regards II Theorem 7* it is necessary to formulate care-

fully the systems, as follows:

DEFINITION 6. The system £)„ is that specialization of S in
which

(a) The class e contains infinitely many constituents
61,62*63, ....

(b) The class Q is void.

(c) The class $ contains infinitely many predicates of every
degree of multiplicity.

(d) There are infinitely many primitive propositions Ei,E2,...

(e) There are no axioms and rules of procedure - in other
words the relation II (6) is vacuous.

The system in which the condition (a) is relaxed to the extent
of allowing there to be exactly n elements in e, viz.,
©1*62* .. .*en, will be called On.

According to this definition the terms of Qa are the same as
those of e ; the elementary propositions are Ei,E2*E3, . . ., to-
gether with all propositions of the form

where m = niB

The decision process fails because there is no finite upper
limit to the number of constituents in a derivation. This is be-
cause there are infinitely many possibilities for the t in Rules
U<t and 2 r and for the characteristic variables in Rules n r and
2l. The latter possibilities hold even in 8n and x S 4.

Nevertheless the decision process of II § 6 can sometimes be
used for discovering a derivation or for proving non-derivabill-
ty. We shall illustrate this below by proving the non-derivabil-
ity in LA*(»<D) of

(8) | o |- (x) . A v B(x) :$: A v . (x) . B(x) .

This will illustrate the reason for the failure of the decision
process in general.

Before doing this we shall formulate the classical (truth
table) evaluation because that is a necessary condition for de-
rivability.

DEFINITION 7. A valuation over Q is any assignment of one
of the values 1 or 0 to the elementary propositions of 6 sucn
that



QUANTIFIERS 8l

(a) every axiom has the value 1,

(b) If the premises of a rule of 6 have the value 1, so does
the conclusion. (Of course the conditions (a) and (b) are vacu-
ous if 6 is £)n).

DEFINITION 8. If ,6f is an extension of 6 and S is a valua-
tion over 6, then a continuation of § onto 6' is a valuation Sf

over 6f which assigns to every elementary proposition of 6 the
same value that's does.

DEFINITION 9. The value of a proposition A of 6 relative to
a valuation S over 6 is defined inductively as one of the values
1 or 0 as follows:

(a) If A e <S, the value is that assigned in S.

(b) If A e BoC, the value is determined from those of B and
C by Table 1.

(c) If A B (x)B(x), let b be a term variable for 6 and .6(b)
the term extension of 6 formed by adjoining b to ,6; then the
value of A is 1 if that of B(b) is 1 in every continuation S» of
$ onto S(b); it is 0 if there exists such a St in which B(b) has
the value 0.

(d) If A = (3x)B(x), and b and §' are as in c, then the val-
ue of A is 1 if that of B(b) is 1 in some Sf; it is 0 if the
value of B(b) is 0 for every g1.

DEFINITION 10. An elementary statement (4) is valid on "Che
classical evaluation with respect to 6 if for every valuation S
either 3E has a constituent with value 0 or g a constituent with
value 1; it is invalid on the classical evaluation if there ex-
ists a valuation S such that every constituent of X has value 1
and every constituent of g) has value 0.

This definition is, of course, indefinite; but it is clear
that an elementary statement cannot be established as valid and
invalid at the same time.

THEOREM 7. A necessary condition that

X | a h D
be valid in LC*(6) is that it be not invalid by the classical
evaluation ¥ith respect to 6.

The proof of this theorem follows along the lines indicated
in II §3. The details will not be given here.

We consider now the analysis of (8) in LA*. That can only
be derived in LA* from

TI (x).AvB(x) | o |-Av(x)B(x).

This might come from H^ or Vr. We consider H4 first. The prem-
ise in E<£ would have to be the case n = 1 of T 2
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F2 (x) .AV B(x), AvB(ti),...,Av B(tn) | o f- A v (x)B(x).

The statement F i is also a special case of Tg, viz., for n = 0.
Hence it is sufficient to show T2 is non-derivable.

The statement F2 can come from n^, V4, or Vr. If it comes
fromlU, the premise is also of formr2

14. Hence if (8) is val-
id some F2 must be derived by one of the other rules. If F2
comes from V4 one premise is the case m = 1 of the following:

T3 (x) . Av B(x),Av B(t1),...,AvB(tn),B(t1),...,B(tm)

| o [-AV (x)B(x).

Since T2 is the special case m = 0 of Fa, it suffices to con-
sider F3.

The statement F3 can come from n^, V4, or Vr. If it comes
f rom 114 the premise is again of form Fa- If it comes from V4
one premise is of form F3 (the other contains A as constituent
on the left, and is obviously valid). Hence some F3 must come
from Vr. Then the premises must be:

F4 (x) • AvB(x),Av B(tx ),...,A vB(tn),B(t! ),...,B(tm) | oh A

F5 (x).rAv B(x),Av B(tx),...,Av B( tn) ,B(tx ) , . . . ,B( tm) | o h(x)B(x)

Both of these ave invalid on the classical evaluation - the
first in the valuation where A is 0 and B(t) is 1 for every,
term t, the second in that for which A and B(ti),B(t2)» ..•9
B(tm) are 1, but for some other t,B(t) is 0. The latter is pos-
sible since there are infinitely many terms in S0a .

THEOREM 8. Under the assumption that A and B are elementary
the statement

|u|-(x) AvB(x) :0: A-v-(x)B(x)

is not valid in LA*(a^.

Remarks. There are many variants to this treatment, and it
is not possible to explore all of them. However, we may note
the following:

1) If a statement is valid on the classical evaluation for 6
it will be valid for any term extension .6 ! of S. For any valua-
tion s1 of e1 will be a continuation onto 6! of some valuation
S of 6, and it can be shown that g« gives the same value to
any A in e that s does.

?) In 0 n the constants 61,62*... are indeterminates, hence
there is no essential difference between them and variables -
except that they cannot act as characteristic variables. A
variable which is not a characteristic variable can just as well

.̂ Note that we are using the modified rules of Theorem II
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be added to e, and vice versa, provided appropriate changes are
made in the range.

3) The combination of the two preceding remarks shows that
if r is valid for Qn, it is valid for any Dm with m = n, in par-
ticular for Do,. Conversely if it is valid for Qm it is valid
for some Qn, viz., such that the set ei,...,en contains all the
constants which actually occur. With proper indication in the
range it is valid forDi, or even Do-

4) These remarks show that the concept of classical validity
for Qn is quite different from that of k-formula in the sense of
Bernays.15 The latter is based on the interpretation of (x)A(x)
as "A(t) for all t" rather than "A(b) for indeterminate b."

5) If we drop the requirement that e be non-void, Theorem 3
is false as stated. This is shown by the example

(10) | a I- (x)A(x) .D (3x)A(x)

in which a cannot be empty. Theorem 3 would be valid under the
requirement that a ? b, or that fc be non-void. Then certain
statements like (10) could only be derived with a non-empty
range.

Finally, in analogy with Theorem II 6, we state special re-
sults which can be derived by the decision process, as follows:

THEOREM 9. The following are valid in LA*(S), for
A,B e$(a),t e t(a)l

(a) |4U)A(x) . D . A(t).

n0 | a h (y):(x)A(x) .D. A(y).

20 I a h (y):A(y) .D. (Bx).A(x).

HP | a KX). A(x)DB(x)0: (x)A(x).D. (x)B(x).

ni If x does not occur in A

| a |- (x) . A DB(x) O: A D (x)B(x).

1i If x does not occur in B

| a I- (x) .A(x)DB:D: (3x)A(x) .D. B.

7. The Systems TA*f TC*. The additional rules for the system
TA* when n and 2 are adjoined will now be formulated. The new
type of elementary statement will be:

(11) AeS(3G5a),

15. See [3] §6, p. 56, also [kj]9 pp. 118 ff. Cf. aleo footnote 2 to a5 in
§1-



84 A THEORY OF FORMAL DEDUCIBILITY

where

(12) Ae»(o),Xfi f ( a) .

The rules as given in Chapter II have to be modified by adding
a range a . In ti this range is the class of all variables which
occur in A, in t2 the null range, and in the Inferential rules
it is the same in premises and conclusion. In t3 we add the
premise g C $ (a). We need the following new rules:

t4) If a £ fc and A e£(X;a), then A eS(x;fc).

He. If t et(a) Hi If b does not occur in x

(x).A(x) A(b)
A(t) (x).A(x)

Zje If b does not occur in X Zj. If t e t ( a )
or B,

A(t)
B (]x).A(x)

In these rules " --- e£(X;a)f! is understood in all cases except
the premise of Hi and the right premise of 2e; in these cases
the premises in full are A(b) e$ (Xja,b) and B e$(x*A(b)ja,b)
respectively,

THEOREM 10. The theorems 12-19 of Chapter II retain their
validity when rules for n and 2 are added,

Proof . Theorem II 12 is clear.

As for Theorem II 13* It is only necessary to add the fol-
lowing proofs. (Note that t4 follows by Theorem 3.)

Proof of get By the decision process of §6 (cf. Theorem 9(a))

X,(x)A(x) | ft (-A(t).

If now

X | a |-(x)A(x),3,

then by the elimination theorem

X | a (- A(t),& q.e.d.

Proof of 2 e. By the second premise of 2e

X,A(b) | ft,b I- B,S.

We nan suppose that b is not in a. Then by 24
X,(3x) . A(x) | a f-B,S.
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By the first premise of le,

X | a|- ( 3 x ) A ( x ) , 8 -
Hence by the elimination theorem

X | a f- B, q.e.d.

We need also the cases nt and 24 of Theorem II 14. The
schematic proofs of these are as follows:

•

1 AIM HP
(*)*(') ne - A - Pi-2A(t) 3 B Pe

(3x)A(x)
B

The full proof of the first is as follows: Suppose
X S P(a),(x)A(x)»f(a), Then by tl,t5,t4,

(x)A(x)e

Hence if t et(a), we have by He,

(13) A(t)eS(X,(x)A(x);a).

Now suppose the premise of H<t, viz.,

B tS(l,A(t)ia).

Then by t3,B eS (X,A(t), (x)A(x); a) „

.-. by Pi A(t)DB sS(3E,(x)A(x); a ).

.\ by Pe and (13), B eS(X, (x)A(x); a) . q.e.d.

The proofs of Theorems II 15 and II 16 carry over without
change .

For Theorem II 17 we need the following two cases:
Proof of nr. By Hp. we have the rule

X,Zi D A(b),...,Zn D A(b)* - _ -

The proof scheme for Ur Is then
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1 2

Zx D (x)A(x) Zi pe Similar proofs for

i = 2,3,-..,n

._._. _ Zn 3A(b) M

ni

(x )A(x )

Proof of Ir. By Hp. we have the rule

Mi 3 A( t ) , . . . ,Z n D A( t )
A(t)

The proof scheme f or I r is, then,

^1 3

Zi D . (3x)A(x) Zx pe ^

(3x)A(x) _ (3x)A(x)DA(t) Pe similarly
A(t ) pl_2 for i = 2,3, ...,n

Zi 3 A ( t ) _ LJLI _ Zn

(3x)A(x) pk_2
(3x)A(x)

Theorem II 18 and II 19 then follow without change.

8. The P r e d i c a t e C a l c u l u s . We now consider the systems KA*
and HC* . Since the introduction of apparent variables distin-
guishes the infinitesimal calculus from ordinary algebra, it
would be in order to call each of the systems HA*, HC* a cal-
culus when quantifiers are involved, an algebra under the cir-
cumstances of Chapter II. Thus wlfat we have here is really a'
propositional calculus whereas in Chapter II we had a preposi-
tional algebra. Although this usage is not standard it has mucl
to recommend it, and will be used here.

A propositional calculus over 5 is, then, a system lp whose
formulas are the propositions S|i(s)> whose elementary statements
are of the form

and whose theoretical rules consist of (a) a definite class of
prime propositions for which (14) is asserted outright, and
(b) the single rule of derivation:

Ph A e Ip _ (AD B) £&
B e $
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The calculus HA( a) is that calculus over ott in which (14) is
equivalent to

(15) | a M

in LA*(!D)OB; the calculus HC*(a) is that over Qa in which (14) is
equivalent to (15) in LC*(o)M.

THEOREM 11. A set of prime propositions for the calculus
HA*(HC*) consists of the propositions G obtained as follows;
let Gf be a prime scheme of HA (HC)tor one of the schemes
(a), Bi, EP, 2n, 2i, of Theorem 9; let G" be obtained from G

1

by taking A, B, C as particular propositions of %(q, fc,s) and
A(t) = (Sb %)A(x), where y consists of those variables which are
required by G1 to be bound in A, B, C (the variables of y must
actually occur), and t e t(q,b); then G is obtained from G" by
applying fli, with the variables of fe as characteristic variables,
until all the variables which occur free in G belong to a.

Proof. Let $(X;a) be the system of propositions generated
by Rule Ph by taking X and all propositions of the above schemes
as prime propositions. Then it is to be shown that

(16) HA* (a) = fc(0;a) (HC*(«) = $(0ja)).

Since all the instances of the above schemes are in HA*(HC*) by The-
orem 9, II Theorem 6, and El, and since Phis valid in HA*(HC*) by
Theorem 10, the right side of (16) is included in the left. It
suffices to show the converse. This we shall do, as in II The-
orem 15, by showing that §(3£;a) satisfies the rules for £(X;a).

So far as the rules ti,t2,t3,0e,0i, and Pk are concerned
the proof is the same as in II Theorems 20 and 21. (Note Ei is
vacuous.) The validity of t4 is obvious since every prime prop-
osition of £(X$a) is a fortiori a prime proposition of §(Xja,fc).
It remains to consider only the four new rules of §5. Of these
we shall leave E1 till last, but will assume its validity in
proving 2e.

Ee. This follows at once by (a) and Ph.

le. If the second premise is valid

A(b) D B e$(X;a,b). by Pi
(x).A(x) D Be£(X5a) by Ei

(3x)A(x).D .B e$(X;a)

by 2i and Ph. On the other hand by the first premise of 2e

(3x). A(x) efc(X,a).
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Hence by Pe,B e $(3e>a).

2jL. This follows at once by Ue, 2o> and Ph.

n_i.16 Since A(b) e$(X5a,b), there exists a sequence Bi,...,Bnof
propositions such that Bn = A(b) and every Bk is either 1) a
member of X, 2) a prime proposition or 5) a consequence by Ph of
some BI and Bj preceding ^t. For each Bk let Bk be (x)(*)Bk if
b occurs in B^, and let Bk = Bk if b does not occur in Bk. Then
we show by induction on k that B^e $(X, a) for every k. It is
evidently only necessary to consider the case where b occurs in
Bk» In the induction we suppose Bk = A(b).

If BK e X, then Bk does not contain b.

If Bk is a prime proposition for $(0;a,b) and b occurs in
B^ then Bk is by definition a prime proposition of fc(0;a).

If Bk is derived by Ph from BI and Bj, then we can suppose
Bj is Bj[ D Bfc. There are two cases according as BI does or does
not contain b. In the first case let BI be B(b). Then Bj,
which is in §(X,a) by the hypothesis of the induction, is

(x) . B(x) D A(x).

Hence by nP and Ph

(x)B(x) 0. (x)A(x) e&U;a),

i.e.,

(17) BiD(x)A(x)E§(X,a).

Since B.[e§(X,a), by the hypothesis of the induction, the con-
clusion follows by Pe. On the other hand if Bj does not contain
b, Bj is

(x) . BiDA(x).

Since thise£(3E;a) we have (17) by Hi, whence the conclusion
follows as before.

Remark 1. This theorem would be easier if we allowed (x)A
to be in $ even when x does not occur in A. We could then re-
place n i by

||- A D (x)A

when x does not occur in A.

Remark 2. The above proof shows that the derivation of any
elementary statement of the calculus HA* or HC* can be carried
out without the use of any free variables, other than those
which occur in a.

16. The idea of this part of the proof is in [24],



QUANTIFIERS 89

In the formulation of the positive Heyting calculus due to
the Hilbert school,17 the calculus Is generated by adjoining to
the HA algebra of Chapter II the schemes (a) and 2o and the rules

(«) B D A(b) (p) A(b)
B D (x)A(x) (3x)A(x) D B

where b does not occur In B. These rules are derivable in the
natural system thus

• v
2 1 ' 2 1

A(b) Pe J> A(b) A(b) D B Pe
A(b) (3x)A(x)

(X)A(X) Pi- 2 _ _ PI -3
B D (x)A(x) (3x) . A(x)OB

Thus every proposition A. obtained from a formula of the positive
Heyting calculus by taking the formula and predicate variables
to be elementary propositions of Qm is valid in HA* for some de-
termination of the range; and the range is determined by Theorem
5 to be the class of variables which occur In A. Conversely
since the schemes of Theorem II 20 are valid in the Heyting cal-
culus, every proposition in HA* is valid in the positive Heyting
calculus. Thus we have

THEOREM 12. A necessary and sufficient condition that
As HA* (a) Is that* A be obtained from a formula of the positive
Heyting calculus by taking its formula and predicate variables
to be propositions and predicates of HA*, and that a contains
the free variables occurring in the formula. Such a proposition
can be shown to be In HA* (a) without using variables not al-
ready in q.

The theory of quantifiers in this chapter has been grafted
onto the systems LA and LC. In a similar way it can be grafted
onto the systems involving negation considered in the following
chapters. It is unnecessary to consider variables further.

17. See [tyj] pp. 103-106. The same rules occur in [ 46] but of course the
separation of the positive calculus is completely foreign to that work. The
same rules -were adopted "by Heyting [̂ 5]- The characterization of the posi-
tive Heyting calculus in the text is to "be understood as a definition.
Strictly speaking, SQ is replaced "by a rule, dual to (a), which is a conse-
quence of 20 and (a).

18. Note that it is a part of the hypothesis of P that premise 1 can "be
derived on suppositions which do not contain b. Hence 2e is applicable.


