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ON THE THEORY" OF COMPLEX FUNCTIONS

The following pages are intended to exhibit some of the

advantages obtained by a more extensive use of topological

methods and notions in courses on complex variables. These

methods simplify the proofs and are more flexible in their

application*

We shall need as preparation the following simple proper-

ties of closed and open sets:

1) The complementary set £ of an open set D is closed*

2) A continuous image of a closed and bounded set is it-

self closed and bounded*

3) A function that is continuous on a closed and bounded

set is uniformly continuous on that set.

4) By distance of two sets S1 and Sg we mean the great-

est lower bound p of the distances between any point z^ of 3^

and any point Zg of Sg* If Ŝ  and Sg are closed and one of

them is bounded we 'can find a special pair of points z1 and zg

with precisely the distance p. It follows that if in addition

the two sets are disjoint, we have p > 0.

The proofs are so well known that we omit them here.

By arc we mean a continuous image z(t) of the interval

0 < t < 1. It is a closed and bounded set. We consider it as

orientated by the orientation of the interval. Now let £ be a

point not on the arc A* We first try to find a continuous
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function <p(t) whose value is one of the possible values of the

argument of z(t) -g. Such a y>(t) is easily constructed if our

arc is contained in a circle that does not contain g because

it is then possible to define the argument of z - g as a con-

tinuous function of z in the whole circle. All we > have to do,

therefore, in the general case is to subdivide our arc into a

finite number of parts of the previous kind. To do so, let

p > 0 be the distance of g and A; because of the uniform con-

tinuity of z(t) we can find a subdivision of A into a finite

'number of parts such that each part is contained in a circle

of diameter p.

Let us assume our point £ is not fixed but moves on a

closed set S whose distance from A Is p > 0. Any subdivision

of A with this p will then work for all the points g at once*

The so-constructed (̂t) is uniquely determined but for a

multiple of 2ir. This follows easily from the meaning of p(t)

and its continuity.

What we really want to construct is the uniquely deter-

mined value y(l) - ?(0) • V(A,g). We call it the variation of

argument of A with respect to g. It is easy to show that it

depends continuously on g and that it satisfies the equation

V(A,g) » V(B,g) * V(C,g) if the arc A is subdivided into the

two arcs B and C.

Returning to our closed set S and any subdivision of A

into parts of diameter < p, let us connect each two consecu-

tive endpoints of these parts by a straight line segment. We

obtain thus an Inscribed polygon A1 that is also disjoint from

3. Each of the line segments has the same variation of
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argument with respect to any £ of S as the corresponding part

of A. This proves V(A',«) * V(A,£) for all £ of 3.

THEOREM 1. Let S be a closed set disjoint from the

arc A. If A1 Is an Inscribed polygon that belongs to a suffi-

ciently fine subdivision of A then V(A',«) - V(A,£) for all £

of S.

It is convenient to use not only arcs but also chains of

arcs as paths of Integration. By a chain C we mean a formal

sum 2AV of a finite number of arcs AV, each arc being

orientated. One and the same arc can enter In this sum re-

peatedly and with either of its orientations. If ( is not on

C we generalize the variation of argument V(C*g) to chains by

the definition

V

Obviously this definition is additive in C.

If we disregard multiples of Sir then

V(C,g) s 2 (av- Pernod 2ir) where av and pyare the arguments of

the vectors from £ to the endpolnt and to the beginning point

of Av« We remark, however, that it is Just this neglected

multiple of 2tr that we wanted to define by the previous

ilscusslon.

A chain C is called closed if each point is beginning

point of just as many of the arcs Av as it is endpolnt.

V(C,£) is then a multiple of 2tr. therefore we frequently use

the winding number W(C,?) * -jjjy V(C,£) Instead of V(C,5). Its

value is an Integer; being continuous In ( it is constant on

any connected and open set D that Is disjoint from the arcs

of C.
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If all the arcs Ay of a chain C = 2 A v are rectifiable and

If f(z) is integrable on each Ay we may introduce the integral

of f(z) on the chain C by the definitions

f(z)dz.

We are now in a position to state and to prove the most

general form of the theorem of Cauchy:

THEOREM 2. Let f(z) be analytic in the open set D, and

let C be a closed chain in D that satisfies the following

condition:

The winding number W(C,g) 3 0 for every g of the complem-

entary set 5 of D.

Then
/Q f(z)dz - 0.

Proof; (A) Let C be a triangle. W(C,£) » * 1 if £ is in

the interior of the triangle. Our assumption about C means,

therefore, that the triangle C and its interior belong to D.

The proof in this case is well known and need not be repeated

since the reader can find it in most of the books on complex

variables.

(B) Let C be a polygonal closed chain where each

Ay is a segment of a straight line LV* We assume that all the

straight lines LV have been drawn. Each of them decomposes the

plane into two convex sets, namely, two half planes. The inter-

section of a finite number of convex sets is either empty or

itself convex. It thus follows that our straight lines Ly

decompose the plane into a finite number of convex sets each of
«

them bounded by segments of the Lv. Each convex set is either

bounded and therefore an ordinary convex polygon, or else
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extends to infinity. In case it is bounded we select one of

its vertices and draw all the diagonals from it. In this way

we obtain a decomposition of the plane into triangles and into

convex sets extending to infinity.

W(C,£) is constant in the interior of each of these parts

of the plane. A point go at the boundary of such a part either

belongs to C, so that W(C,go) is undefined, or else leads to a

value of W(C,£Q) equal to that in the interior because of the

continuity of W(C,5).

Now let g be very large. Then W(Cfg) is very small and

consequently 0. This shows that W(C,g) * 0 in each part that

extends to infinity.

Next consider a triangle A with W(C,£) 7* 0 for the inter-

ior of A . Since W(C,£) - 0 for all £ of 5, all the points of

the interior of A belong to D. Those on the boundary of A

also belong to D because they are either on C which is in D,

or else again W(C,g) is ̂  0 for them. Thus, for such a tri-

angle we get

/. f (z)dz » 0.
A

Now let A1,A2,...,An be all the triangles for which

W(C,?) - w± ̂  0 if £ is in A£ where W(C,£) - 0 if « is in any

other triangle. We assume A^ orientated in such a way that

W(Â ,£j = +1 in the interior of A^. Consider the new chains

C' - C - WjAj. - w2A2 ...- wnAn.

We contendt W(Cf*g) * 0 for any £ not on C1. Indeed,

a) If £ is on the boundary of one of the parts but not

on Cf we can shift it a little so that it falls in the interior

of a part*



b) If £ is in A± then W(C,?) - w±, WUlf£) - 1,

W(Ak,£) - 0 for k ̂  i. Hence, W(C',£) - W(C,«) -w^fA^g) - 0.

c) If £ is In any other part then W(C,g) = 0,

W(Aj,£) - 0, so W(C',£) - 0.

Now ./£, f(z)dz =^f(z)dz - 2wv<^ f(z)dz *

since /^ f(z)dz = 0. This reduces the proof to the case of

the chain C1* We first break up each arc of Cf into largest

line segments A such that the interior of each A does not

contain any vertex of C f . Assume now that C ' contains A r

times in one and s times in opposite orientation so that we

have C1 = rA- sA+ E where E is a chain that does not contain

A any more. Then 0 » V(C',g) » (r-s)V(A,g) * V(E,g) or

V(B,£) • (s -r)V(A,g) for all £ not on C1. V(B,£) is defined

and continuous even on A but V(A*&) is close to tr on one side

of A and close to - tr on the other. Hence, r • s. Therefore,

Cf contains each line segment equally often in both orienta-

tions, a fact that makes f^t (z)dz = 0 obvious.

(C) In the general case we inscribe a sufficiently

fine polygon A ' in each arc A and replace C = 2 A v by

C f = 2 A f . According to Theorem 1 we have

) • W(C,£) * 0 for all 5 of 5 if only the subdivision of

each arc was fine enough. Then /̂  f(z)'dz = 0. If we could

only show that for all sufficiently fine C1 we haves

|̂ f(z)dz - /Q, f(z)dz| < e

our theorem would be proved. It obviously suffices to show

the following lemma:

Let f(z) be continuous in the open set D containing an

arc A. If e > 0 is given we shall have for all stiff! ciently
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fine Inscribed polygons A1 the Inequality:

l/^f (z)dz - /^t (z)dz| < e.

Though the proof is well known, it may be inserted here

for the convenience of the reader.

Let zo,z1,...,zn be the vertices of the inscribed polygon

A1 and call g(z,Af) the following discontinuous function on A':

g(z,Af) has on the line segment from zy-1 to sy (excluding

z .) the constant value f(zv). Then

is obviously a Riemann-sum for the Integral ,/f(z)dz and is

therefore close to j£f(z)dz for all sufficiently fine poly-

gons Af. If we prove on the other hand that ̂ fg(z,A
1)dz also

comes close to /*• f(z)dz we have all that is needed.

Since the length of A1 is bounded by the length of A, it

suffices to shows

Max |f(z) - g(z,A')| < e or Max f «•) - «•„) I< e
z on A7 z on V-th segment ""

provided A1 is sufficiently fine.

To prove this we merely have to imbed our arc A into a

closed set B that Is part of D and that on the other hand con-

tains any sufficiently fine polygon Af. The function f(z)

would Indeed be uniformly continuous on B and the subdivision

of A Is found immediately.

Obviously, the set B of all points that have a distance

< ip from A where p Is the distance of A and D, has all the™* &
required properties.

A chain C that, satisfies the conditions of our theorem

shall be called homologous 0 In the open set D. If D is part
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of the open set D1 and If C is homologous 0 In Df it need not

be homologous 0 In D. we would still have to Investigate

whether W(C,£) = 0 for all points of Df that are not In D. The

following special case will prove important;

Assume that D can be obtained from Df by omitting the

finite number of points z]/z2'"**'zn of ^f* Assume that C is

homologous 0 in Df. We have then to compute W(C4z^) = w^.

Only if the w^ turn out to be 0 will C be homologous 0 in D.

Now suppose that the ŵ  are not necessarily 0. We construct

around each point z^ a circle C^ of so small a radius p that

its Interior with exception of z^ belongs to D. The new chain

2Cg - ••• - wnCnC' = C - WC - wC - ••• - wC

is then homologous 0 in D and hence , /£ tf(z)dz * 0 or

(1) ,£f(z)dz - 2 wv/ f(z)dz.*

As an example, put f(z) = -i. D1 is then the w£ole plane

and z1 = 0. p may be taken as 1. We get from (1)

4 ¥• - w(c-0) • -£;¥•
where C^ is the unit circle. The integral on C± may be com-

n .
puted by a Riemann-sum: 2 (z - z%1 , )-i- , using as inter-

val v v"i 5v
mediate point gv the point on the unit circle halfway between
zv-i anca zv* Tne 6eometric significance of the points shows

llz* - zv il so that our Riemann-sum is i»l%j - %, TV V""

where 1 is the length of the inscribed polygon. The Integral

on C, is therefore 2tri and we obtain:

/c A*.- 2iri W(C,0).

We now use the following definition:
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Definition. If f(z) is analytic in a certain neighbor-

hood of the point ZQ, with possible exception of z Itself,

but if f(z) remains bounded in that neighborhood, we call zo

an R-point of f(z).

Let us now assume that all the points zy in (1) are

R-points of f(z) and that M̂  is the bound for f(z) in the

neighborhood of z^. For small values of p we obtain the

estimate

(2) |̂ f(z)dz| < 21̂ %

Now p can be taken as small as we like in (2). This shows

that ̂ f(z)dz = 0, yielding the following generalization of

Theorem 2.

THEOREM 5. Let D be an open set and assume f(z) analytic

in D with exception of a finite number of R-points* Assume the

closed chain C homologous 0 in D. Then ,£f(z)dz = 0.

We next prove the Integral formula of Cauchy:

THEOREM 4, Make the same assumptions about f(z), D and C

as in the previous theorem. If z is a point not on C, where

f(z) is analytic, then

2triW(C,z)f(z) =

For a fixed z, consider the following function of t:

get) - *(*j - W .
w • Z

g(t) is analytic in D with exception of the R-points of f(t)

which are also R-points of g(t), and with exception of t = z.

Since g(t) approaches the limit f f(z) as t approaches z, the

function g(t) has z as an R-point.

This shows:
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or

The proof of the following lemma is well known:

Lemma, Let C be any closed or open chain and let ?(t)

be a function defined and continuous on C. The function

is then defined for all z not on C and has the derivative:

Proof:

F(z+h) - F(z) f n<p{t

/ (t-z)n+1 - (t-z)(t~z-h)n • nh(t~z-h)n y(t)dt
C 11*1

If we expand the polynomial in the numerator and collect

the terms free from h and those of the first power of h, we see

that they cancel. Therefore, the numerator has the form
o
h «P(t,z,h) where P is a polynomial in the three variables.

Our integral is therefore:

P(t,z.h) ..

There Is now no difficulty in getting from it an. estimate

of the form |h| *M where H is a certain bound. This proves the

lemma.

Now suppose ZQ to be an R- point of f(z) and take C as a

small circle around ZQ. We find then for all points in the

interior of C and ̂ ZQ:

'c
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According to our lemma, the right side of this formula is
«r

a function that is analytic also for z = ZQ so that we get:

THEOREM 5. If zo is an R-point of f(z) we can complete

the definition of f(z) at ZQ in such a fashion that the com-

pleted function is analytic at zo. Or,an H-point is a removable

singularity of f(z).

This theorem makes superfluous the mentioning of R-points

in the preceding theorems.

Another application of our lemma is the fact that an analy-

tic function has an infinity of derivations, and also the

generalized formulas of Cauchy:

2,riff(C.z)f{n)(z) =n!^

We turn now to a discussion of the zeros of a function.

If f(z) is analytic at ZQ and f(zQ) » 0, then ZQ is called

a zero of f(z).

The quotient <p(z) » f(z? - f(z) -f(zo) ±g analytic ln
*-zo z - zo

D except at z = zo. Since lim Y>(z) - f f(.zo) the point ZQ is
z-z0

an R-point of p(z). This shows:

THEOREM 6, If zo is a zero of f(z) we can find a funct-

ion y>(z) analytic in D (especially at zo itself) such that

f(z) * (z-z0)f(z). In other words, f(z) is
 ndivisible11 by Z-ZQ.

We must now decide whether an analytic function can be

divisible by an arbitrarily hi#i power of z - zo, that is, if we

can find for every n a function Vn(z) analytic in D such that

f(z) » (z-z0)
nyn(z).

Such a point might be called a zero of infinite order.

In this case we draw a circle |z-zo| <r that belongs

completely to D and call its periphery C. Then
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Vn(z) = -g ĵ- S~-2£>——- dt for any point z in the interior

of C. This leads to
*,..* - (z -z 0 ) n , f(t)dt
""' ""Sri "C (t-z)(t-z0)n

and to the estimate

|f(z)| < (' * o' )n —• for |z-zo| < r

where M = Max |f(z)| on C and 6 = distance of z and C. If we

keep z fixed we get f(z) = 0 for n-»». Hence f(z) = 0 in any

circle around zo that belongs completely to D and obviously

any z in such a circle is now also a zero of infinite order.

Indeed if z^ is within this circle and if we define

/ 0 in our circle

Vn(«) - ) *(«), outside

thenitin(z) is analytic in D and f(z) = (z-ẑ Ĥyz). Call Zg

any point in D that can be connected with ZQ by an arc A in D.

Let p be the distance of A and D and subdivide A into arcs of

diameter ̂ c g . Then any point on the first part is a zero of

infinite order; therefore, any point on the second part, and

so on. Consequently, f(z2) = 0.

This is now the point where the usual restriction of

analytic functions becomes understandable. We assume that D is

not only an open set but is also connected. Then we find

THEOREM 7. The only analytic function with a zero of

infinite order Is the constant 0.

If we exclude tnls exceptional case of the constant 0

there will always be a maximal n such that f(z) s(z-z )nf> (z)

andy>n(z) analytic at zo. Then Pn(zo) ̂ 0 or else fn(z)

in turn would be divisible by z - ZQ and we could therefore
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increase our n. Because of Its continuity fn(z) is / 0 not

only at ZQ "but also in a certain neighborhood of it. Within

this neighborhood f(z) = (z - zo)
ny>n(z) vanishes only at ZQ.

The point zo is called a zero of order n and we have

THEOREM 8. Bvery zero of f(z) is Isolated and of finite

order unless f(z) is identically 0.

This is the well known theorem about the uniqueness of

analytic continuation.

We derive finally the classification of isolated singu-

larities by Riemann and Wei ers trass.

z0 is called an isolated singularity of f(z) if the

function is analytic in a certain neighborhood of ZQ with ex-

ception of ZQ Itself.

Now assume the existence of a complex number a and of a

certain neighborhood of zo such that f(z) does not come arbi-

trarily close to a in that neighborhood, in other words, that

|f(z) -a| > T) for a certain r\ > 0.

The function <f>(z) = 1 is then regular in this
f ( z J — a

neighborhood except for zo itself. Since |<f(z)| < 1 the point

ZQ Is an R- point of 9(z),and y(z) may be considered analytic

at ZQ. Now:

and

In case <f(zo) f 0 the first formula shows that f(z) can

be defined at zo in such a way that it is analytic there.

Should ?(z0) = 0, then̂ p(z) is analytic at ZQ and

(̂z0) = 0. Assume \fl(z) = (z-zo)*y(z) with}(Uo) ̂  0 and we

gett -
f(z) = (z-zor

n-$(z)
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with an analytic $(z) and <J>(zQ) ̂  0* This Is the case of a

pole of order n.

Excluding the case of a regular f(z) and the case of a

pole, ZQ is an essential singularity. f(z) must then come

arbitrarily close to any complex number a in any neighborhood

of ZQ.


