III. ON FUNCTIONS OF HIGHER RANK

1. The Algebra of Functions of Higher Rank.

As in the first chapter, we shall denote functions by small letters f,g,h,... But we shall assume now that with each function f a positive integer r, called the rank of f, is associated. The rank will correspond to the number of variables of f in the classical notation. Whenever it is necessary to indicate the rank of f we shall write $f^{(r)}$ or, where no confusion with powers can arise, briefly f^r .

Only one operation will be assumed, substitution, denoted by juxtaposition. If f is of rank r, then for each ordered r-tuple of functions g_1, \ldots, g_r there is a function $f(g_1, \ldots, g_r)$. It is called the function obtained from f by substituting g_1 at the index i for $i = 1, \ldots, r$. If a function f is followed by r functions in parentheses, separated by commas, it will be understood that f is of rank r. If g_1 is of rank s_1 , then $f(g_1, \ldots, g_r)$ is of rank $s_1 + \cdots + s_r$.

Substitution will be assumed to satisfy the following laws:

I. Associative Law.

$$[f(g_1^{s_1}, \dots, g_r^{s_r})](h_1, \dots, h_{s_1}, \dots, h_{s_r})$$

=
$$f[g_1(h_1,...,h_{s_1}),...,g_r(h_{s_{r-1}+1},...,h_{s_r})].$$

For some purposes it is convenient to denote the s_i functions substituted into g_i by h_{i1}, \ldots, h_{is_i} ($i = 1, 2, \ldots, r$). In this notation the associative law reads:

$$[f(g_1,...,g_r)](h_{11},...,h_{rs_r})$$
= $f[g_1(h_{11},...,h_{1s_1}),...,g_r(h_{r1},...,h_{rs_r})]$.

II. Law of a Neutral Element.

$$jr = r(j,...,j) = r.$$

III. Law of Depression. If for the function f of rank r > 1 we have

$$f = f(j,...,j,g,j,...,j)$$

no matter which function g we substitute at the index i, then there exists a function $f_{(i)}$ whose rank is by 1 less than that of f, for which

$$f_{(1)} = f(j,...,j,g,j,...,j)$$
, and thus $f_{(1)}(g_1,...,g_{r-1}) = f(g_1,...,g_{r-1},g,g_1,...,g_{r-1})$.

We say of such a function f that it admits the suppression of the index i. In the classical notation, a function admitting the suppression of the index i is one which does not depend upon its i-th variable, as $f(x,y,z) = 4 \cdot x + 5 \cdot \log z$ does not depend upon y.

Definition: If for a function f of rank 1 we have fg = f for each g, then f is called a constant.

If for a function f of rank r we have $f = f(g_1, ..., g_r)$ no matter which functions $g_1, ..., g_r$ we substitute, then we can suppress any r-1 of the indices and thus arrive at a constant function. We may call f a constant function of rank r. By substituting r constant functions into any function of rank r, we obtain a constant function.

If a function of rank r admits the suppression of each of its indices, then it is constant. B.g., for r = 2,

if
$$f(g,j) = f$$
 and $f(j,h) = f$,
then $f(g,h) = [f(j,h)](g,j) = f(g,j) = f$.

It is easy to prove that the function obtained from f by substituting a constant at the index i, admits the suppression of the index i if the rank of f is > 1, and is a constant if the rank of f is = 1.

IV. Law of Identification. Let R be the set of numbers $\{1,\ldots,r\}$, and $R=R_1+\cdots+R_m$ a splitting of R into m(<r) mutually disjoint, non-vacuous sets $R_j=\left\{1_{j,1},\ldots,1_{j,k_j}\right\}$. Then for each function f of rank r there exists a function f_{R_1,\ldots,R_m} of rank m such that $f_{R_1,\ldots,R_m}(g_1,\ldots,g_m)$ is equal to the function obtained from f by substituting g_1 at the indices belonging to R_1,\ldots , and g_m at the indices belonging to R_m . For instance, if $R=\left\{1,\ldots,6\right\}$, $R_1=\left\{1,2,4\right\}$, $R_2=\left\{5\right\}$, $R_3=\left\{3,6\right\}$, and f is of rank 6, then there is a function f_{R_1,R_2,R_3} of rank 3 such that

$$f_{R_1,R_2,R_3}(g_1,g_2,g_3) = f(g_1,g_1,g_3,g_1,g_2,g_3).$$

Obtaining f_{R_1,R_2,R_3} from R corresponds to the formation of f(x,x,y,x,z,y) from $f(x_1,...,x_6)$ in the classical notation. For each function f we have $f_{Rg} = f(g,...,g)$. This is the case m=1.

We remark that for each function f of rank 2, and each two functions \mathbf{g}_1 and \mathbf{g}_2 of rank 1, we clearly have

$$[f(g_1,g_2)]_{ph} = f(g_1h,g_2h).$$

V. Law of Permutation. If f is a function of rank r and if ρ is the permutation i_1, \ldots, i_r of the numbers $1, \ldots, r$, then there is a function $f\rho$ of rank r such that for each r-tuple of constant functions c_1, \ldots, c_r we have

$$f_{\rho}(c_{1},...,c_{r}) = f(c_{i_{1}},...,c_{i_{n}}).$$

For each function $f^{\mathbf{r}}$ of rank r the permutations ρ for which $f^{\mathbf{r}}\rho = f^{\mathbf{r}}$, form a subgroup $/\!\!\!/ f^{\mathbf{r}}$ of $\mathbf{Z}_{\mathbf{r}}$, the symmetric group of r elements. $/\!\!\!/ f^{\mathbf{r}}$ is called the group of $f^{\mathbf{r}}$. If $/\!\!\!/ f^{\mathbf{r}} = \mathbf{Z}_{\mathbf{r}}$, then $f^{\mathbf{r}}$ is called a symmetric function.

In formulating this law, we substituted into f only constant functions, since without this restriction none but constant functions f would satisfy the law. Indeed, let f be a function of rank 2, and let ρ be the permutation 2,1 of the numbers 1,2. If we had postulated the existence of a function $f\rho$ such that $f\rho(g_1,g_2)=f(g_2,g_1)$ for each pair of functions g_1,g_2 of rank 1, then by substituting the functions h_1,h_2 into the two above functions of rank 2 we should obtain

$$[f\rho(g_1,g_2)](h_1,h_2) = [f(g_2,g_1)](h_1,h_2).$$

By virtue of the associative law for substitution this equality would imply

$$f\rho(g_1h_1, g_2h_2) = f(g_2h_1, g_1h_2)$$

for each quadruple of functions g_1, g_2, h_1, h_2 . Applying this formula to

$$g_1 = h_2 = 0, h_1 = j$$

we see that

$$f\rho(0, g_2^0) = f(g_2, 0)$$

for each function g_2 . Now, since g_2 0 is a constant, we see that $fp(0,g_20)$ is a constant. Hence, f would permit the suppression of the index 1. Similarly we could prove that f would permit the suppression of the index 2. Thus f would be a constant.

2. Sum and Product.

We call a function f of rank 2 associative if $f[f(g_1,g_2),g_3] = f[g_1,f(g_2,g_3)].$

A constant function n is said to be $\underline{\text{neutral}}$ with respect to f if

$$f(n,g) = f(g,n) = g.$$

An associative, symmetric function of rank 2 may be considered as an associative, commutative binary operation. Instead of f(g,h) we may write goh. We shall postulate the existence of two such functions s and p whose corresponding operations will be denoted by + and •, and called addition and multiplication, respectively. We shall postulate the existence of neutral elements denoted by 0 and 1, respectively, and shall assume a distributive connection of s and p.

In order to establish the connection of these concepts with those of the Algebra of Functions developed in Part I, we remark that the sum of two functions g and h of rank 1 considered in Part I, is $[s(g,h)]_R$ rather than s(g,h). For s(g,h) is a function of rank 2 whereas the sum of two functions considered in Part I was a function of rank 1. We had (f+g)h = fh+gh. By virtue of the remark following the Law of Identification in the preceding section, this formula (i.e., the a.s.d. law) is indeed valid for $[s(g,h)]_R$. In the classical notation, s(g,h) corresponds to g(x) + h(y) while $[s(g,h)]_R$ corresponds to the sum g(x) + h(x) which we considered in Part I. Similarly the product g·h of Part I is $[p(g,h)]_R$.

5. The Algebra of Partial Derivatives.

If f is a function of rank r, we introduce r operators D_1 . We call D_1 f the partial derivative of f for the index i. This operator is connected with substitution and identification according to the following postulates:

I.
$$D_{i,j}[f(g_1,...,g_r)] = D_{i}f(g_1,...,g_r) \cdot D_{i}g_{i}$$
.

Here the symbol ij refers to the j-th index in g_1 , in the same way as we could denote the $s_1+\cdots+s_r$ functions to be substituted into the function $f(g_1,\ldots,g_r)$ by

$$h_{11},\ldots,h_{1s_1},\ldots,h_{r1},\ldots,h_{rs_r}.$$

II.
$$D_{\mathbf{i}f_{R_1},\ldots,R_m} = \sum_{\mathbf{jin}R_1} (D_{\mathbf{j}}f)_{R_1,\ldots,R_m}.$$

Here $R_1 + \cdots + R_m$ is a decomposition of the set $R = \{1, \dots, r\}$ into non-vacuous, disjoint subsets.

A detailed development of the Algebra of Partial Derivation on this foundation will be the content of another publication.