
p
computed by P is the function computed by A fc. A fc-ary function F is recursive

if it is the Jfc-ary function computed by some program for the basic machine. (In

accordance with our convention, a relation is recursive iff its representing

function is recursive.)

It is clear that every recursive function is computable. It is not at all

evident that every computable function is recursive; but, after some study of the

recursive functions, we shall argue that this is also the case.

4. Macros

It is tedious to write programs for the basic machine because of the small

number of possible instructions. We shall introduce some new instructions and

show that they do not enable us to compute any new functions. The idea is

familiar to programmers: the use of subroutines, or, as they are often called

nowadays, macros.

For each program P for the basic machine, we introduce a new instruction
*

P , called the macro of P. When the machine executes this instruction, it begins

executing program P (with whatever numbers happen to be in the registers at the
*

time). If this execution never comes to an end, then the execution of P is never

completed. If the execution of P is completed, the machine changes the number
*

in the counter to 1 more than the number of the instruction P and continues

executing instructions. The macro machine is obtained from the basic machine

by adding all macros of programs for the basic machine as new instructions. We

define the notion of a program computing a function for the macro machine as we

did for the basic machine.

We say that the program P and P' are equivalent if the following holds.

Suppose that we start two machines with P in the program holder of the first

machine, P' in the program holder of the second machine, and the same number

in Hi in both machines for all i. Then either both machines will compute forever;



or both machines will halt, and, when they do, the same number will be in TLi in

both machines for every i. Clearly equivalent programs compute the same fc-ary

function.

4.1. PROPOSITION. Every program for the macro machine is equivalent to a

program for the basic machine.

Proof. Let P be a program for the macro machine. For each
* *

macro Q in P, we replace the instruction Q by the sequence of instruction Q.

We then number the instructions in the resulting program. Finally, we change

each instruction number within an instruction (i.e., each number n in an

instruction DECREASE ΐi,n or GO TO n) so that it refers to the same

instruction (in P or in one of the Q's) that it did originally. The result is a

program P' for the basic machine.

Suppose that we start with two machines as in the definition of

equivalent. The machines will perform the same operations until the first
*

executes a macro Q . Then both machines begin executing Q. If neither

finishes executing (?, we are done. Otherwise, both finish Q with the same

number in 1i in both machines for all ί. The number in the counter of the first
*

will be 1 more than the number of Q and the number in the counter of the

second will be 1 more than the number of the last instruction in Q. (This is

because the execution of Q can only stop by executing the last instruction and

having the counter increase by 1.) Thus either both machines will stop, or they

will continue performing the same operations, o

4.2. COROLLARY. Every function computed by a program for the macro

machine is recursive, o

We now introduce some useful macros. The program

0) DECREASE ϊz,0

causes the number in TLi to be changed to 0. We write the macro of this program

as ZERO Ίi.



We now want a program to move the number in Hi into Hj. We could do

this by repeatedly decreasing Hi and increasing 1j> but this would change the

number in Hi to 0. If we want to avoid this, we need another register Hk. We

then move the number in Hi into Hj and Hk, and then move it back from Ik to Hi.

In detail, suppose that i, j, and k are distinct. Then the program

0) ZERO Hj,

1) ZERO Hk,

2) GO TO 5,

3) INCREASE TLj,

4) INCREASE Ik,

5) DECREASE ΐs',3,

6) GO TO 8,

7) INCREASE TLi,

8) DECREASE Hk,l

causes the number in Hi to be moved into Hj without changing the number in Hi.

We write the macro of this program as MOVE TLi TO TLj USING Hk. (More

precisely, this is the macro of the program for the basic machine which is, by 4.1,

equivalent to the above program for the macro machine.) Usually we are not

interested in Hk, we then write simply MOVE TLi TO TLj, and understand that TLk

is to be chosen different from all registers mentioned in the program.

Let F be a fc-ary recursive function, and let P be a program which

computes F. Choose ra > k so that P does not mention TLi for t > ra. Let Q be

the program for the macro machine consisting of the following instructions:

MOVE TLi TO ϊ(ro+f) USING TLm for 1 < t <m; ZERO HO] ZERO TLi for k < i <

ra; P*; and MOVE ΐ(m-ht) TO Hi USING Hm for 1 < t < m. We leave the

reader to check that if Q is executed with a?jv..,a?j in 11,...,It, then the machine

eventually halts iff F(XΓ...,X^ is defined; and in this case, ,̂...,2 )̂ is in 30,

and the number in Hi is unchanged unless i = 0 or m < i < 2m.



Now let *p...,ijj,np...,n be distinct. By changing register numbers in

<2, we produce a program Q' with the following property. If (?' is executed with

£,,...,£, in lip...,It., then the machine eventually halts iff F(x*Γ..,xΛ is defined;

and in this case, F(xγ...,x^) is in 1;, and the number in Hi is unchanged unless

i = joτ i is one of n^,...nm. We write the macro of Q' as

F(lir...aik) - BUSING lrip...,lnm.

As above, we generally omit USING lτip...,lnm.

5. Closure Properties

We are going to show that the class of recursive functions has certain

closure properties; i.e., that certain operations performed on members of the class

lead to other members of the class. In later sections, we shall use these results

to see that various functions are recursive.

If 1 < i < k, we define the total A?-ary function Γ by Γ(x*Γ..,x,) = j .

Recall that every number is a 0-ary total function. The successor function Sc is

defined by Sc(x) = j+ 1. The function /*?, 0, and Sc are called the initial

functions.

5.1. PROPOSITION. The initial functions are recursive.

Proof The function 7^ is computed by the program

0)MOVEliT010.

The function 0 is computed by the program

0) ZERO 10.

The function Sc is computed by the program

0) MOVE 11 TO 10,

1) INCREASE 10. α

Because our functions need not be total, we often meet expressions which

may be undefined. Thus if F and G are unary, F(G(x}) is defined iff x is in the

domain of G and G(x) is in the domain of F. Suppose that X and Y are


