25 Large Π_2^1 sets

A set is $\underline{\Pi}_2^1$ iff it is the complement of a $\underline{\Sigma}_2^1$ set. Unlike $\underline{\Sigma}_2^1$ sets which cannot have size strictly in between ω_1 and the continuum (Theorem 21.1), $\underline{\Pi}_2^1$ sets can be practically anything.¹¹

Theorem 25.1 (Harrington [35]) Suppose V is a model of set theory which satisfies $\omega_1 = \omega_1^L$ and B is arbitrary subset of ω^{ω} in V. Then there exists a ccc extension of V, V[G], in which B is a Π_2^1 set.

proof:

Let \mathbb{P}_B be the following poset. $p \in \mathbb{P}_B$ iff p is a finite consistent set of sentences of the form:

- 1. " $[s] \cap \mathring{C}_n = \emptyset$ ", or
- 2. " $x \in \overset{\circ}{C}_n$, where $x \in B$.

This partial order is isomorphic to Silver's view of almost disjoint sets forcing (Theorem 5.1). So forcing with \mathbb{P}_B creates an F_{σ} set $\bigcup_{n \in \omega} C_n$ so that

$$\forall x \in \omega^{\omega} \cap V(x \in B \text{ iff } x \in \bigcup_{n < \omega} C_n).$$

Forcing with the direct sum of ω_1 copies of \mathbb{P}_B , $\prod_{\alpha < \omega_1} \mathbb{P}_B$, we have that

$$\forall x \in \omega^{\omega} \cap V[\langle G_{\alpha} : \alpha < \omega_1 \rangle] (x \in B \text{ iff } x \in \bigcap_{\alpha < \omega_1} \cup_{n < \omega} C_n^{\alpha}).$$

One way to see this is as follows. Note that in any case

$$B\subseteq \bigcap_{\alpha<\omega_1}\cup_{n<\omega}C_n^\alpha.$$

So it is the other implication which needs to be proved. By ccc, for any $x \in V[\langle G_{\alpha} : \alpha < \omega_1 \rangle]$ there exists $\beta < \omega_1$ with $x \in V[\langle G_{\alpha} : \alpha < \beta \rangle]$. But considering $V[\langle G_{\alpha} : \alpha < \beta \rangle]$ as the new ground model, then G_{β} would be \mathbb{P}_{B^-} generic over $V[\langle G_{\alpha} : \alpha < \beta \rangle]$ and hence if $x \notin B$ we would have $x \notin \bigcup_{n < \omega} C_n^{\beta}$.

Another argument will be given in the proof of the next lemma.

Lemma 25.2 Suppose $\langle c_{\alpha} : \alpha < \omega_1 \rangle$ be a sequence in V of elements of ω^{ω} and $\langle a_{\alpha} : \alpha < \omega_1 \rangle$ is a sequence in $V[\langle G_{\alpha} : \alpha < \omega_1 \rangle]$ of elements of 2^{ω} . Using Silver's forcing add a sequence of Π_2^0 sets $\langle U_n : n < \omega \rangle$ such that

$$\forall n \in \omega \forall \alpha < \omega_1(a_\alpha(n) = 1 \text{ iff } c_\alpha \in U_n).$$

Then

$$V[\langle G_{\alpha}: \alpha < \omega_1 \rangle][\langle U_n: n < \omega \rangle] \models \forall x \in \omega^{\omega} \ (x \in B \ iff \ x \in \bigcap_{\alpha < \omega_1} \cup_{n < \omega} C_n^{\alpha}).$$

¹¹ It's life Jim, but not as we know it.- Spock of Vulcan

proof:

The lemma is not completely trivial, since adding the $\langle U_n : n < \omega \rangle$ adds new elements of ω^{ω} which may somehow sneak into the ω_1 intersection.

Working in V define $p \in \mathbb{Q}$ iff p is a finite set of consistent sentences of the form:

1. "[s] $\subseteq U_{n,m}$ " where $s \in \omega^{<\omega}$, or

2. "
$$c_{\alpha} \in U_{n,m}$$
".

Here we intend that $U_n = \bigcap_{m \in \omega} U_{n,m}$. Since the c's are in V it is clear that the partial order \mathbb{Q} is too. Define

$$\mathbb{P} = \{ (p,q) \in (\prod_{\alpha < \omega_1} \mathbb{P}_B) \times \mathbb{Q} : \text{ if } ``c_\alpha \in U_{n,m}" \in q, \text{ then } p \models a_\alpha(n) = 1 \}.$$

Note that \mathbb{P} is a semi-lower-lattice, i.e., if (p_0, q_0) and (p_1, q_1) are compatible elements of \mathbb{P} , then $(p_0 \cup p_1, q_0 \cup q_1)$ is their greatest lower bound. This is another way to view the iteration, i.e. \mathbb{P} is dense in the usual iteration. Not every iteration has this property, one which Harrington calls "innocuous".

Now to prove the lemma, suppose for contradiction that

$$(p,q) \Vdash \mathring{x} \in \bigcap_{\alpha < \omega_1} \cup_{n < \omega} C_n^{\alpha} \text{ and } \mathring{x} \notin B.$$

To simplify the notation, assume $(p,q) = (\emptyset, \emptyset)$. Since \mathbb{P} has the ccc a sequence of Working in V let $A_n : n \in \omega$ be a sequence of maximal antichains of \mathbb{P} which decide \hat{x} , i.e. for $(p,q) \in A_n$ there exists $s \in \omega^n$ such that

$$(p,q) \models \stackrel{\circ}{x} \restriction n = \check{s}.$$

Since \mathbb{P} has the ccc, the A_n are countable and we can find an $\alpha < \omega$ which does not occur in the support of any p for any (p,q) in $\bigcup_{n \in \omega} A_n$. Since x is forced to be in $\bigcup_{n < \omega} C_n^{\alpha}$ there exists (p,q) and $n \in \omega$ such that

$$(p,q) \models \stackrel{\circ}{x} \in C_n^{\alpha}.$$

Let " $x_i \in C_n^{\alpha}$ " for i < N be all the sentences of this type which occur in $p(\alpha)$. Since we are assuming x is being forced not in B it must be different than all the x_i , so there must be an m, $(\hat{p}, \hat{q}) \in A_m$, and $s \in \omega^m$, such that

- 1. (\hat{p}, \hat{q}) and (p, q) are compatible,
- 2. $(\hat{p}, \hat{q}) \models \hat{x} \models m = \check{s}$, and
- 3. $x_i \upharpoonright m \neq s$ for every i < N.

((To get (\hat{p}, \hat{q}) and s let G be a generic filter containing (p, q), then since $x^G \neq x_i$ for every i < N there must be $m < \omega$ and $s \in \omega^m$ such that $x^G \upharpoonright m = s$ and $s \neq x_i \upharpoonright m$ for every i < N. Let $(\hat{p}, \hat{q}) \in G \cap A_m$.))

Now consider $(p \cup \hat{p}, q \cup \hat{q}) \in \mathbb{P}$. Since α was not in the support of $\hat{p}, (p \cup \hat{p})(\alpha) = p(\alpha)$. Since s was chosen so that $x_i \notin [s]$ for every i < N,

$$p(\alpha) \cup \{[s] \cap C_n^{\alpha} = \emptyset\}$$

is a consistent set of sentences, hence an element of \mathbb{P}_B . This is a contradiction, the condition

$$(p \cup \hat{p} \cup \{[s] \cap C_n^{\alpha} = \emptyset\}, q \cup \hat{q})$$

forces $x \in C_n^{\alpha}$ and also $x \notin C_n^{\alpha}$.

Let F be a universal Σ_2^0 set coded in V and let $\langle a_\alpha \in 2^\omega : \alpha < \omega_1 \rangle$ be such that

$$F_{a_{\alpha}} = \bigcup_{n \in \omega} C_n^{\alpha}.$$

Let $C = \langle c_{\alpha} : \alpha < \omega_1 \rangle$ be a Π_1^1 set in V. Such a set exists since $\omega_1 = \omega_1^L$.

Lemma 25.3 In $V[\langle G_{\alpha} : \alpha < \omega_1 \rangle][\langle U_n : n < \omega \rangle]$ the set B is Π^1_2 .

proof:

 $x \in B$ iff $x \in \bigcap_{\alpha < \omega_1} \bigcup_{n \in \omega} C_n^{\alpha}$ iff $x \in \bigcap_{\alpha < \omega_1} F_{a_{\alpha}}$ iff $\forall a, c \text{ if } c \in C \text{ and } \forall n \ (a(n) = 1 \text{ iff } c \in U_n), \text{ then } (a, x) \in F, \text{ i.e. } (x \in F_a).$

Note that

- " $c \in C$ " is Π_1^1 ,
- " $\forall n \ (a(n) = 1 \text{ iff } c \in U_n)$ " is Borel, and
- " $(a, x) \in F$ " is Borel,

and so this final definition for B has the form:

$$\forall ((\Pi_1^1 \land Borel)) \rightarrow Borel)$$

Therefore B is $\mathbf{\Pi}_2^1$.

Harrington [35] also shows how to choose B so that the generic extension has a Δ_3^1 well-ordering of ω^{ω} . He also shows how to take a further innocuous extensions to make B a Δ_3^1 set and to get a Δ_3^1 well-ordering.