82 23 MARTIN’S AXIOM AND CONSTRUCTIBILITY

23 Martin’s axiom and Constructibility

Theorem 23.1 (Gidel see Solovay [101]) If V=L, there ezists uncountable I}
set A C w* which contains no perfect subsets.

proof:

Let X be any uncountable X} set containing no perfect subsets. For example,
a A} Luzin set would do (Theorem 18.1). Let R C w* x w* be II{ such that
z € X iff 3y R(z,y). Use I} uniformization (Theorem 22.1) to get S C R
with the property that X is the one-to-one image of S via the projection map
7(z,y) = z. Then S is an uncountable II} set which contains no perfect subset.
This is because if P C S is perfect, then 7(P) is a perfect subset of X.
n

Note that it is sufficient to assume that w; = (w;)L. Suppose A € L is
defined by the I} formula §. Then let B be the set which is defined by 6 in V.
So by I} absoluteness A = BN L. The set B cannot contain a perfect set since
the sentence:

3T T is a perfect tree and Vz (z € [T] implies 6(z))

is a ¥} and false in L and so by Shoenfield absoluteness (Theorem 20.2) must
be false in V. It follows then by the Mansfield-Solovay Theorem 21.1 that B
cannot contain a nonconstructible real and so A = B.

Actually, by tracing thru the actual definition of X one can see that the
elements of the uniformizing set S (which is what A is) consist of pairs (z,y)
where y is isomorphic to some L, and £ € L,. These pairs are reals which
witness their own constructibility, so one can avoid using the Solovay-Mansfield
Theorem.

Corollary 23.2 If w; = wf, then there exists a I} set of constructible reals
which contains no perfect set.

Theorem 23.3 (Martin-Solovay [72]) Suppose MA + -CH + w; = (w1)*.
Then every A C 2% of cardinality w; is II}.

proof:

Let A C 2“ be a uncountable II} set of constructible reals and let B be
an arbitrary subset of 2* of cardinality w,. Arbitrarily well-order the two sets,
A={as:a<wi}and B= {by:a < w}.

By Theorem 5.1 there exists two sequences of G5 sets (U, : n < w) and
(Va : n < w) such that for every a < w; for every n < w

aq(n) =1iff by € U,

and
bo(n)=1iff aq € V,.

This is because the set {aq : bo(n) = 1}, although it is an arbitrary subset of A,
is relatively G5 by Theorem 5.1.
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But note that b € B iff Va € 2
[Vn (a(n) = 1iff b € Uy,)] implies [a € A and Vn (b(n) = 1 iff a € Uy)).
Since A is I} this definition of B has the form:
Va([LI3] implies [I1} and TI3])

So B is II1.
|

Note that if every set of reals of size w; is IJ} then every w; union of Borel
sets is ¥1. To see this let (B, : @ < w;) be any sequence of Borel sets. Let U
be a universal II} set and let (zo : @ < w;) be a sequence such that B, = {y :
(zayy) € U}. Then

yE€ U By iff 3z 2 € {24 1 a < w1} A(z,y) € U.

a<wy

But {zo : @ <w;} is II} and so the union is ¥}.





