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11 Martin-Solovay Theorem

In this section we the theorem below. The technique of proof will be used in the
next section to produce a boolean algebra of order w;.

Theorem 11.1 (Martin-Solovay [72]) The following are equivalent for an infi-
nite cardinal k:

1. MA,, i.e., for any poset P which is ccc and family D of dense subsets of P
with |D| < k there ezists a P-filter G with GN D # 0 for all D € D

2. For any ccc o-ideal I in Borel(2*) and T C I with |I| < k we have that

2\ Jz #0.

Lemma 11.2 Let B = Borel(2¥)/I for some ccc o-ideal I and let P = B\ {0}.
The following are equivalent for an infinite cardinal k:

1. for any family D of dense subsets of P with |D| < k there ezists a P-filter
G withGND#0 forallDeD

2. for any family F C B with |F| < & there ezists an ultrafilter U on B which
1s F -complete, i.e., for every (b, :n Ew) € F

Y bneUifanb, el

new

3. foranyZ CI with |I| <&
2\ Jz #0

proof:
To see that (1) implies (2) note that for any (b, : n € w) € B the set

D={p€11":p5-—2bn or Inp<b,}
n

is dense. Note also that any filter extends to an ultrafilter.

To see that (2) implies (3) do as follows. Let H, stand for the family of
sets whose transitive closure has cardinality less than the regular cardinal 7, i.e.
they are hereditarily of cardinality less than 4. The set H, is a natural model
of all the axioms of set theory except possibly the power set axiom, see Kunen
[64]. Let M be an elementary substructure of H, for sufficiently large v with
M| <k, I€eM,TCM.

Let F be all the w-sequences of Borel sets which are in M. Since |F| < k we
know there exists U an F-complete ultrafilter on B. Define z € 2* by the rule:

z(n)=3iff [{y€2¥:y(n)=i}] € U.
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Claim: For every Borel set B € M:

z € Biff [B] e U.
proof:
This is true for subbasic clopen sets by definition. Inductive steps just use

that U is an M-complete ultrafilter.
[ |

To see that (3) implies (1), let M be an elementary substructure of H, for
sufficiently large v with |M| <k, I € M, D C M. Let

I=MnI

By (3) there exists
re2” \UI
Let Byr = BN M. Then define
G ={[B] € Bum : ¢ € B}.

Check G is a P filter which meets every D € D.
]
This proves Lemma 11.2.

To prove the theorem it necessary to do a two step iteration. Let P be a

poset and (IOIE VE be the P-name of a poset, i.e.,
|Fr Q is a poset.
Then we form the poset
P+ Q= {(p.) : p IFi€Q)

ordered by (p,4) < (p,q) iff p < p and p |F § < ¢. In general there are two
0

problems with this. First, Px Q is a class. Second, it does not satisfy antisym-
metry: ¢ < y and y < z implies z = y. These can be solved by cutting down
to a sufficiently large set of nice names and modding out by the appropriate
equivalence relation. Three of the main theorems are:

Theorem 11.3 If G is P-generic over V and H is QC-generic over V[G], then
[
GxH={(p,9) eP+xQ:pE€ G,¢% € H}.

o
is a Px Q filter generic over V.
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Theorem 11.4 If K is a Px (f)-ﬁlter generic over V', then
G={p:3¢(p,9) € K}

is P-generic over V and

H={¢°:3p(p,q) € K}
is Q¢-generic over V[G).

[
Theorem 11.5 (Solovay-Tennenbaum [102]) If P is ccc and |Fp “Q is ccc”, then
Px (ED 18 ccc.

For proofs of these results, see Kunen [54] or Jech [43].

Finally we prove Theorem 11.1. (1) implies (2) follows immediately from
Lemma 11.2. To see (2) implies (1) proceed as follows.

Note that & < ¢, since (1) fails for FIN(¢t,2). We may also assume that the
ccc poset P has cardinality less than x. Use a Lowenheim-Skolem argument to
obtain a set @ C IP with the properties that |Q| < k, D N @ is dense in @ for
every D € D, and for every p,q € Q if p and ¢ are compatible (in P) then there
exists r € @ with » < p and r < q. Now replace P by @. The last condition on
@ guarantees that @) has the ccc.

Choose X = {z, : p € P} C 2 distinct elements of 2*. If G is P-filter generic
over V let Q be Silver’s forcing for forcing a Gs-set, () U,, in X such that

ncw

G={peP:z, € ﬂUﬂ}.

new
Let B € V be a countable base for X. A simple description of P (f) can be given
by:

[
(p,q) EP+Q
iff p € P and q € V is a finite set of consistent sentences of the form:
1. “x ¢(}n ” where z € X or
2. “B QI},. ” where B € B and n € w.
with the additional requirement that whenever the sentence “z g_f(} n isin ¢
and z = z,, then p and r are incompatible (so p |- r ¢ G).
[
Note that if D C P is dense in P, then D is predense in P* Q, i.e., every
o
r € P+ Q is compatible with an element of D. Consequently, it is enough to find
. . °
sufficiently generic filters for P+ Q. By Lemma 11.2 and Sikorski’s Theorem 10.1
. . . ° . . .
it is enough to see that if Px QC B is dense in the ccc cBa algebra B, then B is
countably generated. Let

C={|BCU,):BeB,new}.
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We claim that C generates B. To see this, note that for each p € P

[‘”pennUnl=lepeUn]

new

[z, €Unl= Z [BCUn]
BeB,zy,€B

furthermore
(2,0)=[zp €Nl |

[
and so it follows that every element of Px Q is in the boolean algebra generated

by C and so since P* (o) is dense in B it follows that C generates B.
|

Define X C 2“ to be a generalized I-Luzin set for an ideal I in the Borel sets
iff | X| = c and |X N A| < ¢ for every A € I. It follows from the Martin-Solovay
Theorem 11.1 that (assuming that the continuum is regular)

MA is equivalent to

for every ccc ideal I in the Borel subsets of 2“ there exists a generalized
I-Luzin set.

Miller and Prikry [82] show that it is necessary to assume the continuum is
regular in the above observation.





