5 Martin's Axiom

The following result is due to Rothberger [92] and Solovay [44][72]. The forcing we use is due to Silver. However, it is probably just another view of Solovay's 'almost disjoint sets forcing'.

Theorem 5.1 Assuming Martin's Axiom if X is any second countable Hausdorff space of cardinality less than the continuum, then $\operatorname{ord}(X) \leq 2$ and, in fact, every subset of X is G_{δ} .

proof:

Let $A \subseteq X$ be arbitrary and let \mathcal{B} be a countable base for the topology on X. The partial order \mathbb{P} is defined as follows. $p \in \mathbb{P}$ iff p is a finite consistent set of sentences of the form

- 1. " $x \notin \overset{\circ}{U}_n$ " where $x \in X \setminus A$ or
- 2. " $B \subseteq \overset{\circ}{U}_n$ " where $B \in \mathcal{B}$ and $n \in \omega$.

Consistent means that there is not a pair of sentences " $x \notin \overset{\circ}{U}_n$ ", " $B \subseteq \overset{\circ}{U}_n$ " in p where $x \in B$. The ordering on \mathbb{P} is reverse containment, i.e. p is stronger than $q, p \leq q$ iff $p \supseteq q$. The circle in the notation $\overset{\circ}{U}_n$'s means that it is the name for the set U_n which will be determined by the generic filter. For an element x of the ground model we should use \check{x} to denote the canonical name of x, however to make it more readible we often just write x. For standard references on forcing see Kunen [54] or Jech [43].

We call this forcing Silver forcing.

Claim: \mathbb{P} satisfies the ccc. proof:

Note that since \mathcal{B} is countable there are only countably many sentences of the type " $B \subseteq \overset{\circ}{U}_n$ ". Also if p and q have exactly the same sentences of this type then $p \cup q \in \mathbb{P}$ and hence p and q are compatible. It follows that \mathbb{P} is the countable union of filters and hence we cannot find an uncountable set of pairwise incompatible conditions.

For
$$x \in X \setminus A$$
 define

$$D_x = \{ p \in \mathbb{P} : \exists n "x \notin \overset{\circ}{U}_n " \in p \}.$$

For $x \in A$ and $n \in \omega$ define

$$E_x^n = \{ p \in \mathbb{P} : \exists B \in \mathcal{B} \ x \in B \text{ and } "B \subseteq \mathring{U}_n " \in p \}$$

Claim: D_x is dense for each $x \in X \setminus A$ and E_x^n is dense for each $x \in A$ and $n \in \omega$.

proof:

To see that D_x is dense let $p \in \mathbb{P}$ be arbitrary. Choose *n* large enough so that $\stackrel{\circ}{U_n}$ is not mentioned in *p*, then $(p \cup \{ x \notin \stackrel{\circ}{U_n} \}) \in \mathbb{P}$. To see that E_x^n is dense let *p* be arbitrary and let $Y \subseteq X \setminus A$ be the set of

To see that E_x^n is dense let p be arbitrary and let $Y \subseteq X \setminus A$ be the set of elements of $X \setminus A$ mentioned by p. Since $x \in A$ and X is Hausdorff there exists $B \in \mathcal{B}$ with $B \cap Y = \emptyset$ and $x \in B$. Then $q = (p \cup \{ {}^{"}B \subseteq U_n {}^{"}\}) \in \mathbb{P}$ and $q \in E_x^n$.

Since the cardinality of X is less than the continuum we can find a \mathbb{P} -filter G with the property that G meets each D_x for $x \in X \setminus A$ and each E_x^n for $x \in A$ and $n \in \omega$. Now define

$$U_n = \bigcup \{B : "B \subseteq \overset{\circ}{U}_n " \in G\}.$$

Note that $A = \bigcap_{n \in \omega} U_n$ and so A is G_{δ} in X.

Spaces X in which every subset is G_{δ} are called *Q*-sets.

The following question was raised during an email correspondence with Zhou.

Question 5.2 Suppose every set of reals of cardinality \aleph_1 is a Q-set. Then is $\mathfrak{p} > \omega_1$, i.e., is it true that for every family $\mathcal{F} \subseteq [\omega]^{\omega}$ of size ω_1 with the finite intersection property there exists an $X \in [\omega]^{\omega}$ with $X \subseteq^* Y$ for all $Y \in \mathcal{F}$?

It is a theorem of Bell [11] that \mathfrak{p} is the first cardinal for which MA for σ centered forcing fails. Another result along this line due to Alan Taylor is that \mathfrak{p} is the cardinality of the smallest set of reals which is not a γ -set, see Galvin and Miller [30].

Fleissner and Miller [23] show it is consistent to have a Q-set whose union with the rationals is not a Q-set.

For more information on Martin's Axiom see Fremlin [27]. For more on Qsets, see Fleissner [24] [25], Miller [81] [85], Przymusinski [90], Judah and Shelah [45] [46], and Balogh [5].