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§0. Introduction
This paper is concerned with the following question. Assume -*CH\ does there
exist a compact set K C Mn such that K has exactly KI path-components? For
M3, the answer is yes. For R2, the answer is no, assuming a weak large cardinal
axiom (which may or may not be necessary).

The proof of both results is descriptive set theoretic. Indeed, the motivation
for asking the question is descriptive set theoretic. The same question for com-
ponents, rather than path-components, would be a silly question; it is obvious
(at least to descriptive set theorists) that the answer is no. It is also obvious
that it is not possible that 2^° > ^3 and that there is a compact K C Rn with
K2 path-components. But the question as posed above does not seem to be a
silly question. One of the purposes of this paper is to present the descriptive set
theoretic point of view, and hopefully convince the reader that these "obvious"
facts really are obvious. Two references for descriptive set theory are Kechris
[13] and Moschovakis [17], and we follow their notation and terminology.

In both the M3 and R2 cases, we have results that are stronger than those
stated above. In both cases, the size of the continuum is irrelevant and the
theorem - properly stated - is nontrivial even if CH is true. These theorems
will be given in §2. For R3, there is a more general theorem, a precise version of
the following: Any Σ\ equivalence relation can be coded up as the equivalence
relation of being in the same path-component of A", for some compact K C R3

From this it easily follows that there is a A' C R3 with fti path-components. That
general theorem has other applications as well, one of which answers a question
of Kunen-Starbird [14]. This paper is largely an explanation of the statement of
these stronger theorems, and of the larger mathematical theory of which they
are a part, that is, the descriptive set theory of equivalence relations. In the R3

case we say virtually nothing about the proof. In the R2 case we give an outline
of the proof (§§6,7), containing several gaps, and using a stronger large cardinal
axiom than required.

The author plans to some day write a long paper about path-connectedness,
simple connectedness and descriptive set theory (Becker [3]). The results an-
nounced here will appear there with complete proofs. Most of Becker [3] will
be concerned with calculating the complexity, with respect to the projective
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hierarchy, of the following pointsets in the space £(Mn) of compact subsets of
Mn:

PCn = {K £ /C(En) : K is path-connected),

SCn = {K € /C(Mn) : K is simply connected}.

Several theorems of this sort were announced in Becker [2, Example 16 ff.], and
proofs of some of them have appeared in Kechris [13, Theorems 33.17 and 37.11].
(Remark. There has been one new result since these publications appeared. Darji
[7] and Just [10], independently, proved that PCi is not Σ\.) This topic is related
to the results in this paper. The proof that there is a K G /C(R3) with KI path-
components has much in common with the proof that PC^ is not Π\. The proof
that, assuming large cardinals and -tCH , there is no such K in /C(M2), has much
in common with the proof that SC^ is Π\.

We work in ZFC. When anything more is used in a theorem it will be
explicitly stated in the hypothesis.

§1. Path- components

Our basic reference for topological matters is Kuratowski [15]. Our terminol-
ogy is standard, and mostly consistent with that reference.

Set theorists have a habit of calling practically anything "the reals" . But here,
topology actually matters, so the reals always means the reals. It is denoted by
R. The letter K will always denote a compact subset of Mn for some n. While
our main interest is in such a space K , we give the definitions in more generality.

Definition 1. Definition Let X be a topological space and let p, q be points in
X. A path from p to q in X is a continuous function 7 : [0, 1] — > X such that
7(0) = p,7(l) = q. An arc is a one-to-one path.

We sometimes abuse the language and refer to the pointset Im(^) as "the
path 7". or "the arc 7".

For any topological space X , let &χ denote the following equivalence relation
on X:

P ^x q <=> there exists a path from p to q in X.

The &χ -equivalence classes are called the path- components of X. X is path-
connected if it has only one path-component.

Path-connectedness and path-components should not be confused with a dif-
ferent notion: connectedness and components. (Connected means no nontriv-
ial clopen sets, and a component is a maximal connected subset.) While path-
connectedness implies connectedness, the converse is false, even for compact
subsets of M2. The standard counterexample is K* = A\ U ̂ 2, where

A\ — { ( x , y) : — 1 < x < 0 and y — sin(\/x}},

A2 = { ( x , y) : x '= 0 and - 1 < y < 1}

(see Figure 1). K* is connected. But K* is not path-connected; it has exactly
two path-components, A\ and A^.



Figure 1

Theorem 1.1 Let p, q E Mn and let 7 : [0,1] —>• Mn be a path from p to q. If
p ^ q then there is an arc 7' from p to q such that Im(^') C Im(j).
Proof. See Kuratowski [15, §50, I, Theorem 2 and II, Theorem 1]. D

By 1.1, for any X C Mn, path-components are the same thing as arc-
components and path-connectedness the same as arc-connectedness. (In fact,
for any Hausdorίf space, the two concepts coincide.)

§2. Statement of theorems

We have two theorems, 2.1 and 2.2, below, which answer the question posed
at the beginning of this paper.
Theorem 2.1 There is a compact set K C M3 with the following properties.

(a) K has exactly KI path-components.
(b) There does not exist a nonempty perfect set P C K such that any two

distinct points of P are in different path-components of K.

The above theorem is proved in ZFC. The next theorem is not quite proved in
ZFC, but rather in ZFC + e. (A precise description of c is given below.)
Theorem 2.2 Assume c. For any compact set K C M2, one of the following

holds:

(i) K has only countably many path-components;
(ii) There is a nonempty perfect set P C K such that any two distinct points of

P are indifferent path-components of K. (Hence K has 2*° path-components.)

The axiom c is the following statement:

Every uncountable Σ\ set of reals contains a nonempty perfect subset.



By a theorem of Solovay (see Kanamori [11, Theorem 14.10]) c is equivalent to:

For all α C w, «f[α] < NI.

The axiom 6 is equiconsistent with the existence of an inaccessible cardinal (see
Kanamori [11, Theorem 11.6]), and thus it is a "large cardinal axiom" by virtue
of its consistency strength, although it does not, of course, imply the actual
existence of large cardinals. Serious large cardinal axioms, e.g., the existence of
a measurable cardinal, imply that 6 is true (as opposed to merely consistent).
Hence these large cardinal axioms imply that the conclusion of 2.2 is true. For
more information on large cardinal axioms, see Kanamori [11].

This axiom has been around for a long time, and has been explicitly con-
sidered as a hypothesis of theorems, but does not seem to have ever been given
a name. To rectify that oversight, I have decided to call it e. Compared to the
large cardinal axioms commonly used in set theory these days, this axiom is a
very weak assumption - the name c is entirely appropriate.

Theorem 2.2 leads to an interesting open question in reverse mathematics: Is
2.2 provable in weak subsystems of ZFC + e, such as ZFCΊ It is possible that it
is provable in ZFC, But I would conjecture that it is not, and that, in fact, the
following is provable in ZFC: There exists a compact K C M2 and a bijection
between the path-components of K and N^. If this is the case, then in all models
where N^p = KI < 2K°, the answer to the question posed at the beginning of this
paper would be yes, even for R2; hence a large cardinal axiom really would be
necessary to get a no answer.

§3. Descriptive set theory and equivalence relations, I:
Theorems of Silver and Burgess

If E is an equivalence relation on X and Y C X, Y is called E- invariant if
for all y,y' <EX:

y E Y and yEy' => y1 E Y.

Definition2. Definition Let X be a Polish space, let E be an equivalence re-
lation on X, and let Y C X be E'-invariant. We say that Y has perfectly many
E'-equivalence classes if there is a nonempty perfect set P C Y such that no two
distinct points of P are E'-equivalent.

Clearly perfectly many equivalence classes implies 2K° equivalence classes. In
fact, "perfectly many" is, in some sense, an eίfectivized version of "continuum
many": Y has continuum many equivalence classes iff there is some (arbitrary)
function / from the Cantor set C into V, such that for x, y £ C, if x φ y then
f ( x } $ f ( y ) ; Y has perfectly many equivalence classes iff there is a continuous
f as above. "Perfectly many", unlike "continuum many", is absolute whenever
E and Y are absolutely - Λ\ (which is the only situation we consider in this
paper). Therefore, the size of 2K° is irrelevant to the question of whether there
are perfectly many equivalence classes.



In this terminology, Theorem 2.1(b) (respectively, Theorem 2.2(ii)) states
that K does not have (respectively, does have) perfectly many path-components.

In the next two theorems, we consider this property in the case Y = X, when
E is JΊ\ (coanalytic) and when E is Σ\ (analytic), where E is regarded as a
pointset in the space X x X.
Theorem 3.1 (Silver). Let X be a Polish space and let E be a Π\ equivalence
relation on X. One of the following two cases holds:

(i) X has countably many E'-equivalence classes;
(ii) X has perfectly many ^-equivalence classes.

This dichotomy theorem is not true for Σ\ equivalence relations. The following
equivalence relation E* on C is a counterexample:

xE*y <=ϊ [(x £ WO and y £ WO) or \x\ = \y\],

where WO denotes the set of ordinal codes and \x\ denotes the ordinal encoded
by x. Clearly there are exactly HI E*-equivalence classes, and the Boundedness
Theorem implies that (even if CH is true) there are not perfectly many classes.
Theorem 3.2 (Burgess). Let X be a Polish space and let E be a Σ\ equivalence
relation on X. One of the following three cases holds:

(i) X has countably many E'-equivalence classes;
(ii) X has KI and not perfectly many E'-equivalence classes;
(iii) X has perfectly many ^-equivalence classes.

As shown above, case (ii) of 3.2 can occur. Thus Σ\ equivalence relations come
in three types. Assuming ~^CH, the three types are just three cardinalities for
the set of equivalence classes: N0, NI, 2N°. But if CH is true, we need a different
way of distinguishing case (ii) from case (iii), and that is where the concept
"perfectly many" comes in.

The original proof of Theorem 3.1 appeared in Silver [18]. A simpler proof,
essentially due to Harrington, can be found in Martin-Kechris [16]. The original
proof of Theorem 3.2 is in Burgess [5]. Shelah later discovered an extremely
general theorem, of which both 3.1 and 3.2 are special cases - this can be found
in Harrington-Shelah [9].

Although case (iii) is absolute, the distinction between cases (i) and (ii) of
Theorem 3.2 is not, in general, absolute. For it is provable in ZFC that there
is a Σ\ equivalence relation E1** on C and a bijection between the equivalence
classes of £"** and K f . (Proof. Let C\ — {x : x G Lω*} be the largest thin Π\
set - see Kechris [12] for details. Then define

xE**y <=> [(x £ Cι and y £ CΊ) or x - y}.

Since card(Cι) = cαrc^Nf), this works.) On the other hand, for some Σ\ equiv-
alence relations, such as £"*, case (ii) holds in every model.

Now consider those Polish spaces K which are compact subsets of Mn, and
the equivalence relation &κ on K of being in the same path-component. Clearly



is -̂  since

(3.3) p κκ q^=> (37 E (C[0,l]nF(p,q,7),

where F is the following closed subspace of the Polish space K x K x (C[0, l])n:

[/m(7) C # and 7(0) = p and 7(1) = q].

Therefore Burgess's Theorem is applicable to ra#, and so, as pointed out in the
introduction, it is not possible that 2^° > ^3 and K has ^2 path-components.

The equivalence relation of being in the same component of K is closed, hence
Π\, and therefore Silver's Theorem is applicable. That is, for any K,

(3.4) K has either count ably many or perfectly many components.

So, as was also pointed out in the introduction, assuming ~^CH, K cannot have
KI components. These facts about components can be proved directly, without
going through Silver's Theorem.

But is the Σ\ equivalence relation &χ also Π } ? Note that by Suslin's
Theorem, it is 77"} iff it is Borel.

It has been known since the work of Kunen-Starbird [14] in 1982 that there
exists a compact K C M3 for which &κ is not Borel (and that therefore Silver's
Thorem is not, in general, applicable to the equivalence relation &κ) It is still
an open question whether or not for every compact K C M2, &χ is Borel. While
it is possible that for all K £ /C(M2), &κ is Borel, it is not the case that &κ is
Borel uniformly in K. For if it was, PCi would be a ΐl\ set, which is not true
(see Becker [2, Theorem 2.2]).

This is the background which motivated the question posed at the beginning
of this paper. (That question was asked by the author in 1984 in several talks and
in the circulated notes Becker [1], but never asked in print.) To summarize: We
have a collection ε = {&κ K £ /C(Mn)} of 17}, generally non-Borel, equivalence
relations; Theorem 3.2 classifies Σ \ equivalence relations into three types, all
of which can occur; the question is whether type (ii) (Ni, not perfectly many)
can occur for equivalence relations in £. There are many interesting questions
(some solved, some open) of precisely this form: Given a proper subclass of
the class of all Σ\ equivalence relations, can type (ii) occur in this subclass? For
example, Vaught's Conjecture is such a question, since isomorphism for countable
structures - restricted to the Borel set of models of a first-order theory - is a
Σ ! equivalence relation.
Remark. For the equivalence relation of isomorphism, the distinction between
cases (i) and (ii) of Theorem 3.2 is absolute. Thus if there is a counterexample to
Vaught's Conjecture in L it remains a counterexample in V (even if ̂  < NI).
See Becker-Kechris [4, §7.2]. In this respect, there is a descriptive set theoretic
difference between Vaught's Conjecture and the analogous conjecture for path-
components with which this paper is concerned.



§4. Path-components in compact subsets of M3

The question, as posed in §3, was whether case (ii) of Theorem 3.2 - which
does occur among arbitrary Σ\ equivalence relations - can occur for a special
sort of Σ\ equivalence relation, those of the form w#. Of course, Theorem 2.1
says that it does. The way 2.1 is proved is to show that equivalence relations
of the form &κ are really not all that special; any Σ\ equivalence relation can
be coded up as &κ for some K £ /C(M3). This is made precise in Theorem 4.1,
below.

Let C denote the Cantor middle third set in [0,1].
Theorem 4.1 Let E be a Σ\ equivalence relation on C. There exists a compact
set KE C M3 satisfying the following three properties.

(a) For all x £ E, (x, 0, 0) £ KE iff x G C.
(b) For all p £ KE there exists an a? £ C such that (x, 0,0) &KE P
(c) For all x, y £ C, xEy iff (x, 0, 0) KKE (y, 0, 0).

Both a proof of Theorem 4.1 and a magnificent 3-dimensional picture of KE will
appear in Becker [3].

Note that if the word "compact" was removed from 4.1, the proof would
be quite easy. For each pair (x>y) such that xEy, we could pick a path 7^^)
connecting x and y, and since we are in 3-dimensional space, there is enough
room to pick these paths so that no two intersect except at the endpoints; then
let KE De the union of all these paths. However a KE constructed in this naive
manner will not even be a Borel set. The trick is to get it to be compact. The
construction of KE is similar to the constructions in Kechris [13, Theorems 33.17
and 37.11].

Theorem 2.1 is a corollary of Theorem 4.1. To see this, just consider a 17}
equivalence relation E on C with KI and not perfect many equivalence classes,
and let KE be as in Theorem 4.1, for this particular E. It is not hard to show
that KE satisfies 2.1.

Kunen-Starbird [14] proved that there is a K £ /C(R3) which has a non-Borel
path-component, and asked: Does there exist a K £ /C(M3) such that no path-
component of K is Borel?
Corollary 4.2 There is a compact set 'K C M3 such that no path-component of
K is Borel.
Proof. It is well known (but apparently unpublished) that there is a Σ} equiva-
lence relation E on C such that no E'-equivalence class is Borel. (Proof. It will suf-
fice to find such a 17} equivalence relation E1 on a standard Borel space. Let S be
a Σ\ non-Borel subset of R, and let F(M) and F(S) be the free groups generated
by R and 5, respectively. Let E' be the equivalence relation on F(M) given by the
coset decomposition F ( R ) / F ( S ) . ) Let KE be as in Theorem 4.1, for this partic-
ular E1. By 4.1 (c), if any path-component of KE was Borel, the corresponding E-
equivalence class would be Borel.
Remark. In both 2.1 and 4.2, the K's can be taken to be connected (that is, to



be continua). This is so because the components of the original K are compact
and connected, so in 4.2, we can pass from K to any component, and in 2.1, to
any component which consists of KI path-components. Such a component must
exist, by 3.4.

There are some very complicated Σ\ equivalence relations - complicated
in both the intuitive sense, and in the precise sense of definable cardinality, as
explained in Becker-Kechris [4, §8]. One example of a complicated Σ\ equivalence
relation is Turing-equivalence. By 4.1, all this complexity exists in the path-
component equivalence relation for compact subsets of M3.

All of the above results trivially transfer from R3 to Rn, for n > 3. What
about n = 2? Of course, the analog of Theorem 2.1 is false for M2 (assuming c).
The analog of Corollary 4.2 is also false for R2 (in ZFC}\ that is, for any compact
K C M2, at least one path-component of K is a Borel set. These facts seem to
mean that it is not possible to code up arbitrary Σ \ equivalence relations as the
path-component equivalence relation for some K £ /C(M2), under any conceivable
meaning of "code up" . This still leaves open the question of whether &κ can
ever be "complicated" for K G /C(M2), e.g., can it be as complicated as Turing-
equivalence? There are no known examples (from any axioms) of a K £ /C(M2)
such that &κ is not smooth, i.e., such that &χ is more complicated than the
equality relation on C (see Becker-Kechris [4, §3.4] for definitions and details).

§5. Descriptive set theory and equivalence relations, II:
Stern's Theorem

In this section, we consider Borel equivalence relations, which are much better
behaved than arbitrary Π \ equivalence relations. At first glance, Silver's The-
orem (3.1) would seem to say that nothing could be better behaved than Π\
equivalence relations. The problem is that the Silver dichotomy for 77} equiva-
lence relations applies only to the entire Polish space X. If E is a Π \ equivalence
relation on X, there may well be a simply definable - in fact, n\ - ^-invariant
set Y C X such that E\(Y x Y) does not have either countably many or perfectly
many equivalence classes. For example, let E*** be the following Π\ equivalence
relation on C:

xE***y <=> [(x E WO and y € WO and \x\ = \y\) or x = y].

Clearly WO is Π\ and E*** -invariant, and E***\(WO x WO) violates the di-
chotomy. For Borel equivalence relations, this situation does not occur.
Theorem 5.1 (Stern) Assume c. Let X be a Polish space, let E be a, Borel
equivalence relation on X and let Y C X be an E-invariant 17 2 set. One of the
following two cases holds:

(i) Y has countably many E'-equi valence classes;
(ii) y has perfectly many ^-equivalence classes.

Proof. See Stern [19]. Π



To put Stern's Theorem in its proper context, the following two remarks may
be helpful. First, fix a Borel equivalence relation E on X with perfectly many
equivalence classes. Assuming the full axiom of determinacy (which contradicts
the axiom of choice), every ^-invariant set Y C X has either countably many
or perfectly many ^-equivalence classes. This follows from Stern's Theorem to-
gether with a result of Harrington-Sami [8, Theorem 2]. Obviously, using the
axiom of choice, we can pick out a set of KI E-equivalence classes; and, in fact,
even if CH is true, using choice we can get an E'-invariant set Y C X with un-
countably many but not perfectly many equivalence classes. But such a Y will
not be definable. Thus £"-invariant sets Y C X which violate the dichotomy are
like sets of real numbers which are not Lebesgue measurable: Such pathological
sets do exist, but one cannot explicitly define an example. That's not provable
in ZFC', but all right-thinking people know it is true. Regarding provability, the
analogy between sets Y C X violating the dichotomy and nonmeasurable sets
of reals still holds: Stronger and stronger large cardinal axioms imply larger and
larger classes of sets are nonpathological. Stern's Theorem is that the axiom e is
sufficient to prove that Σ\ sets Y are nonpathological.

Second, consider the case where X is the reals and E is equality. For this
special case, the conclusion of Theorem 5.1 is that for any Σ\ set Y C M,
either Y is countable or Y has a perfect subset. That is, the conclusion of 5.1 is
literally the axiom e. So clearly this assumption is necessary. Stern's Theorem
says that if equality has this property, then every Borel equivalence relation has
this property. And as shown by the examples E* and E1***, above, "Borel" is
best possible.

§6. Theta-curves

Definition. A theta-curυe (in E2) is a 5-tuple (u,v, 71,72,73) such that
u, v £ K2, each 7, is an arc from u to v in M2, and if i φ j then 7,- Π7j = {u, v}.

We sometimes abuse the language and refer to the pointset /m(7ι)U/m(72)U
7771(73) in M2 as the "theta-curve". Figure 2 is a picture of a theta-curve in this
latter sense.

We need a theorem about the topology of the plane - the theorem says that
the picture in Figure 2 is correct. It is actually a very deep theorem, and to
motivate it one should first consider the famous Jordan Curve Theorem. A cir-
cle always means a topological circle. The Jordan Curve Theorem states: If C
is any circle embedded in M2, then M2\C has exactly two components; and fur-
thermore, the boundary of each of the two components is C. There is a similar
theorem for theta-curves.
Theorem 6.1 Let (u, v, 71,72,73) be a theta-curve, and let 7,- = /m(7, ).
E2\(7ι U72U73) has exactly three components. The boundary of one component
is 71 U72- The boundary of another component is 72 U 73. And the boundary of
the third component is 73 U 71.
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Figure 2

Proof. See Kuratowski [15, §61, II, Theorem 2]. D
Theorem 6.2 Let K be a compact subset of M2. If there is no theta-curve lying
in K, then the equivalence relation &κ is Borel.
Corollary 6.3 Assume e. Let K be a compact subset of M2. If there is no theta-
curve lying in K, then for any &κ-invariant Σ\ set Y C K, one of the following
two cases holds:

(i) Y has countably many path-components;
(ii) Y has perfectly many path-components.

Proof. This follows from Theorems 5.1 and 6.2. Note that since Y is &κ-
invariant, &γ is &χ \(Y x Y), i.e., every path-component of Y is also a path-
component of K. Π In §7, we give a proof of Theorem 2.2 (from a stronger large
cardinal axiom than e). That proof uses both Theorem 6.1 and Corollary 6.3. We
remark that one could also consider theta-curves in Mn, for any n, and that both
6.2 and 6.3 would still be valid in the n-dimensional case. But the 3-dimensional
analog of Theorem 6.1 is obviously false. Theorem 6.1 is the one and only place
in the proof of Theorem 2.2 where the hypothesis that K C M2 is used.

The rest of §6 consists of a sketch of the proof of Theorem 6.2. This proof
involves effective descriptive set theory, that is, recursion theoretic methods.
Moschovakis [17] is the reference for this subject.

We work with recursively presented Polish spaces (as defined in Moschovakis
[17, Page 128]). The Polish spaces M2,/C(M2) and (C[0,1])2 are all recursively
presented, hence so are all finite products of these spaces. We regard compact
subsets of R2 as points in the space /C(M2), and we regard paths in R2 as points
in the space (C[0,1])2. For any recursively presented Polish spaces X and Y,
and any points x E X and y E Y, x <h y means that x is hyperarithmetic-in-y,
or equivalently, that x is Δ\(y). This is defined in Moschovakis [17, Pages 151
and 157].
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The key step in the proof that SC2 is Π\ is the following theorem, announced
in Becker [2, Theorem 2.5]: If K is a compact simply connected subset of M2,
then for any points p,q G K, there exists a path 7 from p to q, lying in K,
such that 7 <h (/\,p,q). A trivial special case of this theorem is the following
fact: If K is a compact path-connected subset of M2, and there is no circle in
K, then for any points p, q E K, there exists a path 7 from p to q, lying in K,
such that 7 <h (K, p, q). We generalize this latter fact here (but generalize it in
a, different - and easier - way than the above theorem about simply connected
sets).
Lemma 6.4 If K is a compact subset of ]R2, and there is no theta-curve in K,
then for any points p, q £ K such that p P^K q, there exists a path 7 from p to
q, lying in K, such that 7 <h (K, p,q).
Sketch of proof As p «κ q, by Theorem 1.1, there exists an arc from p to q,
lying in K. Throughout this proof, we consider only arcs, not arbitrary paths.
Suppose Y is a recursively presented Polish space, y £ Y, r, s £ M2, and δ is any
arc from r to s in M2; it can be shown that if the pointset Im(S) is a A\(y, r, s)
set in M2, then there is an arc δ1 G (C[0, I])2 such that Im(δ') = Im(S) and
S1 <h (y, r, s). Therefore, to prove 6.4, it will suffice to show that there is an arc
7 from p to q, lying in A", such that Iπι(^) is a Δ\(K,p,q) subset of M2. The
image of the arc from p to q lying in K is almost unique. It fails to be unique
only because there is a countable set {Ci : i £ /} of circles lying along the arc,
and there are two distinct points ai, bi on each circle C;, such that aι,bi lie on
the arc (with ai occurring before bi), and at each circle d one can go around
the circle from ai to bi in either of two ways. That is, K must look pretty much
like the pointset in Figure 3 (except that there may be a countably infinite set
of circles lying along the arc, ordered in any countable order-type).

The above description is not very precise, and in this sketch we will not
make it precise, let alone prove it. We merely point out that there are a number
of different things that have to be proved, and for all of them the proof is
straightforward and has the same structure: If K was in any way different from
the above description, it would contain a theta-curve.

We now choose a canonical arc (more precisely, image of an arc) from p to
q in K. This amounts to choosing which of the two ways to go around each of
the circles C, . Note that we cannot make an arbitrary choice. If we chose, say,
to always go clockwise, we would not, in general, end up with an arc, since we
could get a sm(l/a?)-type situation (see Figure 1). We therefore choose to go
around each circle the "short way", where "short" does not refer to arc length,
but rather the short arc of d from ai to bi is the one which can be covered by
a disc of smaller radius. Our hypothesis is that there exists an arc from p to q
in A', and assuming this, it can be shown that if we always go around the circles
the short way, that, too, will be an arc. We call that the canonical arc (actually
the canonical image of an arc).

Let D C M2 be the canonical arc. All that remains to be proved is that D is
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Figure 3

Let

{C £ /C(M2) : C is a circle and C C K and (37 G (C[0,1])2)(7 is an
arc from p to q, lying in K, and 7 O C contains at least two points)}.

Then J is a 17i(/f,p,q) set (in the space /C(M2)). And J is countable. By the
Effective Perfect Set Theorem, there is a Δ\(K,p,q) enumeration {Cj : j £ ω}
of J'. Now for any point r in E2:

r G D <=ϊ (37 £ (C7[0,1])2)[7 is an arc from p to q, lying in K,
and (Vj 6 ω)(7 goes around Cj the short way) and r lies on 7]

<S=> (V7 £ (C[0, l])2)[if (7 is an arc from p to q, lying in K,
and (Vj £ ω)(7 goes around Cj the short way )) then r lies on 7].

The first formula shows that D is Σ^A', p,q) and the second formula shows
that D is Πt(K,p,<ι). Therefore, D is Z\}(A,p,q). D
Remark. In Lemma 6.4, "hyperarithmetic" is best possible. For any countable
ordinal α, there exists a /\ ,p,q satisfying the hypothesis of 6.4 such that no
Δ°a(K,p,q) path 7 satisfies the conclusion of 6.4.

Proof of 6.2 For any K (whether K contains a theta-curve or not), &κ is Σ\\
see 3.3. Since this K does not contain a theta-curve, Lemma 6.4 implies that for
a l l p , q < E K ,

P «κ q <=> (37 <h (K, p, q))F(p, q, 7),

where F is as in 3.3. By a theorem of Kleene (see Moschovakis [17, Theorem
4D.3]), the pointclass Π\ is closed under quantification of the form "3x <h y".
Hence the above formula shows that &κ is Π\. Since &κ is both Σl and 7715

by Suslin's Theorem, it is Borel. D
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§7. Path-components in compact subsets of R2

While Theorem 2.2 can be proved in ZFC -\- ε, its proof is much easier if one
assumes a stronger large cardinal axiom. We give this easier proof here in §7.

The axiom which will be used is denoted #, and is the following statement:

For all a C u>, cfi exists.

The axiom φ is equivalent to Jj}-determinacy, and also equivalent to several
other interesting propositions. It implies e, but not conversely; in fact, φ has
greater consistency strength than e. The existence of a measurable cardinal im-
plies φ (but is far stronger). We again refer the reader to Kanamori [11] for
details.

For any topological space X, let X/ &χ denote the set of path-components
of X. Let us again note that if Y C X is &χ-invariant then &γ is &χ \(Y x Y).
Lemma 7.1 Assume φ. Let K be a compact subset of Rn which has uncount-
ably many but not perfectly many path-components. There exists a non-trivial
count ably additive two-valued measure, defined on a σ-algebra S of subsets of
K/ &κ, such that for any «χ-invariant Σ\ set Y C A', Y/ &γ is in S.

To understand 7.1, recall that the axiom of determinacy (AD) implies that
HI is a measurable cardinal, and that by Theorem 3.2, the set K of 7.1 has KI
path-components. So assuming AD, we could take S to be the full power set of
K/ &κ- But to prove Theorem 2.2 it is not necessary to measure arbitrary sets
of path-components; it will suffice to measure Σ\ (in fact, Π\) sets of path-
components. So we clearly do not need the full force of AD - some weak version
of it will do. Although it is not obvious, JTi-determinacy is sufficient to measure
the sets we need to measure; since JΊ\-determinacy is equivalent to φ, that is
the content of Lemma 7.1. I do not know whether or not 7.1 - or 7.1 with Σ2

replaced by Π\ - is provable in ZFC + e.
The proof of 7.1 breaks into two parts. First, any Σ\ set of countable ordinals

either contains or is disjoint from a closed-unbounded set. This much is provable
assuming only 6. But we do not want to measure sets of ordinals, we want to
measure sets of path-components. So we also need a second fact: The path-
components of K can be paired up with the countable ordinals in a Λ\ way.
This is a special case of a theorem of Burgess [6], and the proof seems to require

#•
Proof of 2.2, assuming # First note that there does not exist an ω\-sequence
(Ka : a < u>ι) of compact subsets of M2 with the property that if a > β then
Ka is a proper subset of Kβ. We prove Theorem 2.2 by assuming that 2.2 is
false and showing that such an ω\-sequence does exist. So assume φ and assume
2.2 is false. Fix a compact set K C M2 which has uncountably many but not
perfectly many path-components. Fix a measure μ on K/ &κ satisfying Lemma
7.1. We construct, by induction, an ui-sequence ((Ka,Aa) : a < u>ι) satisfying
the following six properties.

(1) A0 = A.
(2) Ka is a compact set.
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(3) If a > β then Ka is a proper subset of Kβ.
(4) For μ-a.e. path-component A of K, A C Ka.
(5) Aa is a path-component of K.
(6) Let p E KcΛIUίA/j '• β <<*}]. Let q «κ P Then q E K

Property (6) requires some explanation. While Ka is a subset of A', it is not
a «χ-invariant subset. Therefore it is possible that two points in Ka are in the
same path-component of K but in different path-components of Ka . So a single
path-component of A" could break up into two path-components of Ka , or even
into perfectly many path-components of Ka. The point of (6) is that while path-
components of K can get broken apart, at any fixed stage a in the construction
only countably many path-components of K get broken apart; we keep track
of these countably many bad path-components; they are the Aβ's. With these
countably many exceptions, every path-component of K is either entirely in Ka

or entirely out of Ka. (Of course, by (4), μ-a.e. path-component is entirely in.)
In the sequel we carefully distinguish «#• from &KQ - Note that Aa is a path-

component of AT, not of Ka. Also note that the Aa's need not be distinct.
We now give the inductive construction of Ka and Aa , and thereby complete

the proof.
a = 0. Let AO — K and let AQ be any path-component of K.
a a successor ordinal. Let a — a' + 1, and suppose that the sequence has

been constructed out to stage a.1 and that (l)-(6) hold.
Claim A. There is a theta-curve lying in Ka>.
To prove Claim A, assume it is false. Let

Y = KQ,\[U{Aβ:β<a'}].

The Aβ's are path-components of A, hence &κaι -invariant. So clearly Y is a

^κa, -invariant subset of Aα/. As path-components are Σ\ sets, Y is JZ"} (hence

Σ\). Applying Corollary 6.3, we see that one of the following two cases holds:

(i) Y contains only countably many path-components of Aα/
(ii) Y contains perfectly many path-components of Ka' .

By (6), Y is &κ -invariant and &κ \(Y x Y) is the same as &KQ, |(Y x Y). So
in case (ii), A" has perfectly many path-components, contrary to assumption.
Similarly, in case (i), the ^-invariant set Y C K contains only countably many
path-components of K. Therefore, Kat intersects only countably many path-
components of A, namely those in Y, plus Aβ for β < a1 . But μ is a non-trivial
countably additive measure, hence (4) implies that Ka> contains uncountably
many path-components of A. This proves Claim A.

Fix a theta-curve lying in Ka> . Let I\ , /2 and /a be the three components of
the complement (in M2) of this theta-curve, as described in Theorem 6.1.

Consider the following four sets of path-components of A:

Qo = {A G K/ &κ A intersects the theta-curve};
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Claim B. (a) QQ has only one element.
(b) Every path-component of K is in QQ U Q\ U Qi U Q$.
The proofs of both parts of Claim B are immediate. Since the theta-curve is

a path-connected subset of K, (a) holds. To prove (b), note that if A £ K/ &κ
does not intersect the theta-curve, then A must lie entirely inside one of the three
components /ι,/2,/3; for if A intersected two of these components it would be
disconnected.

Thus we have partitioned K into four &χ-invariant sets: UQch UQi, U<22> UQs.
The first of these is Σ\, the other three are 17}, hence all four Q 's are μ-
measurable. So one of the four must have measure 1. Let j £ {1,2,3} be such
that μ ( Q j ) — 1. Then let Ka — Ka> Π ( c l o s u r e ( I j ) ) and let Λα be the unique
member of QQ .

With this choice of Ka and Aa, properties (2), (4) and (5) are obvious, and
- toward proving (3) - it is also obvious that KQ is a subset of Kaι. The reason
that Ka must be a proper subset of Ka> is that one of the three arcs of the theta-
curve is removed. This uses Theorem 6.1. Finally, to see that (6) holds, note that
by Claim B, every path-component of K other than Aa must lie entirely inside
Ij or entirely outside closure(Ij). Therefore the only path-component of K to
get broken apart in passing from Ka* to Ka is the path-component Aa, and so,
by induction, (6) holds.

a a limit ordinal. Let Ka — Γ\β<aKβ and let Aa be any path-component of
K.

Since α is a countable ordinal and μ is countably additive, (4) holds. All the
other properties are obvious. Π
Remark. In the proof of 2.2, we emphasized the fact that ^KQ is not the
same thing as &κ \(Ka x Ka). It is not hard to see that in the above proof,
this phenomenon does not occur at the successor stages a — a' + 1; &κa is,
indeed, the same as &KQ, \(K<χ x ^α) That is, the procedure of intersecting
the path-component of a theta-curve with the closure of one of the components
of the complement of that theta-curve, does not destroy path-connectedness.
The problem occurs at limit ordinals. If this procedure is done infinitely many
times to the same path-component A (using different theta-curves), the part of
A which is retained need not be path-connected.
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