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1. Introduction

Symplectic cohomology is an invariant of a certain kind of sym-
plectic manifolds (open, or with boundary). It is comparatively easy
to define, being a variation on classical Hamiltonian Floer homology.
Moreover, its behaviour reflects important aspects of symplectic topol-
ogy in a fairly direct way. For instance, this applies to the fundamentally
trivial nature of subcritical Stein manifolds, and to the importance of
exact Lagrangian submanifolds, which are reflected in (nontrivial) van-
ishing resp. non-vanishing theorems for symplectic cohomology. In spite
of this, and of the many successful early applications, the theory has
not received the same level of attention as, say, Gromov-Witten theory
or SFT (symplectic field theory).

These lecture notes are an attempt to advertise the breadth and
attractiveness of symplectic cohomology, by stressing connections with
various parts of symplectic topology and algebraic geometry. Because
of this specific aim, our account may appear somewhat unbalanced
(whence the title). On one hand, it includes a certain amount of pre-
viously unpublished material (various parts of this are due to Mark
McLean, Ivan Smith, and the author; I have tried to mark clearly those
places where I am borrowing other people’s work). On the other hand,
the exposition omits many technical details, and important classical re-
sults are stated entirely without proof. Fortunately, there are other sur-
veys which perform much better in these respects, for instance [40, 53].
There is also some very recent work which could not be included in
these notes, such as that of Bourgeois-Oancea relating symplectic coho-
mology with contact homology [5, 4]. Again, others will make up for
this deficiency (Cieliebak and Oancea are preparing a paper which will
explain this and other SFT-inspired work on symplectic cohomology).
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My present understanding of symplectic cohomology has developed
throughout the course of many conversations with Ivan Smith. Mo-
hammed Abouzaid, Kevin Costello and Tim Perutz contributed stim-
ulating ideas and comments. I would also like to thank the Harvard
mathematics department for inviting me to talk at the 2006 “Cur-
rent Developments in Mathematics” conference, and the audience in my
subsequent MIT graduate course for suggestions and corrections. The
preparation of these notes was partially funded by NSF grant DMS-
0405516.

2. Liouville domains

We begin by fixing the class of symplectic manifolds to be used
throughout these notes. A precise name might be “exact symplectic
manifolds with contact type boundary”, but for brevity, we will call
them Liouville domains. Unlike the case of closed symplectic manifolds,
there are several possible notions of isomorphism, with widely differ-
ent implications. Our definition of “Liouville isomorphism” involves
attaching an infinite cone, and rules out “quantitative” invariants such
as volume and capacities.

Generally speaking, constructing Liouville domains is easy because
there are no constraints, meaning that the manifold does not have to
close up. For instance, if one uses Lefschetz fibrations as a construction
method, the global monodromy may be nontrivial, hence the vanishing
cycles can be chosen arbitrarily. We illustrate this by introducing a
family of Liouville structures on D6, which depends on certain combi-
natorial data (given by paths on the plane, or equivalently by conjugacy
classes in the braid group). There are reasons to suspect that this family
should contain many exotic (nonstandard) examples, and that these are
distinguished by known invariants such as symplectic cohomology. Due
to the difficulty of computing these invariants, this problem (like many
others of the same kind) is entirely open at present, and we present it
mainly as food for thought.

(2a) The definition: A Liouville domain is a compact manifold with
boundary M2n, together with a one-form θ which has the following two
properties. First, ω = dθ should be symplectic. Secondly, the vector
field Z defined by iZω = θ should point strictly outwards along ∂M .

Example 2.1. Let U be a Stein manifold, with complex structure J .
One of the equivalent formulations of the Stein property is that there is
an exhausting function h : U → R which is (strictly) plurisubharmonic,
meaning that −ddch = −d(dh ◦ J) is a Kähler form. Then, if C is a
regular value of h, the sublevel set

(2.1) M = h−1((−∞;C]),
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equipped with θ = −dch, is a Liouville domain. The Liouville flow in
this case is just the gradient flow of h, defined with respect to the Kähler
metric associated to ω = dθ.

Returning to the general discussion, note that α = θ|∂M is a contact
one-form on ∂M . The flow of Z is always defined for negative times,
and gives rise to a canonical collar

(2.2)
κ : (−∞; 0]× ∂M −→M,

κ∗θ = erα, κ∗Z = ∂r,

modelled on the negative half of the symplectization of (∂M,α). It is
therefore natural to create more space by attaching an infinite cone,
which corresponds to the positive half:

(2.3)
M̂ = M ∪∂M ([0;∞)× ∂M),

θ̂|([0;∞)× ∂M) = erα, Ẑ|([0;∞)× ∂M) = ∂r, ω̂ = dθ̂.

This process is called completion (because the extended Liouville field

Ẑ is complete: its flow exists for all times).
A Liouville isomorphism between domains M0,M1 is a diffeomor-

phism φ : M̂0 → M̂1 satisfying φ∗θ̂1 = θ̂0 + d (some compactly supported
function). Obviously, any such φ is symplectic, and compatible with the

Liouville flow at infinity. This means that on [ρ;∞) × ∂M0 ⊂ M̂0 for
some ρ≫ 0, it has the form

(2.4) φ(r, y) = (r − f(y), ψ(y)),

where ψ : ∂M0 → ∂M1 is a contact isomorphism, satisfying ψ∗α1 =
efα0 for some function f . Note that while the contact structure at the
boundary is preserved under Liouville isomorphism, the contact one-
form is not, and in fact can be changed arbitrarily. Another fact which
one should keep in mind is a version of Moser’s Lemma, which says that
deformation equivalence implies Liouville isomorphism:

Lemma 2.2. Let (θt)0≤t≤1 be a family of Liouville structures on M .
Then all the (M, θt) are mutually Liouville isomorphic.

Example 2.3. For an h : U → R as in the previous example, sup-
pose that the critical point set of h is compact. Then, if we take C to
be bigger than the largest critical value, the resulting Liouville domain
(2.1) is independent of the particular choice of C up to Liouville isomor-
phism. If one assumes in addition that ∇h is complete, (U,−ddch) itself

will be symplectically isomorphic to M̂ . In this context, it is maybe use-
ful to know that completeness of the gradient vector field can always be
achieved by a reparametrization h 7→ β(h) [2, Lemma 3.1].

(2b) Lefschetz fibrations: We will not give a proper explanation of
the theory of Lefschetz fibrations for Liouville domains, and instead just
regard it as a “black box”, which constructs symplectic manifolds from
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lower-dimensional data. More specifically, let M be a four-dimensional
Liouville domain, and (V1, . . . , Vm) an ordered collection of embedded
Lagrangian two-spheres in M \ ∂M . There is a unique (up to deforma-
tion) Lefschetz fibration over the disc D, whose fibre is M and whose
vanishing cycles are the Vk. The total space of this fibration (after
rounding off corners) is a six-dimensional Liouville domain E. Sym-
plectically (up to Liouville isomorphism), E depends on the Lagrangian
isotopy classes of the Vk; but topologically (up to diffeomorphism), only
the differentiable isotopy classes matter. This is important because the
discrepancy between Lagrangian and differentiable isotopy is known to
be large in many cases [46].

Remark 2.4. This construction generalizes to Liouville domains M
of any dimension 2n, except for some technical complications which we
will now mention briefly. On the symplectic side, the vanishing cycles
have to satisfy an exactness condition [θ|Vk] = 0 ∈ H1(Vk; R); and
moreover, each such cycle should come with a diffeomorphism fk : Sn →
Vk, or rather with a specified class [fk] ∈ π0(Diff(Sn, Vk)/On+1). The
first condition is automatic unless n = 1, while the π0 group appearing
in the second one is trivial for n ≤ 3.

As far as the topological side is concerned (if one wants E just as a
smooth manifold), what one needs is a collection of embedded n-spheres
Vk together with classes [fk] as before, and additionally isomorphisms

(2.5) νVk
∼= T ∗Vk.

An easy way to see why these are relevant is to interpret the construc-
tion as attaching handles to the boundary spheres Σk = {zk} × Vk ⊂
∂(D2×M), for some choice of distinct cyclically ordered points zk. The
isomorphisms (2.5) then identify the normal bundles of those boundary
spheres with R⊕ T ∗Sn, which is canonically trivial. This is the framing
used to attach the handles (of course, if the Σk are Lagrangian, they
come with distinguished maps (2.5), hence no additional framing data is
required; see Section 6a for more discussion along those lines). Once one
has taken orientations into account, the remaining freedom in choosing
(2.5) is an element of πn(SOn). Again, this vanishes for n ≤ 2, which
is why the issue did not appear in our original discussion.

To proceed to a concrete example, let’s fix a polynomial p ∈ C[z]
which is monic of degree m+ 1 ≥ 3, and has no multiple zeros. Denote
the set of zeros by P ⊂ C. Consider the smooth affine algebraic surface
U ⊂ C3 defined by

(2.6) xy = p(z),

and equip it with the exact symplectic form inherited from (the standard
form on) C3. To any embedded path c ⊂ C whose endpoints lie in P , and
which otherwise avoids P , one can associate a Lagrangian two-sphere
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Lc ⊂ X, defined explicitly as Lc =
⋃

z∈cCz, where Cz = {(x, y, z) ∈
U, |x| = |y|}. It is an elementary observation that the differentiable
isotopy class of Lc depends only on the endpoints of c. In contrast,
Floer cohomology computations from [29] show that the Lagrangian
isotopy class of Lc recovers the isotopy class of c (among paths of this
kind; which means that isotopies may not pass through P ). Define a
chain of paths to be a collection (c1, . . . , cm), with the property that for
some ordering P = {z1, . . . , zm+1}, the endpoints of ck are {zk, zk+1}.
Call a chain standard if the intersections are the least possible, which
means that ck ∩ cl = ∅ for |k − l| ≥ 2, and |ck ∩ ck+1| = 1.

Fix a chain, and let M ⊂ U be the intersection of U with a large
ball in C3, containing all our Lagrangian spheres Lck . Take those as
vanishing cycles, Vk = Lck , and construct the resulting E. If the chain
is standard, then E is actually Liouville isomorphic to standard D6

(and therefore, its completion is a standard symplectic R6). This is not
obvious from the point of view taken here, but actually the resulting
Lefschetz fibration is well-known (it is the Morsification of the function
xy+zm+1, known in singularity theory as the Am type singularity). On
the other hand, it is true for any chain that E is diffeomorphic to D6.
This follows from our previous discussion of isotopy, which implies that
the diffeomorphism type of E is the same for all chains. Alternatively,
one can use the fact that the Lck form a basis of H2(M) to show that E
is contractible, and then appeal to the h-cobordism theorem. Finally,
we should point out that even non-standard chains may give rise to
standard Liouville structures. Examples can be easily constructed using
known moves (analogues of handle slide and handle cancellation), see
for instance Figure 1. In spite of that, we propose:

Conjecture 2.5. Consider the set of chains up to homotopy, with
some bound Λ on the complexity of the paths (this can be done by
taking lengths with respect to a metric, or by counting the number of
pieces with respect to a suitable decomposition of the disc; the resulting
set is finite). Then, as Λ→∞, the probability that a randomly chosen
chain will give rise to a nonstandard Liouville structure on D6 (and
actually to a nonstandard symplectic structure on the completion R6)
approaches 1.

Figure 1.
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3. Symplectic cohomology

Symplectic cohomology is Hamiltonian Floer cohomology for a spe-
cific class of (Hamiltonian) functions, which are tailored to completions
of Liouville domains. Cieliebak, Floer and Hofer [15, 7] were the first
ones to to introduce such ideas into pseudo-holomorphic curve theory
(this drew on the insights obtained in previous work, which used a more
conventional variational approach). Their constructions were made with
a view to applications in “quantitative” symplectic topology, where the
theory has indeed been highly successful; see for instance [8]. Subse-
quently, Viterbo [52] introduced a more “qualitative” version (which
had an additional source of inspiration, namely results coming from the
theory of generating functions). This is the definition we use here.

Since the Reeb flow on the boundary appears prominently in the
definition, it is natural to start by looking at cases where that flow is
reasonably well understood. A highly nontrivial manifestation of this
idea is Viterbo’s theorem on cotangent bundles. Besides stating this re-
sult, we also describe a few other computations, of a somewhat simpler
nature. We then turn to invariance under Liouville isomorphism, which
is the most important basic property of symplectic cohomology. The
proof outlined here is quite typical of the general style of the theory:
it proceeds via a sequence of “approximate isomorphisms”, constructed
using continuation maps, which finally “converge to” an actual isomor-
phism when passing to the direct limit. Will see in the next section that
this direct limit argument is not only a useful technical device, but also
gives rise to additional invariants.

(3a) A first look: Fix an abelian group K. Let M be a Liouville
domain of dimension 2n. The symplectic cohomology of M with K-
coefficients is a Z/2-graded K-vector space SH∗(M), which comes with
a natural Z/2-graded map

(3.1) H∗+n(M ; K) −→ SH∗(M).

This map is the central object of interest in [52, 50], because its failure
to be an isomorphism signals the presence of at least one periodic orbit
of the Reeb flow on ∂M . Hence, it can be used to study Liouville’s
conjecture on the existence of such orbits (this is an efficient line of
attack, but it has its limits, since it depends on finding suitable Liouville
fillings of a given contact manifold).

Often, it is convenient to upgrade the Z/2-grading to a Z-grading.
For that, assume that c1(M) = 0. More precisely, after choosing a com-
patible almost complex structure, −c1(M) is represented canonically
by a complex line bundle K, and we want to choose a trivialization of
that line bundle, up to homotopy. This then gives rise to a Z-grading
of SH∗(M), which is such that (3.1) is of degree zero. Of course, if
H1(M) = 0, there is only one homotopy class of trivializations, and
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then no choice is necessary. Otherwise, the grading may depend on the
trivialization (actually, it does so in a precisely specified way, depending
on the splitting of SH∗(M) into pieces parametrized by free homotopy
classes of loops in M).

Remark 3.1. It is actually possible to define symplectic cohomology
for more general symplectic manifolds with contact type boundary (ones
where the Liouville flow does not extend over the interior). As usual, one
either has to make some assumptions governing holomorphic spheres, or
else work with Q-coefficients. This generalization is outside the scope
of our discussion.

One of the most elementary cases is when the Reeb flow on ∂M is
a circle action (every orbit is periodic). To make things even simpler,
let’s assume that K is trivial, that the circle action is free, and that
∂M is connected. Then there is a spectral sequence converging to (the
Z-graded version of) SH∗(M), whose starting term is

(3.2) Epq1 =











Hq+n(M ; K) p = 0,

Hp+q+n−pµ(∂M ; K) p < 0,

0 p > 0.

The map (3.1) appears naturally in this context, as the edge homomor-
phism of the spectral sequence. The integer µ ∈ 2Z is a Conley-Zehnder
type index, which can be explained as follows. Take a primitive orbit
x of our circle action. The trivialization of K determines a symplectic
trivialization of x∗TM (up to homotopy). On the other hand, the circle
action itself (extended to a collar neighbourhood of ∂M in the obvious
way) gives a family of isomorphisms TMx(0) → TMx(t). In view of our
trivialization, these turn into a loop in Sp2n, and µ/2 is the class of
this loop in π1(Sp2n) ∼= Z. For future reference, we point out that in
the simplest case H1(∂M) = 0, the choice of trivialization of K is ir-
relevant, so that µ only depends on (∂M,α). The construction of the
spectral sequence is relatively straightforward starting from the defini-
tion of SH∗(M), requiring no more than standard Bott-Morse methods
[42, 3].

Example 3.2. Let M = B2n be the unit ball in R2n. This satisfies
µ = 2n, hence the E1 term of the spectral sequence has one generator
in each degree −n,−n− 1,−3n,−3n− 1,−5n, . . .. It turns out that the
differential d1 on this page is acyclic, so that SH∗(M) = 0. We will see
several proofs of this vanishing result later on.

Example 3.3. Take M to be a surface of genus g > 0 with one
boundary component. Then µ = 2χ(M) = 2− 4g < 0. For topological
reasons (the boundary and its multiple covers are non-contractible), the
differentials in the spectral sequence must vanish. Hence, SH∗(M) is
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the direct sum of H∗(M ; K) shifted down by 1, and copies of H∗(S1; K)
shifted up by 4g − 3, 8g − 5, . . ..

Example 3.4. Another example is M = D∗Sn, the cotangent disc
bundle of the n-sphere, formed with respect to the round metric (cotan-
gent bundles of oriented manifolds N always come with a preferred
trivialization of K; topologically speaking, the reason is that the struc-
ture group of T (T ∗N) is SOn ⊂ Sp2n). Then µ = 2n − 2, so the E1

term consists of a copy of H∗(Sn; K) shifted down by n, plus copies
of H∗(∂D∗Sn; K) (the unit sphere tangent bundle) shifted down by
3n − 2, 5n − 4, . . . . Let’s take K = Q for simplicity. Because of the
gradings, and of the direction in which the spectral sequence differen-
tials point, it is clear that the spectral sequence must degenerate for
n > 3.

Actually, in the last-mentioned example it is true that the spectral
sequence degenerates for all n. This cannot be derived from mere grad-
ing considerations, and it follows instead from a fundamental theorem
of Viterbo [50], which determines the symplectic cohomology of gen-
eral cotangent bundles. Besides its considerable intrinsic importance,
this theorem has received a lot of attention recently, because it estab-
lishes a connection (partly proved, and partly still conjectural) between
symplectic cohomology and string topology. The statement is:

Theorem 3.5 (Viterbo). Let M = D∗N be the cotangent disc bun-
dle of an oriented closed manifold. Then SH∗(M) ∼= H−∗(LN ; K) is the
homology of the free loop space, with the grading reversed. Under this
isomorphism, the map (3.1) turns into the inclusion of constant loops,

(3.3) Hn+∗(M ; K) = Hn+∗(N ; K) ∼= H−∗(N ; K) −→ H−∗(LN ; K).

Intuitively, the basic idea is that the Reeb flow on ∂M agrees with
the geodesic flow on N (for the Riemannian metric used to define the
disc bundle inside T ∗N). Periodic Reeb orbits correspond to closed
geodesics, and in view of the classical Morse theory for the geodesic
energy functional, one is naturally led to look at the homology of the
free loop space. There are a few simple cases where the theorem can
be proved in an elementary way just by comparing the generators in
the two Morse-type complexes; for instance, if N admits a Riemannian
metric with negative sectional curvature. However, the general state-
ment of Theorem 3.5 is beyond the reach of such methods; for instance,
it is by no means obvious why SH∗(D∗N) should be a homotopy in-
variant of N . Besides the original proof [50], there are now two other
(analytically more complicated, but overall more direct) approaches, by
Abbondandolo-Schwarz [1] and Salamon-Weber [45], respectively.

(3b) Floer theory basics: Let M be any symplectic manifold whose
symplectic form is exact, ω = dθ. Fix H ∈ C∞(M,R), and let X be the
associated Hamiltonian vector field, which in our convention satisfies
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ω(·, X) = dH. The H-perturbed action functional on the free loop
space LM is the function

(3.4) AH(x) = −

∫

x∗θ +

∫

H(x(t)) dt.

Critical points of AH are precisely those x which are flow lines of X,
which means they are 1-periodic orbits of that vector field. Now let J
be an ω-compatible almost complex structure. Floer’s equation (in its
simplest) form is the PDE

(3.5)

{

u : R× S1 −→M,

∂su+ J(∂tu−X) = 0.

The energy of a solution is, by definition,

(3.6) E(u) =

∫

|∂su|
2 ds ∧ dt =

∫

ω(∂su, ∂tu−X) ds ∧ dt.

Recall that (3.5) is, formally, the negative gradient flow equation for AH .
It is therefore natural to look at connecting trajectories, which means
solutions with asymptotic behaviour lims→±∞ u(s, ·) = x±(·), where x±
are 1-periodic orbits of X. For any such trajectory, we have the a priori
energy estimate

(3.7) E(u) = AH(x−)−AH(x+).

A common variation on (3.5) is the continuation map equation,
used to construct homomorphisms between Floer cohomology groups.
This involves families {Hs} and {Js} of functions and almost complex
structures, depending on s ∈ R, which should be eventually constant:
(Hs, Js) = (H−, J−) for s ≪ 0, (Hs, Js) = (H+, J+) for s ≫ 0. The
equation is

(3.8) ∂su+ Js(∂tu−Xs) = 0,

and the natural asymptotic condition is lims→±∞ u(s, ·) = x±(·), where
x± is a 1-periodic orbit of X±. If one defines the energy as in (3.6),
then a solution with such limits satisfies

(3.9) E(u) = AH−(x−)−AH+
(x+) +

∫

(∂sHs)(u) ds ∧ dt.

For instance, if ∂sHs ≤ 0 everywhere, the a priori bound will be as good
as (in fact better than) (3.7). On the other hand, there are situations
where ∂sHs is not bounded above, leading to a failure of compactness,
which means that continuation maps can not be defined. This is a
fundamental point, even though in our subsequent discussion, it will be
somewhat obscured by the more technical device of maximum principles.

(3c) Symplectizations: Getting somewhat closer to the intended ap-
plications, let’s consider the case where the target M = R × Y is the
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symplectization of a contact manifold (Y, α). We will be interested in
Hamiltonian functions of the form

(3.10) H = h(er),

where r is the first variable on M , and h any smooth function with
h′ ≥ 0. By definition, the Hamiltonian vector field of er is the Reeb
field R of α (pulled back to M in the obvious way). Hence, the vector
field of a general function (3.10) is X = h′(er)R. Clearly, there is a close
relation between the periodic orbits of X and R. Specifically, if y(t) is a
T -periodic Reeb orbit in Y , and r ∈ R a number satisfying h′(er) = T ,
then

(3.11) x(t) = (r, y(Tt))

is a 1-periodic orbit of X. These are all 1-periodic orbits of X except
for the stationary ones, which occur where h′(er) = 0. By inserting this
into (3.4), one sees that the value of AH at a critical point is

(3.12) AH(x) = h(er)− erh′(er).

For example, suppose that we take a function h satisfying limr→−∞h
′(er)

= 0, limr→+∞ h′(er) = ∞, and h′′(er) > 0 everywhere. In that case,
periodic Reeb orbits of any period correspond bijectively to 1-periodic
orbits of X (note that the orbits are considered to be parametrized, and
that multiply-covered orbits are also allowed). More precisely, Reeb
orbits with larger periods T correspond to 1-periodic orbits (3.11) with
bigger values of r, and smaller values of the action functional (since by
assumption, ∂r(h(e

r)− erh′(er)) = −e2rh′′(er) < 0).
The non-compactness of the target manifold gives rise to some ad-

ditional issues. Specifically, we will often need to show that sequences
of solutions u do not escape to infinity in the r → +∞ direction (unlike
the case of contact homology, the other end r → −∞ is irrelevant, be-
cause it will eventually be capped off by a compact Liouville domain).
Assume that the almost complex structure J is of contact type, which
means that

(3.13) d(er) ◦ J = −θ.

Equivalently, in terms of the ω-orthogonal splitting T (R×Y ) = (R∂r⊕
RR) ⊕ ξ ∼= C ⊕ ξ, these J are standard on the first summand (and ar-
bitrary, except for the dα-compatibility condition, on the second sum-
mand; note that this second component is allowed to vary with r). Let
u be a solution of Floer’s equation, and consider the function ρ = er ◦u :
R× S1 → R. In view of (3.13), this satisfies

∂sρ = θ(∂tu)− ρh
′(ρ),

∂tρ = −θ(∂su),
(3.14)
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which can be written in a less coordinate-bound way as

dcρ = dρ ◦ i = −u∗θ + ρ · h′(ρ) dt.(3.15)

By differentiating again, and substituting |∂su|
2 = ω(∂su, ∂tu − X) =

ω(∂su, ∂tu)− dH(∂su) = ω(∂su, ∂tu)− h
′(ρ) · ∂sρ, one gets

∆ρ = |∂su|
2 − ρ · h′′(ρ) · ∂sρ.(3.16)

Like any solution of an inequality ∆ρ + v(s, t) · ∂sρ + w(s, t) · ∂tρ ≥ 0,
our function ρ obeys a maximum principle. This means that for any
bounded open subset Ω ⊂ R × S1, the maximum of u|Ω̄ must occur
on the boundary. To give a sample application, suppose that u is a
a connecting trajectory between x− = (r−, y−) and x+ = (r+, y+).
Then, the entire image of u must be contained in the subset where
r ≤ max(r−, r+).

Analogously, one can consider solutions of (3.8), where Hs(r, y) =
hs(e

r), and each Js is of contact type at infinity. If one defines ρ as
before, the computation goes through in the same way until (3.15), but
the final differentiation creates an additional term

(3.17) ∆ρ = |∂su|
2 − ρ · h′′s(ρ) · ∂sρ− ρ · (∂sh

′
s)(ρ).

Bearing in mind that ρ is positive by definition, one finds that the
maximum principle only applies if ∂sh

′
s ≤ 0. This condition is similar

to (but not the same as) the one we encountered before, when trying to
get a priori bounds from (3.9).

Occasionally, it will be useful to extend the class of functions and al-
most complex structures under consideration, in order to make it invari-
ant under symplectic isomorphisms (2.4). Namely, one sets R(r, y) =
r − f(y) for some f ∈ C∞(Y,R), and instead of (3.10), (3.13), requires
that

(3.18)
H = h(eR),

d(eR) ◦ J = −θ.

As far as Floer’s equation is concerned, this is not actually more gen-
eral than the previous framework, to which it reduces after changing
coordinates and the contact one-form: (r, y) 7→ (R(r, y), y), α 7→ efα.
However, in the context of continuation maps, one can now take fs (and
hence Rs) which varies with s, assuming as usual that it is locally con-
stant for |s| ≫ 0. Correspondingly, take Hs and Js to be of the form
(3.18). Given a solution u of the resulting equation (3.8), one considers

(3.19) ρ(s, t) = exp(Rs(u(s, t))).
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The same kind of computation as before yields
(3.20)

∆ρ = |∂su|
2 − ρ · h′′s(ρ) · ∂sρ− ∂sfs · ∂sρ

− ρ · (∂sh
′
s)(ρ) + ρ · h′s(ρ) · ∂sfs − ρ · ∂

2
sfs − ρ · d(∂sfs)(∂su).

It is implicit in our notation that fs and its derivatives are always eval-
uated at u(s, t). In applications, the family {fs} is given, and one wants
to choose {hs} in such a way that the maximum principle applies. The
most “dangerous” term in (3.20) is the last one, which is potentially an
unbounded multiple of ρ. However, thanks to the exponential growth of
the metric on M , |ρ ·d(∂sfs)(∂su)| is actually bounded above by C|∂su|.
Here and later, C stands for some large constant depending only on
{fs} (which can be a different one each time the notation occurs). By
exploiting this, one gets an inequality of the form

(3.21)

∆ρ+ (ρ · h′′s(ρ) + ∂sfs) · ∂sρ

≥ ρ
(

− ∂sh
′
s(ρ)− Ch

′
s(ρ)− C)− C |∂su|+ |∂su|

2

≥ ρ
(

− ∂sh
′
s(ρ)− Ch

′
s(ρ)− C)− C.

Wanting the right hand side to be positive, at least on the subset where
ρ is large, roughly comes down to an exponential decay condition on
h′s. Of course, this only needs to hold on the bounded subset of those
s where {fs} is not constant; elsewhere, the behaviour of ρ is governed
by the equation (3.17) for ordinary continuation maps, so that ∂sh

′
s ≤ 0

suffices.

(3d) First definition: Let M̂ be the completion of a Liouville do-
main M . Choose some compatible almost complex structure J on this,
which is of contact type at infinity. Similarly, we will consider Hamil-
tonian function which at infinity are of the form H(r, y) = h(er), where
the function h satisfies limr→∞ h′(er) = ∞. By definition, symplectic
cohomology is the associated Floer cohomology:

(3.22) SH∗(M) = HF ∗(H).

Roughly speaking, this means that it is the Morse cohomology of the
action functional (3.4), so the underlying chain complex CF ∗(H) should
be generated by critical points, and the differential δ given by counting
solutions of Floer’s equation. To explain the conventions here, note
first that by “generated” we mean that CF ∗(H) is constructed as a
direct sum (not direct product); in finite-dimensional terms, the model
is cohomology with compact supports. Secondly, since we are talking
about cohomology, and (3.5) is the negative gradient flow equation,
a solution with asymptotics x± contributes a term to δ which maps
x+ 7→ x−, up to sign.

On the technical side, note that the critical points of the action
functional are usually degenerate, because of the rotational symmetry
(recall that we are considering parametrized periodic orbits of the Reeb
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flow, which obviously occur in S1 families). The standard way to resolve
this difficulty is to break the symmetry by making a small t-dependent
perturbation of H. Similarly, transversality issues for the moduli spaces
of connecting trajectories are addressed by taking a t-dependent J . To
simplify the presentation, we will systematically suppress any mention of
such perturbations, and just pretend that we can work with the degen-
erate data itself. This is of course incorrect, but is hopefully permitted
in an informal exposition such as the present one.

With this in mind, the maximum principle derived from (3.16) im-
plies that given endpoints x±, all solutions of (3.5) remain within a

compact subset of M̂ . This neutralizes all issues arising from the non-
compactness of the target space, ensuring that our Floer complex is well-
defined. To show that its cohomology is independent of the choice of
(H, J), one can look at a one-parameter family connecting two choices,
and then study the bifurcations occurring in the Floer complex, in the
manner of [14, 32]. This kind of argument is fairly direct, but the un-
derlying analytic work is substantial (and it seems even harder to show
that the isomorphisms are canonical).

(3e) Second definition: Most of the literature actually favours an
alternative approach, based on direct limits. Fix some τ > 0 which is
not the period of any Reeb orbit on ∂M (this is a generic condition,
since the periods form a countable closed subset of R+), and take a
Hamiltonian function Hτ which at infinity satisfies Hτ (r, y) = τer +
(constant). Define

(3.23) SH∗(M)<τ = HF ∗(Hτ ).

The notation reflects the fact that this group takes into account only
Reeb orbits of period < τ (one can extend the definition to general τ , by
taking a function whose slope approaches τ from below, but we will not
really need this). Now suppose that we have two such values τ±, and
corresponding functions H± = Hτ± . Choose a family {τs} interpolating
between τs = τ− for s≪ 0 and τs = τ+ for s≫ 0. Take a corresponding
family {Hs = Hτs} of functions, as well as a family {Js} of almost
complex structures, and consider the continuation map equation (3.8).
In view of (3.17), the maximum principle for solutions will hold outside
a compact subset, provided that

(3.24) ∂sτs ≤ 0.

Note that once the maximum principle is valid, a bound on
∫

(∂sHs)(u) ds ∧ dt

follows immediately because u must remain within a compact subset;
this means that controlling the energy (3.9) is unproblematic. The first
application of the resulting continuation maps, in the special case where
τ+ = τ−, is to give an elegant proof that SH∗(M)<τ is independent of
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all choices, up to canonical isomorphism; this follows the standard Floer
theory strategy. More interestingly, one gets canonical maps

(3.25) SH∗(M)<τ+ −→ SH∗(M)<τ− for all τ+ < τ−.

These behave well under composition, hence form a direct system in-
dexed by all possible τ . The second definition of symplectic cohomology
is as the limit of this system:

(3.26) SH∗(M) = lim−→τ SH
∗(M)<τ = lim−→τ HF

∗(Hτ ).

To see that this agrees with (3.22), one again uses continuation maps,
but now for families of functions {Hs} which satisfy Hs(r, y) = hs(e

r)
at infinity, where at one end s ≪ 0, hs = h has unbounded growth
lims→ h′(r) =∞, and at the other end s≫ 0, hs(e

r) = τer+(constant).
This gives rise to a chain maps

(3.27) CF ∗(Hτ ) −→ CF ∗(H)

which, in the limit τ →∞, induce a map between from the right hand
side of (3.26) to (3.22). A suitable choice of functions ensures that (for
a sequence of τ ’s going to ∞) CF ∗(Hτ ) is a subcomplex of CF ∗(H),
and that the map (3.27) is the inclusion of that subcomplex. As τ →∞,
these complexes exhaust CF ∗(H), hence we get an isomorphism (here,
one sees why it is important to define CF ∗(H) as a direct sum).

It is instructive to see how the map (3.1) appears in either con-
text. If one takes (3.26) as the definition, taking τ to be very small (at
least, smaller than the length of the shortest periodic Reeb orbit) yields
a group HF ∗(Hτ ) which, by standard Floer-theoretic arguments, is
canonically isomorphic to the ordinary cohomology H∗+n(M ; K). Note
that the absolute cohomology ofM , rather than the relative cohomology
of (M,∂M), appears, because the functionHτ grows at infinity. In these
terms, (3.1) is simply one of the maps HF ∗(M)<τ → HF ∗(M) which
are obviously part of the direct limit formalism. If one takes (3.22) as a
starting point, the argument is similar but a little more delicate. Sup-
pose that we set H = 0 on M , and H(r, y) = h(er) on the entire cone
[0;∞)×∂M , where h′(er) > 0 for all r > 0. Then, the stationary orbits
of X corresponding to points of M have action AH = 0, whereas the
1-periodic orbits coming from periodic orbits of R have strictly negative
action AH < 0, by (3.12). Even after a small perturbation which makes
the critical points nondegenerate, one still has a distinguished subcom-
plex of CF ∗(H) corresponding to generators whose action is > −ǫ, for
some small ǫ. Again applying standard methods from Floer theory, one
can show that for a suitable choice of perturbation, this subcomplex can
be identified with a Morse complex computing H∗+n(M ; K).

Finally, suppose that we have two isomorphic Liouville domains
M±, maximal periods τ±, and associated groups SH∗(M±)<τ± . Af-
ter identifying their completions, this is the same as having a single M ,
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but considering functions H± on M̂ which at infinity are of the form
H±(r, y) = τ±e

r−f± +(constants), for some f± ∈ C
∞(∂M,R) (of course,

by making the identification in an appropriate way, one can get either
f+ or f− to vanish, but we prefer the more general notation for its
greater symmetry). This puts us in the situation previously considered
in (3.18). To define continuation maps, one needs to take a family {fs}
interpolating between f±, and chooses functions

(3.28) Hs(r, y) = τse
r−fs + (constants)

so that the maximum principle in (3.21) works out. For any given τ+,
this can be done provided that τ− ≫ τ+. In the limit (3.26), one gets a
map SH∗(M+)→ SH∗(M−), and similarly an inverse isomorphism.

(3f) The ball: We now return to the case of M = D2n, where (as
stated without proof in Example 3.2) symplectic cohomology vanishes.

One can identify M̂ with Cn, equipped with the standard one-form
−dc(1

4 |x|
2). To define SH∗(M) as in (3.22), take any function of the

form

(3.29) H(x) = h(1
2 |x|

2),

where limr→∞ h′(r) = ∞. Suppose that h′(0) ∈ (2πk; 2π(k + 1)) for
some integer k ≥ 0, and that h′′ > 0 everywhere. In that case, X has
a stationary point at x = 0, and all the other 1-periodic orbits occur in
the spheres 1

2 |x|
2 = r, where h′(r) ∈ 2πl for l > k. The Conley-Zehnder

indices of these orbits, including the stationary one, depend on k. More
precisely, after a small perturbation, we get a chain complex CF ∗(H)
which has one generator in each of the following degrees:

(3.30) − n− 2nk,−n− 2nk − 1,−n− 2n(k + 1),

− n− 2n(k + 1)− 1,−n− 2n(k + 2), . . .

Clearly, by taking k sufficiently large, one can get SH∗(M) = HF ∗(H)
to be zero in any given degree. Because the group is independent of
the particular choice of Hamiltonian, it follows that it must vanish al-
together (readers interested in understanding this geometrically might
want to think about the cancellation which occurs when h′(0) crosses
one of the values in 2πZ).

We should also mention a variant of this argument, based on (3.26).
Namely, for each k pick some τk ∈ (2πk; 2π(k + 1)), and consider the
function

(3.31) Hτk(x) = τk ·
1
2 |x|

2.

Clearly, HF ∗(Hτk) is one-dimensional, with the single generator corre-
sponding to the stationary point x = 0. Moreover, one can clearly find a
family {Hs} interpolating between H− = Hτk+1 and H+ = Hτk , which
satisfies ∂sHs ≤ 0 everywhere. In this case, the energy inequality (3.9)
for solutions u of the continuation map equation yields E(u) ≤ 0, which
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means that the only possibility is the constant solution u(s, t) ≡ 0. An
index computation shows that this solution is not regular: it belongs to a
moduli space with virtual dimension −2n < 0, and will therefore disap-
pear after a generic small perturbation, leaving an empty moduli space
of solutions. As a consequence, the maps SH∗(M)<τk → SH∗(M)<τk+1

vanish, which yields zero as the direct limit. Note that this uses only the
local virtual dimension for solutions of the continuation map equation
(which always makes sense), rather than the degrees of generators in the
Floer complex (which only make sense when c1 = 0). Of course, in the
case of M = D2n this is merely a cosmetic advantage, but it becomes
relevant in generalizations.

4. Growth measures and affine varieties

Liouville domains are most obviously related to complex analytic
(Stein) manifolds. Still, one can ask whether it makes any difference
if our manifold is (affine) algebraic. Intuitively, one answer would be
that in the algebraic case, the geometry of the boundary is “tame”, due
to the existence of a smooth compactification with normal crossings at
infinity.

On the symplectic cohomology side, this connects with the following
train of thought. Even in the Z-graded framework, it happens often that
each group SHk(M) is infinite-dimensional, and in that case, its infor-
mation content as an invariant is rather limited. One can try to combat
this problem by considering additional algebraic structures (discussed
briefly in Section 8), but those tend to be hard to compute. In contrast,
each group SH∗(M)<τ is clearly finite-dimensional. For fixed τ , these
groups are not Liouville invariants, but by looking at the entire direct
system, one can extract some quantitative information, which measures
the degree of (polynomial) growth.

(4a) Growth rates: We begin by revisiting the framework set up
at the end of Section 3e for proving Liouville invariance. Namely, we
are given a family {fs} on ∂M interpolating between f±, and want to
choose {Hs} as in (3.28) so that solutions of the associated continuation
map equation remain within a bounded subset. This means that the
maximum principle has to apply to (3.19), at least in the region where
ρ is large. In view of (3.21), this means that

(4.1)

{

∂sτs ≤ −Cτs − C on a bounded interval I ⊂ R,

∂sτs ≤ 0 elsewhere.

The constant C and the interval I depend only on {fs}. Integrating

out (4.1) yields an inequality of the form τ− + 1 ≥ elength(I)C(τ+ + 1).

To simplify this slightly, take some D > elength(I)C , so that at least for
τ+ ≫ 0, the condition τ− ≥ Dτ+ is sufficient. Going back to the original
problem, this means that we have continuation maps SH∗(M+)<τ →
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SH∗(M−)<Dτ for all τ ≫ 0. It is easy to check that these form a map
of direct systems. The same argument applies if we exchange M+ and
M−, yielding a ladder-shaped commutative diagram

(4.2) · · · · · ·

SH∗(M+)<D
4τ

OO

// SH∗(M−)<D
5τ

iiS
S

S

S

S

S

S

S

S

S

S

S

S

S

S

OO

SH∗(M+)<D
2τ

OO

// SH∗(M−)<D
3τ

hhQ
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

OO

SH∗(M+)<τ

OO

// SH∗(M−)<Dτ

hhQ
Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

OO

Definition 4.1. For a given Liouville domain M , let r(M, τ) be
the total dimension of the image of the canonical map SH∗(M)<τ →
SH∗(M). This is clearly an increasing function of τ . Define the growth
rate of M to be

(4.3) Γ(M) = limτ
r(M, τ)

log(τ)
∈ {−∞} ∪ [0;∞].

Lemma 4.2. Γ(M) is invariant under Liouville isomorphism.

Proof. Suppose that SH∗(M−) ∼= SH∗(M+) is infinite-dimens-
ional, in which case both functions r(M±, τ) are unbounded by definition
of direct limit. In particular, limτ→∞ log(D)/r(M+, τ) = 0. (4.2) yields
a chain of inequalities r(M+, τ) ≤ r(M−, Dτ) ≤ r(M+, D

2τ) ≤ · · · ,
which imply that

Γ(M+)−1 = limτ

log(τ)

r(M+, τ)
= limτ

log(Dτ)

r(M+, τ)
(4.4)

≥ limτ

log(Dτ)

r(M−, Dτ)
= Γ(M−)−1.

The same holds in the other direction. In the remaining case, where the
symplectic cohomology is finite-dimensional, the growth rates are either
zero (SH∗ 6= 0) or −∞ (SH∗ = 0). �

As before, the simplest situation is where the Reeb flow on ∂M is a
circle action. By a suitable choice of perturbation, one can then ensure
that the number of generators in the chain complex CF ∗(Hτ ) grows
linearly with τ , which means that Γ(M) ≤ 1. If no cancellation occurs,
such as Examples 3.3 and 3.4, equality holds; whereas for M = D2n, we
obviously still get Γ(M) = −∞. In a different direction, one can look
at cotangent bundles, where the issue is related to the more classical
problem of growth rates of closed geodesics. For instance, the cotangent
bundle of the torus has Γ(D∗Tn) = n, while the cotangent bundle of any
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hyperbolic manifold N has Γ(D∗N) =∞ due to a theorem of Margulis
[33]. Finally, we point out that a positive value of Γ(M) gives a lower
bound for the growth of the number of closed Reeb orbits on ∂M , for any
generic choice of contact one-form (genericity is necessary because we
want the orbits to be nondegenerate). For work in a somewhat similar
spirit, see [16].

(4b) Affine varieties: Let X be a smooth projective variety, L → X
a holomorphic line bundle, and s ∈ H0(L) a section vanishing along a
divisor D. Choose a metric || · || on L. Clearly,

(4.5) h = − log ||s||

is an exhausting function on the complement U = X \ D. Note that
ddch = 4i F |U , where F is the curvature of the unique connection on L
compatible with the metric and holomorphic structure [23, Chapter 1].

Lemma 4.3. Suppose that D has normal crossings. Then the critical
points of h form a compact subset of U .

Proof. If the statement is false, there must be a sequence of critical
points converging to some limit in D. Around the limit point, one can
find local holomorphic coordinates (x1, . . . , xn) and a local trivialization
of L, in which s(x) = xw1

1 · · ·x
wk

k for some 1 ≤ k ≤ n and weights

w1, . . . , wk > 0. Write the metric as || · || = eψ| · | with respect to that
trivialization, so that

(4.6) dh = −dψ − w1 · d log |x1| − · · · − wk · d log |xk|.

If we take the vector field Y = −x1∂x1
−· · ·−xk∂xk

, then Y.(log |xj |) =
−1 for 1 ≤ j ≤ k, while Y.ψ → 0 as x → 0. Hence, dh(Y ) is bounded
away from 0 for small |x|, which is a contradiction. �

For the same reason:

Lemma 4.4. Assume again that D has normal crossings. Suppose
that we have two line bundles Li (i = 0, 1) with metrics ||·||i and sections
si, such that s−1

i (0) = D (with possibly different multiplicities). Let hi
be the associated functions. Then, the critical points of (1− t)h0 + th1,
taken together for all t ∈ [0; 1], form a compact subset of U .

Hironaka’s resolution theorem says that any smooth affine algebraic
variety U admits a good compactification. This means that U ∼= X \D,
where X is a smooth projective variety carrying an ample line bundle
L, and D ⊂ X is a normal crossing divisor of the form s−1(0) for some
holomorphic section s ∈ H0(L). Ampleness means that there is a met-
ric || · || on L for which −iF is a Kähler form (in future, we will just
say that the metric has positive curvature). This implies that h is a
plurisubharmonic function on U . Choose such a metric, and a C which
is larger than all the critical values of h (this is possible by Lemma 4.3).
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The corresponding sublevel set M is a Liouville domain, just as in Ex-
ample 2.1 (of which this is obviously a special case). The choice of C
is irrelevant up to deformation, hence up to Liouville isomorphism, see
the discussion in Example 2.3. Similarly, Lemma 4.4 shows that M is
independent of the choice of metric, as well as the choice of line bundle
L. Independence of the compactification is slightly more tricky, but
ultimately relies on the same kind of argument. Suppose that we have
two good compactifications, of which one dominates the other. This
means that there is a holomorphic map π : X0 → X1, D0 = π−1(D1),
which induces an isomorphism X0 \ D0 → X1 \ D1. Compare (L0, s0)
and the pullback π∗(L1, s1). The associated functions h0, π

∗h1 are both
plurisubharmonic on X0 \D0, and Lemma 4.4 applies, providing a suit-
able family of Liouville structures interpolating between the two given
ones. Another feature of resolution of singularities is that given two
good compactifications, one can always find a third one which domi-
nates the two.

We have just shown how to associate to any smooth affine variety a
Liouville domain, in a way which is unique up to Liouville isomorphism.
In particular, this allows us to speak of the symplectic cohomology of
the affine variety itself, which we will denote by SH∗(U), and of its
growth Γ(U).

(4c) Local circle actions: The issue of translating the insight pro-
vided by Hironaka’s theorem into explicit control over the Reeb dy-
namics is elementary, but still tricky. We will only cover the simplest
nontrivial case, that of algebraic surfaces.

Theorem 4.5. For any smooth affine algebraic surface U , Γ(U) ≤ 2.

As usual, we start by writing U = X \ D, where D has normal
crossings and is defined by a section s of an ample line bundle L. Since
our definition of normal crossing divisor excludes self-intersections, the
irreducible components K ⊂ D are smooth.

Step 1: Constructing compatible local circle actions. For each K
we want to have a Hamiltonian circle action ρK , defined in a neighbour-
hood of K inside X, which preserves K and rotates its normal bundle.
These actions should be mutually compatible, which means that near
each crossing point p ∈ K1 ∩ K2, (ρK1

, ρK2
) form a Hamiltonian T 2-

action.
In the simplest case of a smooth D = K, this is quite elementary

(it follows from the tubular neighbourhood theorem for symplectic sub-
manifolds). However, compatibility for different components can only
be achieved if those components intersect orthogonally (with respect
to the symplectic form). In the algebraic surface case, we can assume
that || · || is chosen in such a way that around each singular point of
D, we have local holomorphic coordinates in which D = {x1x2 = 0},
and where the Kähler form is standard. This is an easy result, proved
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by a local patching process (see [44, Corollary 7.1] or [48, Lemma 1.7];
in fact, our Step 1 is generally quite similar to certain constructions in
[44]). Having made that choice, one takes both circle actions involved to
be the standard linear ones in our local coordinates, and then extends
them over the smooth parts of D by a suitable choice of symplectic
tubular neighbourhoods.

Throughout the rest of the argument, we will use a metric ||·|| of the
kind constructed above, and the associated data (the Kähler form, the
plurisubharmonic function h, the one-form θ = −dch, and the Liouville
vector field Z = ∇h).

Step 2: Making the Liouville flow symmetric near the crossings.
There is a smooth function k on X such that the one-form θ′ = θ + dk
is T 2-invariant near each singular point of D.

We work in the previously chosen local coordinates near such a
singular point, and also choose a local trivialization of L in which
s(x1, x2) = xw1

1 xw2

2 . By assumption, the metric || · || = eψ| · | gives
rise to the standard Kähler form, and this implies that dcψ + dc(1

4 |x|
2)

is a closed (hence exact) one-form. Take the function whose derivative
is that one-form, and multiply it by a (radial) cutoff to make it zero
outside a smal neighbourhood of the origin. This gives the desired k.

Let Z ′ be the Liouville flow associated to θ′. Near the origin, this
is −dc(1

4 |x|
2 + |s(x)|), and by comparing that with (4.6), one sees that

Z ′.h > 0. A similar argument applies near smooth points of D, using
the fact that Z ′−Z is bounded (with respect to any metric on X). The
consequence is that sublevel sets M = {h(x) ≤ C} (C ≫ 0), equipped
with θ′, are Liouville domains. Moreover, Lemma 2.2 can be applied
to show that this Liouville structure is isomorphic to the one obtained
from the original θ.

Step 3: Making the boundary symmetric. There are arbitrarily
large subdomains M ′ ⊂ U , such that Z ′ points strictly outwards along
∂M ′, and such that ∂M ′ is invariant under all the local circle actions
ρK .

Let’s start by discussing the simplest case, which is when K = D is
smooth. Let m be the moment map of the local circle action ρ = ρK ,
normalized so that m|D = 0. We claim that

(4.7) dm(Z ′) < 0

at all points of U which are sufficiently close to D. To see why that is
true, fix a point of D, and choose local holomorphic coordinates around
that point, in which D = {x1 = 0}, and so that the Kähler form is
standard at x = 0. This means that the induced circle action Dρ on the
tangent space at x = 0 is the standard rotation of the first component.
Hence, m(x) = 1

2 |x1|
2 +O(|x|3), and ∇m = x1∂x1

+O(|x|2). By arguing
as in (4.6) one sees that dh(∇m) = dm(Z) is negative, and in fact
bounded away from zero. The same holds if one replaces Z with Z ′,
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since the difference between the two is bounded. Having that, one would
then define M ′ to be the complement of the locus {m(x) < ǫ}, for some
small ǫ (recall that m is defined only locally, which is why we formulate
this in terms of complements).

Near the singularities ofD one uses a slightly more complicated local
model. Consider the usual local coordinates, and let m1(x) = 1

2 |x1|
2,

m2(x) = 1
2 |x2|

2 be the moment maps of the two commuting S1-actions.
Take a function κ such that κ(s1, 0) = κ(0, s2) = 0; and ∂s1κ > 0 if
s2 > 0, respectively ∂s2κ > 0 if s1 > 0. One then takes M ′ to be the
complement of the subset where {κ(m1(x),m2(x)) < ǫ}. Transversality
of Z ′ along ∂M ′ is easy to prove in this case, since we have an explicit
formula for the vector field close to x = 0. By a suitable choice of κ, one
can ensure that these local models can be patched into the previously
described construction along the smooth part of D.

One can easily see from the construction that Z ′ has only a compact
set of stationary points. By taking M ′ large enough, one can ensure that
it contains all those points. In that case, a variation on the argument
from Example 2.3 shows that passing from (M, θ′|M) to (M ′, θ′|M ′)
does not change the isomorphism type of the Liouville structure.

Step 4: Making the Reeb flow symmetric. One can find a contact
one-form α′ on ∂M ′, whose exterior derivative is ω|∂M ′ = dθ′|∂M ′,
and which is invariant under the local S1-actions.

Again, we begin with the case where K = D is smooth. In that
situation, Z ′ and ρ∗tZ

′, for any t ∈ S1, both point outwards along ∂M ′.
Hence, one can average ρ∗t θ

′, and obtains an S1-invariant one-form de-
fined near ∂M ′, whose exterior derivative is ω, and whose dual vector
field points outwards. The restriction of that is the desired contact one-
form. In the general case, where D has normal crossings, the one-form
θ′ we have constructed is already invariant under the T 2-action near
each crossing point. It is therefore sufficient to carry out the averaging
process away from the crossings, which roughly speaking means along
the smooth parts of D. One can apply a deformation (Gray’s theorem)
to prove that the new contact structure is isomorphic to the one given
by θ′|∂M ′. Hence, we can find an isomorphic Liouville structure on M ′

whose boundary contact one-form is precisely this α′.
The dynamics of the Reeb flow on (∂M ′, α′) can be explicitly de-

scribed. Over the boundary parts lying close to the smooth points of
D, the Reeb flow is a circle action. Near the singular points of D, the
model is R× T 2, with a flow that translates {r} × T 2 with some speed
ξ(r) ∈ (0;∞)2. Here, ξ(s) = (ξ−, 0) for s ≤ −S, ξ(s) = (0, ξ+) for s ≥ S
(S ≫ 0), so that outside a compact subset one recovers the circle action.
The precise form of ξ depends on the choice of κ in the construction, but
one can ensure that on the interval (−S;S), ∂sξ1 < 0, ∂sξ2 > 0. Then,
an elementary argument shows that the number of periodic tori of our
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translational flow whose period is less than some given τ increases like
τ2. After a standard Morse-Bott type perturbation argument, Theorem
4.5 follows.

Remark 4.6. Another way of thinking of this description is that
one starts with the standard contact structure on positive circle bun-
dles over surfaces with boundary (the surfaces being the components
of D with neighbourhoods of the crossing points removed), and glues
them together with intermediate [−1; 1]×T 2 pieces, on which the Reeb
dynamics is the one described above. From this perspective, most of the
work done above goes into showing that the outcome of this “plumb-
ing” construction is actually contact isomorphic to the boundary of the
Liouville domain defined using Kähler geometry.

There is also a different approach, pointed out to the author by Ivan
Smith. Equip X with a Lefschetz pencil whose fibre at infinity is D,
and such that all other fibres meet the strata of D transversally. This
should give rise to an open book decomposition of ∂M , compatible with
its contact structure in the sense of [20]. Moreover, the monodromy of
this open book decomposition is completely reducible (has no pseudo-
Anosov components). In particular, the number of essential periodic
points of the monodromy (seen as a symplectic automorphism) grows
at most linearly. One would then use the relation between monodromy
and Reeb flow of a suitable contact one-form. This is more conceptual
than our previous strategy, but there are still some potentially tricky
details, such as the behaviour of the Reeb flow near the binding.

Generally, one expects a bound Γ(U) ≤ n for all n-dimensional
smooth affine varieties U (a slightly sharper statement would be that
the growth rate is bounded above by the complex codimension of the
smallest stratum in D, where U = X \ D). The underlying intuitive
picture of the Reeb flow is analogous to the one for surfaces, but the
technical details are more involved. In a different direction, we should
point out that there are other classes of Liouville domains which poten-
tially can be analyzed by similar methods, such as Milnor fibres of iso-
lated (smoothable) singularities; in that case, the geometry is governed
“from the inside” (by the structure of the resolution of the singularity).

5. Non-vanishing theorems

The symplectic cohomology of a Liouville domain also plays a role in
the study of its (closed) Lagrangian submanifolds. One way of formulat-
ing this connection is to say that there is a natural map (of commutative
rings; actually, even of BV algebras) from symplectic cohomology to the
Hochschild cohomology of the Fukaya category [47]. In particular, if
the Fukaya category is not empty, the symplectic cohomology must be
nonzero. Note that a similar conclusion was already reached in [52],
in a somewhat different way (namely, by combining Theorem 3.5 and
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Viterbo functoriality). Here, we adopt a more elementary version of the
approach in [47], and focus on concrete applications, in particular the
case of four-manifolds. This is (previously unpublished) joint work of
Ivan Smith and the author.

(5a) The basic construction: Let M be a Liouville domain, and
L ⊂ M a closed Lagrangian submanifold which is exact, [θ|L] = 0 ∈
H1(L; R). To deal with the usual sign issues, we should also either
assume that L is spin, or otherwise take K = Z/2. In this situation,
there is a canonical map

(5.1) SH∗(M) −→ H∗+n(L; K),

which is constructed as follows. Take the definition of SH∗(M) =
HF ∗(H) from (3.22). Consider solutions of Floer’s equation (3.5) on a
half-cylinder, with Lagrangian boundary conditions. This means

(5.2)























u : [0;∞)× S1 −→ M̂,

∂su+ J(∂tu−X) = 0,

lims→+∞ u(s, ·) = x(·),

u(0, ·) ∈ L.

Due to the compactness and exactness of L, the action AH for any loop
lying inside L is bounded by some constant C, and one therefore gets
an a priori bound for solutions of (5.2):

(5.3) E(u) ≤ −AH(x) + C.

By using the evaluation map at (0, 0) on the moduli space of solutions,
one associates to each generator of the Floer complex CF ∗(H) a chain
in L. (5.1) is the induced map on cohomology (we have used the word
“chain” loosely; there are several possible ways of making this rigorous,
such as using pseudo-cycles, or else describing H∗(L) by the Morse
complex of an auxiliary function).

The composition of (5.1) with (3.1) is the ordinary restriction map
H∗(M ; K)→ H∗(L; K). The slickest way (in a formal TQFT sense) to
see this is to introduce another equivalent definition of (3.1). Namely,
consider a continuation map equation (3.8) where at one end, (H−, J−)
= (H, J) are the data used in defining SH∗(M), and at the other end
H+ = 0. Finite energy solutions of this equation extend smoothly over

the puncture at s = +∞, hence can be thought of as maps C → M̂ .
Evaluation at that puncture then yields a map from locally finite chains
on M̂ (which are Poincaré dual to ordinary cochains) to Floer cochains,
and (3.1) is the induced map on cohomology. As a consequence, its com-
position with (5.1) is given by counting solutions of an inhomogeneous
pseudo-holomorphic map equation on a closed disc D. One can deform
the equation by turning off the inhomogeneous term, and then ends up
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with ordinary pseudo-holomorphic discs (D, ∂D)→ (M̂, L). By the ex-
actness assumption, all such discs are necessarily constant, which yields
the desired result. Having that, one can draw the conclusion announced
at the beginning of this section:

Proposition 5.1 (Viterbo). If M contains a closed exact Lagrang-
ian submanifold L, then SH∗(M) 6= 0 (with coefficients K = Z/2, and
also with arbitrary coefficients provided that L is spin).

As already observed in [52], the exactness assumption can be weak-
ened. For instance, it is enough to assume that (for some almost complex
structure, which is of contact type at infinity) there are no non-constant

holomorphic discs in (M̂, L). Such generalizations of Proposition 5.1 are
important in applications, and ideally, one would like the criteria on L
to be as flexible as possible (potentially, even allowing immersed La-
grangian submanifolds). While such a general theory still remains to
be developed, one can get an idea of the issues involved by looking at a
particularly simple case, namely that of surfaces in four-manifolds.

(5b) Essential tori: Let M be a four-dimensional Liouville domain,
and L ⊂ M a Lagrangian torus. We drop the assumption that L must
be exact, but still require it to be Bohr-Sommerfeld, which means that
[θ|L] is an integral class; this condition is just a technical simplification,
and could be lifted if desired. We will work with coefficients in some field
K ⊃ Q, which is of course no problem since L is spin. Let Λ = K((t))
be the field of Laurent series, Λ≥0 = K[[t]] the subring of actual power
series, and Λ>0 = tK[[t]] its maximal ideal. Occasionally, rather than
saying that some z lies in Λ>0, we will use the notation z ∈ O(t).

Take an almost complex structure J on M̂ , which as usual should be
of contact type at infinity, and consider as before pseudo-holomorphic
discs u : (D, ∂D)→ (M̂, L). Each such disc has a Maslov index µL(u) ∈
2Z, and the virtual dimension of the moduli space (of unparametrized
discs) is µL(u) − 1. In fact, due to the structure theorem of [30] (see
also [31]), a generic J has the following properties:

(5.4)

There are no non-constant holomorphic discs of Maslov index
≤ 0. All holomorphic discs of Maslov index 2 are regular.
Moreover, if we fix a class α ∈ H1(L), the moduli space of
Maslov index 2 discs whose boundary represents that class is a
compact oriented one-dimensional manifold.

Fix a J which is generic in this sense; and denote by kα(L, J) ∈ Z the
number of Maslov index 2 discs going through a general point of L, with
boundary class α ∈ H1(L) (equivalently, the degree of the evaluation
map, defined on the moduli spaces of discs with one marked boundary
point). In addition, fix a class a ∈ H1(L; Λ>0), which we think of as a
flat connection on the trivial Λ-bundle over L. The assumption a ∈ O(t)
ensures that the holonomy around a loop α, namely exp(

∫

α
a) ∈ 1+Λ>0,
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makes sense. Define

(5.5)

m0(L, J, a) =
∑

α

kα(L, J) t
R

α
θ exp(

∫

α
a) ∈ Λ>0,

m1(L, J, a) =
∑

α

kα(L, J) t
R

α
θ exp(

∫

α
a)α ∈ H1(L; Λ>0).

We say that L is Floer-theoretically essential if, for some choice of
J and a, m1(L, J, a) = 0. The importance of this condition is that it
allows one to extend part of the construction leading to (5.1). Pick
a point y ∈ L, which is a regular value of the evaluation map on all
the moduli spaces of J-holomorphic discs of Maslov index 2. Assuming
that L is Floer-theoretically essential, we have an associated a for which
m1(L, J, a) = 0. Consider solutions of the equation (5.2) satisfying
u(0, 0) = y, and define a map ǫ : CF ∗(H) −→ Λ by counting them with
weights

(5.6) t
R

α
θ exp(

∫

α
a).

Here α(t) = u(0,−t) is the boundary loop in L associated to u (with its
proper boundary orientation). To see the importance of the first term in
(5.6), note that instead of (5.3) we now have an energy bound of the form
E(u) ≤

∫

α
θ − AH(x) + C, which ensures compactness for fixed x and

∫

α
θ. The second term in (5.6) is needed to ensure that ǫ is a chain map.

As usual, to prove that property, one analyzes the boundary points of
one-dimensional moduli spaces. A priori, three kinds of points appear,
which are drawn schematically in Figure 2. Counting points of type (i)
yields ǫ ◦ δ; points of type (ii) actually do not appear, because the J-
holomorphic bubble has virtual dimension ≥ 1, leaving dimension ≤ −1
for the main component; finally, the count points of type (iii) with a fixed
main component always yields a multiple ofm1(L, J, a)·β, for some class
β ∈ H1(L) which is the boundary loop of the main component. Hence,
the only nontrivial contribution comes from (i), ensuring that ǫ ◦ δ = 0.
By the same kind of argument, if 1 ∈ SH∗(M) is the image of the unit
in ordinary cohomology under (3.1), then H(ǫ) maps this element to
the unit in Λ. Hence:

Proposition 5.2 (Seidel-Smith). If M contains a Lagrangian torus
which is (Bohr–Sommerfeld and) Floer–theoretically essential, then
SH∗(M) 6= 0.

(5c) Wall-crossing: So far, our definition of Floer-theoretically essen-
tial tori has skirted a crucial issue, which is dependence on the choice of
almost complex structure. This is nontrivial because, inside the space of
almost complex structures, there are codimension 1 walls where Maslov
index 0 discs appear. Crossing such a wall will affect the numbers
kα(L, J), but one can compensate for that by a suitable modification of
a. Unfortunately, because of the presence of multiple covers of Maslov
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(i)

(iii)

(ii)

Figure 2.

index 0 discs, it is hard to analyze the change in the moduli spaces ex-
plicitly. A more abstract approach, using virtual fundamental chains on
suitable parametrized moduli spaces, was carried out in [17] and yields
the following result:

Lemma 5.3 (Fukaya-Oh-Ohta-Ono). Suppose that, for some choice
of J which is generic in the sense of (5.4) and for some c ∈ Λ>0, there
exists an a such that m0(L, J, a) = c and m1(L, J, a) = 0. Then, the
same is true for any other generic J (with the same c, but generally a
different a).

It is maybe helpful to review quickly the general formalism from [17].
To every L ⊂ M , that formalism associates a curved (or obstructed)
A∞-structure on H∗(L; Λ≥0), which is given by a series of t-linear Z/2-
graded maps

(5.7) µk : H∗(L; Λ≥0)⊗k −→ H∗+2−k(L; Λ≥0),

k ≥ 0, satisfying the generalized associativity equations. Specialization
to t = 0 reproduces the classical A∞-structure on cohomology. The
higher order terms are instanton corrections, coming from holomorphic
discs. The µk are not unique, since they depend on many choices, both
in the classical and instanton-deformed parts. However, given any two
such structures {µk}, {µ̃k}, one can find a curved A∞-homomorphism
F between them, which for t = 0 specializes to a quasi-isomorphism
(whose linear part is the identity). Concretely, F is given by a sequence
of maps

(5.8) Fk : H∗(L; Λ≥0)⊗k −→ H∗+1−k(L; Λ≥0),
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k ≥ 0, satisfying the A∞-morphism equations, and with the additional
property that F0 ∈ O(t), F1 ∈ id + O(t). Now consider odd degree
elements a ∈ H∗(L; Λ>0) satisfying the Maurer-Cartan equation

(5.9) MC(a) = µ0 + µ1(a) + µ2(a, a) + · · · = 0.

To each such element, one can associate a Floer cohomology group,
which is the cohomology of the differential da = µ1 +µ2(a, ·)+µ2(·, a)+
· · · on H∗(L; Λ). Using (5.8) one can transfer solutions of the Maurer-
Cartan equation from one choice of A∞-structure to the other, and this
induces isomorphisms of the associated Floer cohomology groups. For
a more detailed exposition, see §§7 (algebra) and 10 (geometry) of [17].

At this point, we want to specialize to L = T 2, and use the particular
features of that situation to simplify the picture. First of all, the classical
A∞-structure is known to be formal, so µk ∈ O(t) for k 6= 2, µ2 =
(cup-product) +O(t). Next, when computing the instanton corrections,
one can choose an almost complex structure of type (5.4). For our
purposes, the most relevant part is to see what µk does to elements of
H1. For degree reasons, the only instanton correction comes from discs
with Maslov index 2, whose moduli spaces are smooth by assumption.
A more careful computation shows that in fact,

(5.10) µk(a, . . . , a) =
∑

α

kα(L, J) t
R

α
θ a(α)k/k! ∈ Λ>0 = H0(L; Λ>0).

Hence, solutions of (5.9) are precisely those a such that m0(L, J, a) = 0.
Moreover, the associated Floer cohomology group is nontrivial if and
only if m1(L, J, a) = 0. The abstract theory ensures that the existence
of such an a is independent of all choices made in the construction.

This proves the c = 0 case of Lemma 5.3. Even though that case is
actually sufficient for our applications, it is nevertheless instructive to
briefly sketch the general argument, which is a little more sophisticated
since it relies on the unitality on our A∞-structures. Specifically, one
can arrange (by a suitable choice) that the unit 1 ∈ H0(L; Λ≥0) satisfies

µk(. . . , 1, . . .) = 0 for all k 6= 2, and µ2(z, 1) = z, µ2(1, z) = (−1)|z|z.
Given any two choices of A∞-structures constructed in this particular
way, the A∞-homomorphism from (5.8) will satisfy F1(1) = 1, and
Fk(. . . , 1, . . .) = 0 for all k ≥ 2. Instead of solutions of (5.9), one can
more generally consider projective Maurer-Cartan elements, which are
those a such that MC(a) = c · 1. The resulting differentials da still
satisfy d2

a = 0, so there are well-defined Floer cohomology groups, and
these are again independent of all choices involved.

(5d) Crossing tori: We now return to the situation discussed in Sec-
tion 4, namely where U = X \ D is an affine algebraic surface. Pick
a singular point p ∈ D, and local holomorphic coordinates near that
point, in which D = {x1x2 = 0}. As in the proof of Theorem 4.5, one
can arrange that the Kähler form is standard in those coordinates. This
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means that for all sufficiently small ǫk > 0,

(5.11) L = {|x1| = ǫ1, |x2| = ǫ2}

is a Lagrangian torus in U , hence also in the associated Liouville domain
M (provided that this is chosen to be large enough). If the ǫk are rational
multiples of 1/π, the class [θ|L] is rational, and one can then rescale θ to
make L Bohr-Sommerfeld. We call such an L a crossing torus associated
to p.

Let D′ ⊂ D be a sub-divisor containing p, and denote by D′′ the
union of all components of D which are disjoint from D′. Assume that
the following conditions are satisfied:

• There is a neighbourhood V ⊂ X of D′ containing L, such that
the map π1(L)→ π1(V \D) is injective.
• If C is a holomorphic curve on X, whose intersection number

with each component of D′′ is zero or negative, then C must
be contained in D′.

If this holds, the crossing torus (5.11) is Floer-theoretically essential.
The proof, which is a variation of an argument given in [49, Section 5],
combines two techniques. First, using a elementary algebro-geometric
trick, one degenerates X to a singular variety (one component is the
blowup of X at p, and the other is CP2). This degeneration actually
yields a family of Kähler forms ωt on X, together with a family of ωt-
Lagrangian tori Lt. This family is parametrized by t ∈ [0;∞), with
t = 0 being the original Kähler form and crossing torus, and moreover
the class [ωt] ∈ H

2(X,Lt) is constant throughout the deformation. By
analyzing the limiting behaviour of pseudo-holomorphic discs, and using
the geometric conditions above, one sees that if tk is a sequence going
to ∞, and uk a sequence of non-constant holomorphic discs in (X,Ltk),
then the energy

∫

uk
ωk is necessarily unbounded. In informal language,

there are no holomorphic discs in the limit t → ∞. At that point, the
proof of Lemma 5.3 carries over with no changes, and establishes the
desired property.

A concrete example is given by Ramanujam’s surface [43], which is
an affine algebraic surface U that is contractible (but not homeomorphic
to R4, because its fundamental group at infinity is nontrivial). Propo-
sition 5.2, applied to the crossing torus introduced in [49], shows that
this surface has nonzero symplectic cohomology. Using the Künneth
formula from [41], one sees that the same holds for U × U (which is
simply-connected at infinity, hence actually diffeomorphic to R8, by the
h-cobordism theorem). In particular, by looking at the associated Li-
ouville domain, one gets the following consequence:

Corollary 5.4 (Seidel-Smith). There is a Liouville domain M
which is diffeomorphic to D8 but has nonvanishing symplectic coho-
mology. In particular, M is not Liouville isomorphic to standard D8,
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and (in view of Corollary 6.5 below) ∂M is not contact isomorphic to
standard S7.

6. Handle attachment and classification problems

We begin by reviewing another method of constructing Liouville
domains, namely Weinstein handle attachment. This is inspired by the
Morse theory of plurisubharmonic functions [13, 10]. Compared to
Lefschetz fibrations, it is somewhat more flexible and economical, as
well as closer to traditional manifold topology. As a cautionary note,
we should point out that even this method has its limits: there are four-
dimensional Liouville domains which have disconnected boundary, hence
are not homotopy equivalent to 2-dimensional cell complexes [34, 18].
Clearly, such a manifold cannot be decomposed into Weinstein handles
(hence, is not a Weinstein manifold in the sense of [10]).

Attachment of k-handles with k < n = 1
2dimM is an essentially

topological process, since it is governed by an h-principle [12]. On the
side of pseudo-holomorphic curve theory, this is reflected by a remark-
able result of Cieliebak, which says that the symplectic cohomology
remains unchanged. In many cases, one can use 2-handle attachment
to kill the fundamental group, and this has implications for the classi-
fication of Liouville (and contact) structures.

(6a) Weinstein handles: Let M be a Liouville domain, and ξ =
ker(α) the contact hyperplane field on ∂M . Take a submanifold Σ ⊂M
which is contact isotropic, so α|Σ = 0. This means that that TΣ is
a subbundle of ξ|Σ, which is contained in its symplectic orthogonal
complement (TΣ)⊥,symp. The quotient (TΣ)⊥,symp/TΣ then inherits a
symplectic structure; we call it the symplectic normal bundle of Σ, and
denote it by νsympΣ.

Now suppose that Σ is a sphere of some dimension k − 1, and that
νsympΣ is trivial as a symplectic vector bundle. More precisely, we
want to fix a diffeomorphism f : Sk−1 → Σ, or rather its class in
π0(Diff(Sk−1,Σ)/Ok) (just as in Remark 2.4); and also a trivialization
of νsympΣ, at least up to homotopy. Then, one can form a new Liouville
domain by attaching a Weinstein handle Hk to the boundary of M near
Σ. Denote this operation by

(6.1) M ′ = M ∪Σ Hk.

∂M ′ is obtained from ∂M by a surgery which replaces Σ with a sphere
of codimension k (the new sphere is coisotropic, which means that its
preimage in the symplectization R×∂M ′ is a coisotropic R×S2n−k−1).

Example 6.1. Start with a disjoint union M = M1 ∪M2, fix one
point yi in each ∂Mi, and then connect them by a one-handle. We
will call the resulting M ′ the boundary connected sum of the Mi, and
denote it by M1#∂M2 (strictly speaking, this notation is appropriate
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only when ∂Mi is connected). ∂M ′ is the connected sum of ∂M1 and
∂M2 in the ordinary sense of the word. In this case, the choice of
symplectic framing is irrelevant, since π0(Sp2n−2) is trivial; and indeed,
the requirement that orientations should be preserved leaves no freedom
in how to take the connected sum.

Example 6.2. Let M be a Liouville domain of dimension ≥ 6, and
Σ ⊂ ∂M an isotropic loop which which represents the trivial class in
H1(M). Attaching a handle creates a new generator A ∈ H2(M

′), which
is unique up to adding classes in H2(M). The homotopy classes of sym-
plectic framings form an affine space over π1(Sp2n−4) ∼= Z. Changing
the framing by some integer raises the Chern number 〈c1(M

′), A〉 by
the corresponding amount.

As mentioned before, Weinstein handle attachment is derived from
the Morse theory of plurisubharmonic functions. To build the local
model, one starts with the quadratic function h : Cn → R,

(6.2) h(z1, . . . , zn) =
n−k
∑

j=1

1
4 |zj |

2 +
n

∑

j=n−k+1

|re(zj)|
2 − 1

2 |im(zj)|
2.

The stable and unstable manifolds of the unique critical point z = 0
are the orthogonal subspaces W s = {z1 = · · · = zn−k = 0, zn−k+1 ∈
iR, . . . , zn ∈ iR, h(z) = −1}, W u = {zn−k+1 ∈ R, . . . , zn ∈ R}. In
relation to the previous picture, the original boundary ∂M corresponds
to the level set {h = −1}, and the sphere Σ ⊂ ∂M to W s ∩ {h = −1}.
Similarly, the new boundary would essentially be {h = 1}, containing
the sphereW u∩{h = 1}. We said “essentially” because the construction
of the precise local model involves some cutoff functions, which change
the level sets {h = −1} and {h = 1} to make them equal at infinity; see
[55].

Lemma 6.3. Suppose that Σ bounds a contact isotropic (k+ 1)-disc
∆ ⊂ ∂M , in a way which is compatible with the symplectic framing of
Σ. Then the handle attachment (6.1) can be cancelled. This means that
there is a contact isotropic sphere Σ′ ⊂ ∂M ′ of dimension k, such that
M ′′ = M ′ ∪Σ′ Hk+1 is Liouville isomorphic to M .

The meaning of the compatibility condition is as follows. Up to
homotopy, there is a distinguished isomorphism νsympΣ ∼= νsymp∆|Σ⊕
C. The unique trivialization of νsymp∆ induces one of νsympΣ, and this
must be homotopic to the given symplectic framing. We will not give a
detailed proof of Lemma 6.3, but the idea can be explained in the basic
model considered above. Inside {h = −1} consider the contact isotropic
submanifold given by
(6.3)
z1 ∈ R+, z2 = · · · = zn−k = 0, zn−k+1 ∈ iR, . . . , zn ∈ iR, h(z) = −1.
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This is diffeomorphic to R+×Sk−1, and its boundary is W s∩{h = −1}.
In the situation of the Lemma, this corresponds to a neighbourhood of
Σ ⊂ ∆, hence closes up to a disc inside the whole of ∂M . On the other
side {h = 1}, the same formula (6.3) defines a contact isotropic sub-
manifold diffeomorphic to Rk. Globally, this will close up to a contact
isotropic sphere Σ′ ⊂ ∂M ′, which intersects the coisotropic (2n−k−1)-
sphere coming from the previous surgery transversally in a single point.
In this case, gluing a handle onto Σ′ will cancel the previous attach-
ment (this is well-known in the differentiable category [36], and is a
folk theorem in the symplectic category).

In the situation considered in Example 6.2, any surface in M bound-
ing Σ determines a preferred class A ∈ H2(M

′). If we take this surface
to be a coisotropic disc ∆ in ∂M , and attach the handle in a way which is
compatible with the induced framing, A will actually be represented by
the isotropic two-sphere Σ′ ⊂ ∂M ′, which means that 〈c1(M

′), A〉 = 0.

(6b) Subcritical handle attachment: Let M be a Liouville domain
of dimension 2n, and Σ ⊂ ∂M a contact isotropic sphere of dimension
k − 1 < n − 1. Choose a symplectic framing, and perform the handle
attachment (6.1).

Theorem 6.4 (Cieliebak). SH∗(M ′) ∼= SH∗(M).

This is Cieliebak’s theorem in its original form [6], which applies to
Z/2-graded symplectic cohomology groups. For our subsequent appli-
cations, we want Z-gradings, hence have to sort out the relevant Chern
class issues. If k = 1, any trivialization of the canonical bundle K can
be extended from M to M ′. The extension is not necessarily unique,
but Theorem 6.4 holds equally for all choices. For k = 2, given a trivial-
ization of K over M , any symplectic framing of Σ determines a Maslov
class µΣ ∈ H

1(Σ) ∼= Z, which is the obstruction to extending the trivi-
alization over M ′. Changing the framings affects this class as in Lemma
6.2, so there is a unique choice which kills the obstruction. For higher
k, there is no problem at all. We finish our discussion by mentioning a
simple but beautiful application:

Corollary 6.5 (Smith). Let M be a Liouville domain of dimension
2n ≥ 4, such that ∂M is contact isomorphic to standard S2n−1. Then
SH∗(M) = 0.

Proof. For 2n = 4, Gromov [24] showed that M must be Liouville
isomorphic to standard R4, so there is nothing to prove. In higher di-
mension, we start with a theorem of Eliashberg-Floer-McDuff [34, 9],
which says that M must be acyclic (and simply-connected, hence diffeo-
morphic to D2n by the h-cobordism theorem). In particular, c1(M) = 0,
so Z-graded symplectic cohomology is well-defined. Using the spectral
sequence (3.2), one immediately gets an upper bound rankSHk(M) ≤ 1
for all k ∈ Z. The same thing applies to the connected sum M#∂M ,
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but on the other hand we have SH∗(M#∂M) ∼= SH∗(M) ⊕ SH∗(M),
which implies the result. �

(6c) From groups to manifolds: We will borrow liberally from
Novikov’s work on algorithmic decidability of problems in manifold
topology. The original reference is [39]; for more recent expositions,
see [54, Chapter 2] (informal) or [37] (more detailed). Let

P = 〈g1, . . . , gk | r1, . . . , rl〉

be a finite presentation of a group ΓP , which satisfies H1(ΓP ) = H2(ΓP )
= 0. This class of groups is large enough so that the triviality prob-
lem, which is to decide given P whether ΓP is trivial, is algorithmically
unsolvable. Given any such P , one can algorithmically construct a ho-
mology n-sphere SP (for some fixed large n; n = 6 will do), such that
π1(SP ) ∼= ΓP . SP will come with distinguished loops γj representing
the generators gj . Moreover, if the presentation is such that ΓP is the
trivial group, then SP will actually be diffeomorphic to the standard
sphere Sn.

We now symplectify this construction, killing the fundamental group
in the process. After a small perturbation, we may assume that the
loops γj are embedded and disjoint. Choose a nowhere zero section of
the (co)normal bundle of each γj . This defines an isotropic loop Σj in
the boundary of the cotangent bundle D∗SP . Attach Weinstein two-
handles to all the Σj , with the framing chosen in such a way that the
resulting manifold MP has trivial first Chern class. It is easy to see that
MP is simply-connected, and independent of all the choices made in the
construction, up to Liouville isomorphism. Similarly, ∂MP is simply-
connected, and independent of all choices up to contact isomorphism.
For purposes of comparison, we also choose a presentation P̄ of the
trivial group having the same number of generators as P , and form
MP̄ .

Lemma 6.6. MP is Liouville isomorphic to MP̄ if and only if ΓP is
trivial.

Proof. Theorems 3.5 and 6.4 together show that

(6.4) SH0(MP ) ∼= SH0(D∗SP ) ∼= H0(LSP ; K)

is generated by the conjugacy classes in ΓP . Hence, its rank is 1 iff ΓP
is trivial. To prove the converse, suppose that ΓP is trivial. Then, both
MP and MP̄ are constructed by starting with the same number of loops
in Sn. One can deform one set of loops into the other (without cross-
ings or self-intersections), and that induces an isotopy of the associated
contact isotropic loops in ∂D∗Sn. �

Lemma 6.7. ∂MP is contact isomorphic to ∂MP̄ if and only if ΓP
is trivial.
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Proof. One direction follows directly from the previous Lemma,
but the other one needs a little more work. Consider the trivial case P̄ ,
and write γ̄j for the loops in SP̄

∼= Sn representing the generators. Each
such loop bounds a disc, and we can choose those discs to be embedded
and mutually disjoint. One can then use the same method as before to
produce contact isotropic discs ∆̄j whose boundary are the loops Σ̄j used
in the handle attachment process. From Remark 6.2 and the discussion
following Lemma 6.3, it follows that our choice of symplectic framings
is compatible with ∆̄j . Hence the handle attachment can be cancelled.
In other words, there is a symplectic cobordism whose concave side is
∂MP̄ , and whose convex side is ∂D∗Sn.

Now suppose that ΓP is nontrivial, but ∂MP
∼= ∂MP̄ . In that

case, we could attach 3-handles to MP (equivalently, glue on the above-
mentioned cobordism), so as to get another Liouville manifold M whose
boundary is (contact isomorphic to) ∂D∗Sn. By looking at Example 3.4,
one sees that the Reeb orbits on the boundary do not contribute any
degree 0 generators to symplectic cohomology, so SH0(M) must be one-
dimensional. On the other hand, SH∗(M) ∼= SH∗(MP ) by Cieliebak’s
theorem, which contradicts (6.4). �

Corollary 6.8. The following problems are algorithmically unsolv-
able: (i) the Liouville isomorphism problem for simply-connected Liou-
ville domains; (ii) the computation of the rank of SH0(M) for a given
simply-connected Liouville domain with c1(M) = 0; (iii) the isomor-
phism problem for simply-connected closed contact manifolds.

The discussion in Section 7 will show that one can actually replace
Liouville isomorphism in (i) with a more general notion (symplectic
isomorphism of the completions).

In a different direction, one can restrict the class of presentations to
ones with a fixed (sufficiently large) number of generators. The triviality
problem remains unsolvable, and our argument shows that there is no
argument which decides whether a given simply-connected contact man-
ifold is isomorphic to ∂MP̄ . On the other hand, it is shown in [38, The-
orem 1] that the recognition problem is algorithmically solvable among
the class of simply-connected smooth manifolds (of dimension ≥ 5, up
to diffeomorphism). Informally speaking, this means that in the world
of classical high-dimensional manifold topology, the fundamental group
is the only significant obstruction to detection problems. By comparing
the two aspects, it follows that the problem of saying whether an arbi-
trary contact structure on the manifold ∂MP̄ is isomorphic to the given
one is also algorithmically unsolvable. As an near-immediate conse-
quence, that specific manifold must carry an infinity of non-isomorphic
contact structures, which are moreover undistinguishable by classical
invariants such as Chern classes. It is an interesting question to what
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extent one can simplify that “undetectable” manifold further, for in-
stance, whether such a result also holds for the sphere.

Finally, on a more philosophical level, it’s important to keep in mind
the correct interpretation of results such as Corollary 6.8. The state-
ment is that one cannot solve the isomorphism problem “in a vacuum”,
without having some specific insight or information about the manifolds
concerned. One can argue that this situation rarely applies in practice
(a possible exception are random constructions of the kind proposed in
Section 2b).

7. Viterbo functoriality

Functoriality with respect to (a certain class of) embeddings is prob-
ably the most fundamental property of symplectic cohomology. The
original motivation came from the case of cotangent bundles, where
maps between free loop space homologies can be defined using gener-
ating function methods [51]. This, and the subsequent Floer-theoretic
reformulation [52], have many immediate implications for embedding
problems. Here, we pursue a far more modest aim, which is to use func-
toriality to make the framework of symplectic cohomology a little more
general and flexible. We also include a simple but elegant application,
discovered by Mark McLean [35].

(7a) Statement: A Liouville embedding is an embedding ι of a Li-
ouville domain M into another such domain M ′ (of equal dimension),
such that ι∗θ′ = eρθ + d(some function), for some ρ ∈ R. Viterbo’s
construction [52] associates to each such embedding a pullback map

(7.1) SH∗(ι) : SH∗(M ′) −→ SH∗(M).

This is homotopy invariant (within the space of all such embeddings),
and functorial (with respect to composition of embeddings). For in-
stance, suppose that we enlarge M to M ′ = M ∪∂M ([0;R] × ∂M),
which means adding a finite piece of the completion. Then, the inclu-
sion M →M ′ induces an isomorphism on SH∗, since it can be deformed
to the identity by following the Liouville flow. Another case when the
pullback maps are isomorphisms is subcritical handle attachment. In
fact, the proper statement of Theorem 6.4 is that the map induced by
inclusion yields an isomorphism SH∗(M ′) ∼= SH∗(M).

(7b) Liouville manifolds: Take a manifold M (non-compact, and
without boundary) which comes with a one-form θ such that dθ = ω
is symplectic. We will call M an exact symplectic manifold. An exact
symplectic isomorphism between such manifolds is a diffeomorphism
which preserves θ up to adding an exact one-form. We will say that M is
Liouville if there is a sequence of Liouville domains Mk and embeddings
ιk : Mk → M , such that ι∗kθ = θk + d(some function), whose images
exhaust M . This condition is clearly invariant under exact symplectic
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isomorphisms. An obvious example is the completion of any Liouville
domain. Another one is an arbitrary Stein manifold, with θ obtained
from an exhausting plurisubharmonic function h (unlike the situation
in Example 2.3, we do not assume that the critical point set of h is
compact).

One defines the symplectic cohomology of a Liouville manifold to be

(7.2) SH∗(M) = lim←−kSH
∗(Mk),

where the connecting maps are induced by the inclusions via (7.1). Of
course, this is not a correct definition in the abstract sense (we should
take the inverse limit in the derived sense, which means on the level
of chain complexes). However, for the purposes of the rather rudimen-
tary discussion here, the difference does not matter. (7.2) is obviously
independent of the choice of exhaustion, and is invariant under exact
symplectic isomorphisms. Moreover, in the case of completions, it re-
produces the symplectic cohomology of the original Liouville domain. In
particular, it follows that the symplectic cohomology of a Liouville do-
main is in fact an (exact) symplectic invariant of its completion; which
is a somewhat stronger statement than invariance under Liouville iso-
morphism.

(7c) A finite type condition: The following notion is due to Mark
McLean: a Liouville manifold M is called of finite type if, for some k
as in (7.2), the canonical map SH∗(M) → SH∗(Mk) is injective. Of
course, the same is then true for all l ≥ k, and for similar reasons,
this condition is independent of the choice of exhaustion. Clearly, any
completion of a Liouville domain is of finite type. On the other hand,
one can easily construct infinite genus surfaces which are of infinite type.
Here is a more interesting case, taken from [35], where the phenomenon
is not topologically detectable:

Theorem 7.1 (McLean). There is a Liouville manifold M diffeo-
morphic to R8, which is not of finite type.

To construct this, one starts with the Liouville domain from Corol-
lary 5.4, here called M1. In the next step, enlarge it slightly (by adding
a finite piece of the cone), and then take the boundary connected sum of
two copies of the result. The outcome is another Liouville domain M2,
which comes with a natural inclusion M1 →֒M2\∂M2 (in fact, two such
inclusions, but we only need one), compatible with the given one-forms.
We repeat this construction inductively, and get an increasing sequence
M1 ⊂ M2 ⊂ M3 · · · , whose union M is a Liouville manifold. Topologi-
cally, each Mk is diffeomorphic to D8. Moreover, Mk+1 \ (Mk \ ∂Mk) is
a simply-connected h-cobordism from ∂Mk

∼= S7 to ∂Mk+1
∼= S7, hence

diffeomorphic to [0; 1]× S7. Therefore, M itself is diffeomorphic to R8.
On the other hand, we have

(7.3) SH∗(Mk+1) ∼= SH∗(Mk)⊕ SH
∗(Mk),
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with the restriction map being projection to the first summand. Hence,
the finite type condition is not satisfied.

As a consequence, we know that there are at least three symplec-
tically distinct Liouville manifold structures on R8, namely the stan-
dard structure (symplectic cohomology vanishes), the completion of M1

(symplectic cohomology is nonzero, but the manifold is of finite type),
and M (of infinite type). By comparison with Gompf’s results about
Stein structures on manifolds homeomorphic to R4 [21], it seems quite
possible that there is actually an uncountable family of infinite type
Liouville structures on any R2n, n > 2; so, this is another point where
the established results fall far short of expectations.

8. Algebraic structures

Symplectic cohomology carries a rich structure of operations. Un-
surprisingly, these are defined by looking at Floer-type equations on
more general Riemann surfaces. A particular feature of the symplectic
cohomology situation is that there is an essential difference between in-
puts and outputs (positive and negative marked points on our surfaces),
and that degenerations to nodal surfaces are allowed only under certain
additional conditions. The closest relative of the resulting theory is
string topology, but comparisons with classical (equivariant) cohomol-
ogy and with symplectic field theory are also instructive.

(8a) Riemann surfaces and operations: We temporarily return to
the model case of symplectizations M = R× Y , as in Section 3c. Take
H of the form (3.10), and J of contact type (3.13). Let Σ be a Riemann
surface, carrying a real one-form β which satisfies dβ ≤ 0 everywhere.
Consider a solution of the equation

(8.1)

{

u : Σ −→M,

(du−X ⊗ β)0,1 = 0,

and write ρ = er ◦ u as usual. Then (in any local coordinate z = s+ it
on Σ)

(8.2) ∆ρ = |du−X ⊗ β|2 − ρh′′(ρ)
dρ ∧ β

ds ∧ dt
− ρh′(ρ)

dβ

ds ∧ dt
,

so the maximum principle applies. Note that if we take Σ = R×S1 and
β = dt, (8.1) reduces to Floer’s equation; and more generally, taking
β = f(s) dt yields a special case of the continuation map equation (3.8).

Take the completion M̂ of a Liouville domain. Equip it with an
almost complex structure J which is of contact type at infinity, and
a Hamiltonian function H of the kind used to define symplectic coho-
mology in (3.22). Take a Riemann surface Σ with p > 0 negative and
q ≥ 0 positive punctures, and choose tubular ends (−∞; 0] × S1 → Σ,
[0;∞) × S1 → Σ near those punctures. Suppose that we have a β ∈
Ω1(Σ) satisfying dβ ≤ 0 and which, on each strip-like end, is a positive
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constant multiple of dt. Then, by counting solutions of (3.10) in M̂
with appropriate asymptotics, one defines a map

(8.3) ΦΣ,p,q : SH∗(M)⊗q −→
(

SH∗(M)⊗p
)

[−nχ(Σ)].

For instance, Σ = C gives a canonical element ΦC,1,0 ∈ SH
−n(M). This

is in fact the image of the ordinary identity element 1 ∈ H0(M ; K)
under the map (3.1); we have already encountered this construction in
Section 5a, where C was thought of as a partial compactification of
R × S1. Next, taking Σ to be a three-punctured sphere (two positive,
one negative) yields a product on SH∗(M), which (by standard Floer-
theoretic argument) is commutative and associative, and has ΦC,1,0 as a
unit. Note that as a consequence, SH∗(M) vanishes if and only if (3.1)
is zero.

As another instructive example, consider R×S1 with both punctures
negative. This means that one takes β = f(s)dt, where f goes from
positive (s ≪ 0) to negative (s ≫ 0). The resulting invariant is an
element

(8.4) ΦR×S1,2,0 ∈ SH
∗(M)⊗2,

which we can think of as a pairing on the dual space SH∗(M)∨. How-
ever, this pairing turns out to be highly degenerate. This is a con-
sequence of a general property of our invariants (8.3), namely that
they allow degenerations of the Riemann surface to a nodal one, pro-
vided that the relevant one-forms can be chosen so that they vanish
near the degeneration locus. In our case, this means that one can
degenerate R × S1 to a union of two discs intersecting at a point.
As a consequence, (8.4) is in fact the image of the diagonal class in
H∗(M ; K)⊗2 ∼= H4n−∗(M ×M,∂(M ×M); K) under the map (3.1) (ap-
plied to both factors).

Finally, one can generalize the basic framework above by allowing
families of Riemann surfaces with tubular ends. The result is a map
like (8.3), but with the degree shifted down by the dimension of the
parameter space. The simplest example is to take R × S1, with one
positive and one negative puncture, and to take a one-parameter family
in which one of the two tubular ends gets rotated once. The outcome is
a map ∆ : SH∗(M) −→ SH∗−1(M), called the BV (Batalin-Vilkovisky)
operator. Next, the moduli space M of three-punctured spheres (two
positive, one negative puncture) equipped with tubular ends is homo-
topy equivalent to (S1)3. Each class in Hk(M) gives rise to a map
SH∗(M)⊗2 → SH∗(M) of degree −n− k. For [point] ∈ H0(M), this is
just the product mentioned above, and the remaining classes correspond
to operations obtained by composing that product with ∆. In fact, a
classical result of Getzler [19] shows that the same is true for all moduli
spaces of (d+1)-punctured spheres (one negative, d positive punctures);



248 P. SEIDEL

the resulting operations are generated by ∆ and the product, and equip
SH∗(M) with the structure of a BV algebra.

(8b) S1-equivariant symplectic cohomology: The chain complex
underlying symplectic cohomology actually admits an infinite sequence
of maps

(8.5) δk : CF ∗(H) −→ CF ∗(H)[1− 2k], k ≥ 0,

of which the first one, δ0 = δ, is the ordinary boundary operator. Recall
that in practice, to define that operator one introduces a perturbation of
H which is t-dependent, hence breaks the S1-symmetry in the original
equation (3.5). The higher order corrections δk are defined by looking
at families of such perturbations, which concretely means that they
count solutions to certain (parametrized) continuation map equations
(see [50], where this construction was introduced into Floer theory for
the first time). The basic equations can be summarized by saying that
the equivariant differential

(8.6) δeq = δ0 + uδ1 + u2δ2 + · · · ,

where u is a formal variable of degree 2, squares to zero. We take the
K[[u]]-module K = K((u))/uK[[u]] =

∏

i≤0 Kui, and define

(8.7) SH∗
eq(M) = H∗(CF ∗(H)⊗K, δeq).

Note that with this definition, we get a bounded below exhausting u-
adic filtration on our chain complex. The associated spectral sequence
converges to SH∗

eq(M); its E1 term is

(8.8) Epq1 =

{

SHq−p(M) p ≤ 0,

0 p > 0,

and its first differential is the BV operator ∆. In particular, if SH∗(M)
is acyclic, then so is the equivariant version. The same strategy can
be used to prove equivariant analogues of other results concerning sym-
plectic cohomology. Here, we only want to consider one particularly
simple special case, namely when the Reeb flow on ∂M is a free circle
action. For simplicity, let’s also take K ⊃ Q. In that case, we have an
equivariant analogue of (3.2), namely a spectral sequence converging to
SH∗

eq(M), with starting term

(8.9) Epq1 =











Hq+n(M ;K) p = 0,

Hp+q+n−1−pµ(∂M/S1; K) p < 0,

0 p > 0.

Remark 8.1. There are two other viable versions of the S1-equi-
variant theory, namely: the one based on CF ∗(H)[[u]] (which is a com-
pleted tensor product, meaning that arbitrary formal series in the gen-
erators of CF ∗(H) are allowed); and its localized version, which allows
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finitely many powers of u−1. We have chosen K-coefficients since the
resulting complex is still relatively small (countably generated).

A word of caution is appropriate. In the classical framework of equi-
variant (de Rham, let’s say) cohomology, the equivariant differential has
only two terms, δeq = δ0+uδ1. This means that one can take coefficients
in any K[u]-module, which is more general than the setup above. This
greater flexibility allows one to construct theories with better localiza-
tion properties [27]. The price to pay is that the analogues of the spec-
tral sequence in (8.8) generally do not converge, yielding more restrictive
invariance properties (equivariant maps which are non-equivariant ho-
motopy equivalences do not generally induce isomorphisms). It is not
clear whether this setup can be applied meaningfully to symplectic ge-
ometry. Another instructive point of comparison is cyclic homology, see
in particular the discussion in [26].

Example 8.2. Take M = D∗N with N = S2. The equivariant ver-
sion of Theorem 3.5 [50] says that in such a case, SH∗

eq(M) = Heq
−∗(LN),

where equivariant homology of the free loop space is defined in the clas-
sical way (as the homology of the Borel construction). The spectral
sequence (8.9) reproduces the Morse-Bott spectral sequence for the ge-
odesic energy functional. We have

(8.10) Epq1 =



















K p = 0, q = 0,

K2 p = 0, q < 0 even,

K p < 0, q = p± 1,

0 otherwise.

The p = 0 column contains a copy of K ∼= Heq
−∗(point; K), and this

clearly survives to E∞. By using that fact, as well as the action of u, and
comparing the result with known computations of loop space homology
[25], one sees that precisely the differentials dr : E−r,−r−1

r → E0,−2r
r ,

r ≥ 1, are nonzero. In this context we should also mention Goodwillie’s
theorem [22] which says that for any simply-connected N , the map
H∗
eq(LN ; K)→ H∗

eq(point; K) is an isomorphism modulo u-torsion.

The equivariant theory carries operations, which are of a somewhat
different kind than before. To see the most basic instance of this, con-
sider again the moduli spaceM of 3-punctured discs with tubular ends.
The associated operations are parametrized by equivariant homology
classes ofM, with respect to the action of (S1)3 rotating the ends. More
precisely, one should take equivariant homology with K[[u∗]]-coefficients
for the positive ends, and with K((u∗))/u∗K[u∗]-coefficients for the neg-
ative end (u∗ is dual to u, hence of degree −2; so the last-mentioned
version is classical equivariant homology). This consists of a single copy
of K, located in degree 2, and the resulting operation

(8.11) SH∗
eq(M)⊗ SH∗

eq(M) −→ SH∗
eq(M)[n− 2]
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turns out to be a graded Lie bracket on SH∗
eq(M)[2−n] (more generally,

one expects SH∗
eq(M) to have the structure of a gravity algebra [19],

which is the “equivariant analogue” of a BV structure). There is also
still a map H∗+n(M ;K) → SH∗

eq(M), but the image of this is now a
degenerate ideal (the bracket of an element in the image with anything
else vanishes).

Remark 8.3. At this point, it is tempting to speculate about the
relation between symplectic cohomology and (relative) Gromov-Witten
invariants (for related work concerning contact homology, see [28]). As
a relatively simple example, suppose that X2n is a closed symplectic
manifold with integral symplectic class [ω], and with first Chern class
c1 = 2[ω]. In that case, one expects to have a finite number Ψ of “lines”
(pseudo-holomorphic spheres with area 1) going through a generic point.
Now, suppose that D ⊂ X is a symplectic hypersurface representing
some multiple k[ω], and M a suitable piece of the complement X \D,
which is a Liouville domain. (8.9) applies, with µ = 2 − 4/k (the frac-
tional grading actually makes sense, but for our immediate considera-
tions, we only need k = 1, 2 anyway). In the case k = 1, part of the
spectral sequence is a map

(8.12)
K = H0(D; K) = H0(∂M/S1; K) = E−1,−n

1

d
−1,−n
1−−−−→

−→ E0,−n
1 = H0(M ; K)→ H0(M ; K) = K.

One can conjecture that this should be multiplication by Ψ. At least,
this idea is compatible with the computations in Example 8.2, where
Ψ = 2, and where d−1,−n

1 indeed turned out to be nonzero. Next, in the
case k = 2, one expects H∗+n(M ;K) to survive to the E∞ term of the
spectral sequence. Let’s suppose for simplicity that the whole spectral
sequence degenerates, and also ignore problems arising from the choice
of splitting of the resulting filtration on SH∗

eq(M). With that set aside,
part of the Lie bracket (8.11) is a map
(8.13)

K = H0(D; K)⊗2 ⊂ SH1−n
eq (M)⊗2 −→ SH−n

eq (M)→ H0(M ; K) = K,

which could potentially be multiplication by 2Ψ. Unfortunately, for k >
2 the situation becomes more complicated, since one apparently needs to
pass to secondary (Massey product type) operations on SH∗

eq(M). Still,
it is possible that a suitably defined structure of chain level operations
on symplectic cohomology does indeed contain Ψ, for all values of k.
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[42] M. Poźniak, Floer homology, Novikov rings and clean intersections, in ‘Northern
California Symplectic Geometry Seminar’, 119–181, Amer. Math. Soc., 1999.

[43] C. Ramanujam, A topological characterisation of the affine plane as an algebraic
variety, Ann. of Math. 94 69–88 (1971).

[44] W.-D. Ruan, Lagrangian torus fibration of quintic Calabi-Yau hypersurfaces. II.
Technical results on gradient flow construction, J. Symplectic Geom. 1 435–521
(2002).

[45] D. Salamon and J. Weber, Floer homology and the heat flow, preprint math.SG/
0304383.

[46] P. Seidel, Lagrangian two-spheres can be symplectically knotted, J. Differential
Geom. 52 145–171 (1999).

[47] P. Seidel, Fukaya categories and deformations, in ‘Proceedings of the Interna-
tional Congress of Mathematicians (Beijing)’, 2, 351–360. Higher Ed. Press,
2002.

[48] P. Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42

1003–1063 (2003).
[49] P. Seidel and I. Smith, The symplectic topology of Ramanujam’s surface, Com-

ment. Math. Helv. 80 859–881 (2005).
[50] C. Viterbo, Functors and computations in Floer homology with applications, Part

II, preprint, 1996.
[51] C. Viterbo, Exact Lagrangian submanifolds, periodic orbits and the cohomology

of free loop space, J. Differential Geom. 47 420–468 (1997).
[52] C. Viterbo, Functors and computations in Floer homology with applications, Part

I, Geom. Funct. Anal. 9 985–1033 (1999).
[53] J. Weber, Three approaches towards Floer homology of cotangent bundles, J.

Symplectic Geom. 3 671–701 (2005).



A BIASED VIEW OF SYMPLECTIC COHOMOLOGY 253

[54] S. Weinberger, Computers, Rigidity, and Moduli, Princeton University Press,
2005.

[55] A. Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J.
20 241–251 (1991).

The University of Chicago, Department of Mathematics, 315 Eckhart

Hall, 5734 S. University Avenue, Chicago IL 60637

E-mail address: seidel@math.uchicago.edu


