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Complex geometry and supergeometry

Eric D’Hoker and D.H. Phong

Abstract. Complex geometry and supergeometry are closely en-
tertwined in superstring perturbation theory, since perturbative
superstring amplitudes are formulated in terms of supergeometry,
and yet should reduce to integrals of holomorphic forms on the
moduli space of punctured Riemann surfaces. The presence of su-
permoduli has been a major obstacle for a long time in carrying out
this program. Recently, this obstacle has been overcome at genus
2, which is the first loop order where it appears in all amplitudes.
An important ingredient is a better understanding of the relation
between geometry and supergeometry, and between holomorphic-
ity and superholomorphicity. This talk provides a survey of these
developments and a brief discussion of the directions for further
investigation.

1. Introduction

String theory is a theory of random surfaces. Perturbative scatter-
ing amplitudes of string states are sums over the fluctuating worldsheets
spanned by evolving strings. Conformal invariance reduces these sums
to sums over only conformally distinct worldsheets. Thus, perturba-
tively, string scattering amplitudes should be given by series of integrals
over the moduli space Mh of Riemann surfaces of genus h ≥ 0.

An early major success of superstring theory was the explicit one-
loop (h = 1) amplitudes obtained by Green and Schwarz [1] for the
superstring and by Gross et al. [2] for the heterotic string. However,
the general loop order h has remained intractable to this day. This is
due to a fundamental geometric difficulty beginning at h = 2, which is
the occurrence of 2h−2 odd supermoduli inherent to the Neveu-Schwarz-
Ramond formulation of the superstring [3, 4].
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In the NSR formulation, the sums over fluctuating worldsheets for
the superstring are realized by integrating over all supergeometries

(gmn, χm
α) instead of over all geometries gmn, where gmn are metrics on

a fixed smooth surface Σ and χm
α are gravitino fields on Σ. The stan-

dard Faddeev-Popov gauge fixing procedure reduces these sums to inte-
grals over the supermoduli space sMh of inequivalent supergeometries
instead of integrals over the moduli space Mh of inequivalent geome-
tries. The space sMh is a (3h−3|2h−2) superspace, and the 2h−2 odd
supermoduli have to be integrated out in order to arrive at the desired
integrals over Mh. This is a new step beyond the standard gauge fixing
procedures of quantum field theory. It is not made any easier by our
insufficient understanding of the interplay between local supersymme-
try and the complex structures of Riemann surfaces and their moduli
space.

Recently, however, the supermoduli problem has been overcome for
the case of genus h = 2 and even spin structures [5, 6, 7, 8, 9, 10], which
is the first loop order where it appears in all amplitudes. The progress
is based partly on an improved understanding of the interplay between
worldsheet supersymmetry and complex structures. In particular, at
genus h = 2 and even spin structures, we have now:

• A gauge-fixing procedure which reduces the sums over fluctuat-
ing worldsheets in superstring theory to well-defined integrals over the
moduli space M2 of Riemann surfaces of genus h = 2, in [5, 6].

• These integrals are independent of the choice of gauge slices [6, 7].
As pointed out in [11, 12], gauge slice independence is a crucial require-
ment which was not satisfied by the Ansätze for superstring amplitudes
proposed in the past.

• Underlying this gauge slice independence is the remarkable fact
that gauge slice changes produce global forms which are de Rham-exact
in all insertion points, point by point over moduli space [9].

• The integrands of the superstring scattering amplitudes are her-
mitian pairings of holomorphic forms of maximal rank on the moduli
space of Riemann surfaces with punctures. Holomorphicity is a particu-
larly important property for string theory, indispensable for example in
the construction of heterotic strings. The holomorphicity of the super-
string integrand is recovered from superholomorphicity by extracting a
term which is Dolbeault exact in one insertion point and de Rham exact
in the remaining insertion points [9, 10].

• The measure on the moduli space of Riemann surfaces for each
spin structure δ has been evaluated in terms of ϑ-constants [8]. It is
given by a modular covariant form Ξ6[δ](Ω) of weight 6, which may be
interesting in its own right.
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• Using the above measure, the 0-, 1-, 2-, and 3-point scattering
amplitudes for massless NS states have been evaluated and found to
vanish identically, both for the type II and heterotic superstrings [10].
These results provide a proof, from first principles and to two-loop order,
of “non-renormalization theorems” which had been conjectured [13] on
the basis of space-time supersymmetry.

• The first non-vanishing two-loop amplitude, namely the scattering
amplitude of 4 massless NS bosons, has also been evaluated explicitly,
for the first time in a gauge slice independent formalism for both the
type II and heterotic superstrings [10]. Its surprisingly simple form may
give a clue to the 4-point function for higher genus.

• The two-loop string corrections to certain terms in the low energy
effective action for both type II and heterotic superstrings have been
computed precisely [10, 14]. In particular, for the type II theories,
the R4 correction is absent, while for the heterotic theories, the trF 4,
trF 2trF 2, R2trF 2, and R4 corrections are all absent, thus confirm-
ing predictions made on the basis of S-duality in type IIB theory and
space-time supersymmetry. The non-vanishing two-loop correction to
the D4R4 term in Type IIB theory has been matched precisely against
earlier predictions made on the basis of S-duality and space-time su-
persymmetry, by Green and collaborators (joint work with M. Gutperle
[14]).

• The issue of whether the two-loop cosmological constant vanishes
point by point on moduli space for certain Z2-orbifold models proposed
by Kachru, Kumar, and Silverstein [15] has been resolved. These are
models with broken supersymmetry but vanishing one-loop cosmological
constant. There had been hope that the two-loop cosmological constant
would also vanish, but we find that this is not the case (joint work with
K. Aoki [16]).

The goal of this lecture is to provide a brief survey of these de-
velopments, with emphasis on the geometric aspects. Superstring per-
turbation theory has received sustained attention over the years [11,

17, 18, 19, 20, 21, 22, 23], and has motivated many mathemati-
cal developments (see e.g., [24, 25] and references therein). The for-
mulation of superstring perturbation theory adopted here is the NSR
formulation. Though complicated by the presence of supermoduli at
higher loop level, and by the necessity to perform summations over spin
structures, the NSR formulation is based on the worldsheet action of
2-d supergravity whose quantization is well-understood, and on firm
ground. The Green-Schwarz formulation has the advantage of manifest
space-time supersymmetry and no need for supermoduli and spin struc-
tures, but its systematic quantization beyond 1-loop order has not yet
been achieved, in part because of the presence of delicate second class



4 ERIC D’HOKER AND D.H. PHONG

constraints. Perhaps more promising is the pure spinor formulation of
Berkovits [26], which circumvents the second class constraints, and per-
mits direct quantization. Yet, it is unclear whether this formulation
possesses an ungauge-fixed action, as is customarily used for a starting
point. (See however [27].) 1

Acknowledgements. The authors are grateful to K. Aoki and M.
Gutperle for collaboration on parts of this project. They would like
to thank Costas Bachas, Gerard van der Geer, Michael Green, Sam
Grushevky, Boris Pioline, Jacob Sturm, Tomasz Taylor, Richard Went-
worth, and Edward Witten for useful conversations, correspondences,
and references.

2. Description of the Main Results

In this section, we provide a fuller description of the main results,
leaving a sketch of their derivation to the next section.

Our main goal is a systematic method for the evaluation of scattering
amplitudes at genus 2 of N massless bosonic states in superstring the-
ory. This can be viewed as the string analogue of the Feynman rules of
quantum field theory, with the two-loop diagram being a unique topolog-
ical surface Σ, and Feynman parameters given by moduli. We consider
both the type II superstring and the Spin(32)/Z2 and E8×E8 heterotic
string theories. In the type II superstring, the massless bosonic states
are the graviton multiplet, while they can also be gauge bosons in the
heterotic theories. The corresponding amplitudes are functions of the
10-dimensional momenta ki = (kµ

i ) and polarization tensors ǫi = (ǫµi ) of
the N massless states, 0 ≤ µ ≤ 9, 1 ≤ i ≤ N . Henceforth we restrict to
genus 2, so the moduli space M2 has dimension 3.

2.1. General form of the scattering amplitudes. We concen-
trate on the amplitude of gravitons in the type II superstring, which we
denote by AII(ki, ǫi), the others following by combining the holomor-
phic factors of AII(ki, ǫi) with the chiral correlators of gauge bosons,
which can be computed directly. By the chiral splitting theorem of [28],
the amplitude AII(ki, ǫi) is of the form

(2.1) AII(ki, ǫi) =

∫

dpµ
I

∫

M2×ΣN

H(zi; ki, ǫi; p
µ
I ) ∧H(zi; ki, ǫi; p

µ
I ).

Here we have fixed a canonical homology basis AI , BI , #(AI ∩ AJ) =
#(BI ∩ BJ) = 0, #(AI ∩ BJ) = δIJ . Let ωI(z) be the basis of holo-
morphic (1, 0)-forms dual to the AI cycles, and set ΩIJ =

∮

BI
ωJ . The

moduli space M2 is identified with a fundamental domain of Sp(4,Z)

1Since the version of this paper was submitted for publication in Current Devel-
opments in Mathematics in late September 2005, there have been several advances
in the pure spinor formulation [51].
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in the Siegel domain of symmetric matrices ΩIJ with positive imaginary
part. The parameters pµ

I , 1 ≤ I ≤ h, 0 ≤ µ ≤ 9 are internal loop mo-

menta. The expression H(zi; ki, ǫi; p
µ
I ) is a Λ3,0(M2) ⊗ (⊗N

i=1Λ
1,0
zi (Σ))

form on M2 × ΣN which is holomorphic in both moduli and insertion
points zj away from zj 6= zk, but which are twisted by the following
monodromy as a point zj is transported along a closed cycle

H(zi + δijAK ; ki, ǫi; p
µ
I ) = H(zi; ki, ǫi; p

µ
I )

H(zi + δijBK ; ki, ǫi; p
µ
I ) = H(zi; ki, ǫi; p

µ
I + δIKk

µ
j ).(2.2)

The problem of evaluating the amplitude AII reduces to that of deter-
mining H(zi; ki, ǫi; p

µ
I ). The holomorphicity of the desired form H(zi;

ki, ǫi; p
µ
I ) is an essential requirement for the construction of heterotic

string theories.

2.2. Holomorphic H, chiral B[δ], and Dolbeault cohomology.

The following algorithm, based on a Dolbeault cohomology procedure,
gives a solution to the problem of finding H(zi; ki, ǫi; p

µ
I ) [9].

For each even spin structure δ on Σ, there exists a form B[δ](zi; ki, ǫi;
pµ

I ) which is a correlation function on the worldsheet Σ and which can
itself be evaluated explicitly. We shall give the full prescription for
B[δ](zi; ki, ǫi; p

µ
I ) in the next section, but for the moment, we stress

that B[δ](zi; ki, ǫi; pI) is a closed form in each zi, and that for N ≥ 1,
B[δ](zi; ki, ǫi; p

µ
I ) is a 1-form in each point zi which may incorporate

(0, 1)-components. For such forms B[δ](zi; ki, ǫi; p
µ
I ), there is no notion

of holomorphicity. These forms arise from the chiral splitting theorem
of [28] and are sometimes referred to as “chiral”, since they are built
only from correlations functions of chiral spinors on Σ. However, we
stress that they are in general not holomorphic in zi.

• Consider first theN -point function withN = 0, which corresponds
to the cosmological constant. Then there are no insertion points zi, and
B[δ](zi; ki, ǫi; p

µ
I ) is a holomorphic function B[δ] on M2. The relative

phases ǫδ
2 can be determined by the requirement that H ≡ ∑

δ ǫδB[δ]
transforms so that the expression AII of (2.1) be modular invariant. The
summation over spin structures δ is the Gliozzi-Scherk-Olive projection,
and, physically, it is necessary to project out tachyonic states and insure
space-time supersymmetry.

• Once the phases ǫδ have been determined by the 0-point function,
we can consider the sums

∑

δ ǫδB[δ](zi; ki, ǫi; p
µ
I ) directly for N ≥ 1.

Then
∑

δ ǫδB[δ](zi; ki, ǫi; p
µ
I ) = 0 for N ≤ 3, while for N = 4, there exist

forms Sj(zi; ki, ǫi; p
µ
I ) which are scalars in zj and closed 1-forms in zi for

2The phases ǫδ should not be confused with the polarization tensors ǫi of the
external states. Both notations are standard, which is why they have been kept.
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i 6= j so that
(2.3)

∑

δ

ǫδB[δ](zi; ki, ǫi; p
µ
I ) −

4
∑

j=1

dz̄j ∂z̄j
Sj(zi; ki, ǫi; p

µ
I ) ∈

4
⊗

i=1

Λ1,0
zi

(Σ).

The form H(zi; ki, ǫi; p
µ
I ) can now be obtained by

(2.4) H(zi; ki, ǫi; p
µ
I ) =

∑

δ

ǫδB[δ](zi; ki, ǫi; p
µ
I ) −

4
∑

j=1

djSj(zi; ki, ǫi; p
µ
I ),

where dj is the de Rham exterior differential in each variable zj . The
closedness of B[δ](zi; ki, ǫi; p

µ
I ) implies that H(zi; ki, zi; p

µ
I ) is automati-

cally holomorphic in each zi.

We shall see below that the chiral forms B[δ](zi; ki, ǫi; p
µ
I ) arise from

superholomorphic forms with respect to a supergeometry (gmn, χm
α).

The above Dolbeault cohomology procedure solves an old puzzle: there
is no relation between superholomorphicity and holomorphicity with
respect to gmn, but there is a deformed metric ĝmn with respect to
which holomorphic forms can be extracted from superholomorphic forms
modulo forms which are Dolbeault-exact in one and de Rham-closed in
the other insertion points.

2.3. The forms B[δ] in terms of Green’s functions. The am-
plitudes B[δ](zi; ki, ǫi; p

µ
I ) are to be determined by taking the chiral con-

tributions of functional integrals over all fluctuating worldsheets and
all insertion points zi for the emission of the N massless bosons, and
factoring out correctly the gauge symmetries to arrive at well-defined,
finite-dimensional integrals.

The basic result is that, by following the gauge-fixing procedure
outlined in Section §3, the B[δ](zi; ki, ǫi; p

µ
I ) are found to be [9]

B[δ] = B[δ](d) + B[δ](c).(2.5)

Here the “connected” and “disconnected” components B[δ](d) and B[δ](c)

are given in terms of two basic measures dµ2[δ] and dµ0[δ] on the moduli

space M2 and Wick contractions of vertex operators V(0), V(1), and V(2).
The vertex operators V(0), V(1), V(2) are defined by

V(0)(z) = ǫµdz (∂zx
µ
+ − ikνψµ

+ψ
ν
+)(z)exp(ik · x+(z))

V(1)(z) = −1

2
ǫµdz̄ χz̄

+ψµ
+(z)exp(ik · x+(z))

V(2)(z) = −ǫµµ̂z̄
zdz̄ (∂zx

µ
+ − ikνψµ

+ψ
ν
+)(z)exp(ik · x+(z))(2.6)

where xµ
+ is an effective chiral scalar field with propagator 〈xµ

+(z)xν
+(w)〉

= −δµν lnE(z, w), E(z, w) being the prime form on the Riemann surface

Σ. The spin structure δ determines a square root Λ
1
2
,0[δ](Σ) of the
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canonical bundle of Σ. The gravitino field χ(z) = (χm
α) is a section of

Λ0,1(Σ)⊗Λ− 1
2
,0[δ](Σ). It is given by χ(z) =

∑2
α=1 ζ

αχα(z) where χα(z)
are two fixed, generic, but otherwise arbitrary sections of Λ0,1(Σ) ⊗
Λ− 1

2
,0[δ](Σ), ζα are two anti-commuting parameters (corresponding to

the odd supermoduli of sM2 to be discussed in Section §3), and µ̂(z) =
(µ̂z̄

z) ∈ Λ−1,1(Σ) is a Beltrami differential defined modulo ∂̄ T 1,0(Σ) by
the condition
(2.7)

1

8π

∫

Σ

∫

Σ
d2zd2wωI(z)χ(z)Sδ(z, w)χ(w)ωJ(w) =

∫

Σ
ωI(z)ωJ(z) µ̂(z),

where Sδ(z, w) is the Szegö kernel. The measures dµ2[δ] and dµ0[δ] on
M2 are defined by

dµ0[δ](Ω) = Z[δ]
∏

I≤J

dΩIJ(2.8)

dµ2[δ](Ω) = Z[δ]
6

∑

j=1

Xj

∏

I≤J

dΩIJ

with the following expressions for Z[δ] and Xj , 1 ≤ j ≤ 6:

Z[δ] =
〈∏a b(pa)

∏

α δ(β(qα))〉
det (ωIωJ(pa)) · 〈χα|ψ∗

β〉
,(2.9)

where pa, qα are two sets of respectively 3 and 2 arbitrary generic points,
and ψ∗

β are the holomorphic forms of weight 3/2 normalized at the

points qα by ψ∗
β(qα) = δαβ . The fields b(z) = bzz, β(z) = βz+ and their

partners c(z) = cz, γ(z) = γ+ are the so-called superghost fields, with
propagators

〈b(z)c(w)〉 = G2(z, w), 〈β(z)γ(w)〉 = −G3/2(z, w)(2.10)

where Gn(z, w) are the Green’s functions on tensors of weight n. Next,
let S(z) = Sz+ and T (z) = Tzz be the supercurrent and the stress tensor
defined by

S(z) = −1

2
ψµ

+∂zx
µ
+ +

1

2
bγ − 3

2
β∂zc− (∂zβ)c

(2.11)

T (z) = −1

2
∂zx

µ∂zx
µ +

1

2
ψµ

+∂zψ
µ
+ + c∂zb+ 2(∂zc)b−

1

2
γ∂zβ − 3

2
(∂zγ)β.
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Then the expressions Xj , 1 ≤ j ≤ 6, are given by

X1 = − 1

8π2

∫

d2zχz̄
+

∫

d2wχw̄
+ 〈S(z)S(w)〉

(2.12)

X2+X3 = +
1

16π2

∫

d2z

∫

d2wχz̄
+χw̄

+T IJωI(z)Sδ(z, w)ωJ(w)

X4 = +
1

16π2

∫

d2w ∂pa∂w lnE(pa, w)χw̄
+

∫

d2uSδ(w, u)χū
+̟∗

a(u)

X5 = +
1

16π2

∫

d2u

∫

d2v Sδ(pa, u)χū
+∂paSδ(pa, v)χv̄

+̟a(u, v)

X6 =
1

16π2

∫

d2zχ∗
α(z)

∫

d2wG3/2(z, w)χw̄
+

∫

d2vχv̄
+Λα(w, v)

where Λα(w, v)=2G2(w, v)∂vψ
∗
α+3∂vG2(w, v)ψ

∗
α(v), the sections χβ∗(z)

are the linear combinations of the sections χα(z) normalized by 〈χ∗
β |ψ∗

α〉
= δαβ , and T IJ are the coefficients of the holomorphic quadratic differ-
ential defined by

T IJωIωJ(w)

(2.13)

=
〈T (w)

∏3
a=1 b(pa)

∏2
α=1 δ(β(qα))〉

〈∏3
a=1 b(pa)

∏2
α=1 δ(β(qα))〉

− 2
3

∑

a=1

∂pa∂w lnE(pa, w)̟∗
a(w)

+

∫

d2z χ∗
α(z)

(

− 3

2
∂wG3/2(z, w)ψ∗

α(w) − 1

2
G3/2(z, w)∂ψ∗

α(w)

+G2(w, z)∂zψ
∗
α(z) +

3

2
∂zG2(w, z)ψ

∗
α(z)

)

,

and ̟∗
a and ̟a are holomorphic forms in u and v defined by ̟∗

a(u) =
̟a(u, pa) and

̟a(u, v) =
det{ωIωJ(pb[u, v; a])}

det{ωIωJ(pb)}

ωIωJ(pb[u, v; a]) =

{

ωIωJ(pb) if b 6= a
1
2(ωI(u)ωJ(v) + ωI(v)ωJ(u)) if b = a.

(2.14)

In (2.13), all the apparent poles cancel, which is why T IJ is well-defined.
In the expressions for ̟∗

a and ̟a, the indices IJ and a are both 3-
dimensional, and hence it makes sense to take the 3 × 3 determinants
indicated.
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We can now give the expressions for B[δ](c) and B[δ](1),

B[δ](d) = dµ2[δ]
〈

Q(pI)
N
∏

i=1

V(0)
i (zi; ki)

〉

B[δ](c) = dµ0[δ]

∫ 2
∏

α=1

dζα
5

∑

j=1

Yj ,(2.15)

where Q(pI) = exp(ipν
I

∮

BI
dz ∂zx

ν
+(z)), and

Y1 =
1

8π2
〈Q(pI)

∫

χS

∫

χS
N
∏

j=1

V(0)
j 〉(c)

Y2 =
1

2π
〈Q(pI)

∫

µ̂T
N
∏

j=1

V(0)
j 〉

Y3 =
1

2π

N
∑

i=1

〈Q(pI)

∫

χSV(1)
i

∏

j 6=i

V(0)
j 〉

Y4 =
1

2
〈Q(pI)V(1)

i V(1)
j

∏

l 6=i,j

V(0)
l 〉

Y5 =
N

∑

i=1

〈Q(pI)V(2)
i

∏

j 6=i

V(0)
j 〉.(2.16)

The preceding formulas give a complete and systematic way of ob-
taining the scattering amplitude for N massless bosons to two-loop or-
der. Their interpretation is roughly as follows. The choice χ(z) =
∑2

α=1 ζ
αχα(z) is a choice of gauge slice. The fundamental guiding

principle of our gauge-fixing method is to project the supergeometry
(gmn, χm

α) on a super period matrix invariant under supersymmetry,
rather than on the metric gmn. Since the functional integrals are origi-
nally defined in terms of the metric gmn, this requires a deformation of
complex structures implemented through the Beltrami differential µ̂(z).
The terms Xj , 2 ≤ j ≤ 5, incorporate both local and global effects of
this deformation of complex structures. In general, the emission of a
string state is implemented by insertion of a vertex, in this case, the
vertex V(0) which is the naive vertex for graviton emission. However,
due to the gauge-fixing procedure and the deformation of complex struc-
tures, the naive vertex must be corrected by the vertices V(1) and V(2).
This produces the terms Yj , 2 ≤ j ≤ 5. Note that V(0) is a (1, 0)-form,

but V(1), V(2) are (0, 1)-forms. The period matrix ΩIJ of the previous

formulas is actually the period matrix Ω̂IJ of the metric ĝmn, but after

the deformation of complex structures, we drop the “hat” notation for
simplicity.



10 ERIC D’HOKER AND D.H. PHONG

2.4. Gauge–slice independence of the measure dµ2 [δ] (Ω).
Next, the amplitudes AII have to be shown to be independent of all the
choices of qα, pa, χα(z), µ(z) entering the amplitudes B[δ](zi; ki, ǫi; k

µ
I ).

This is important because it had not been satisfied by earlier Ansätze,
and there had been concern that superstring scattering amplitudes could
be ambiguous. It also paves the way for the evaluation of B[δ](zi; ki, ǫi;
pµ

I ) in terms of ϑ-functions.

We begin with the measure dµ2[δ](Ω) [6, 7]. The gauge slice in-
dependence of dµ2[δ](Ω) is established by showing that its variational
derivative with respect to any of the above choices vanishes identically
on the moduli space M2 [6]. The following special case is of consider-
able practical value, and produces relatively simpler expressions which
can independently be shown to be independent of all remaining choices.
Choose χα(z) to be a Dirac measure at a point xα and let xα → qα. All
dependence on µ(z) cancels out completely, and the resulting expression
for dµ2[δ] becomes

dµ2[δ] = Z[δ]
6

∑

j=1

Xj ,(2.17)

with

Z[δ] =
〈∏3

a=1 b(pa)
∏2

α=1 δ(β(qα))〉
detωIωJ(pa)

(2.18)

and the terms Xi given by

X1+X6 =
ζ1ζ2

16π2
[−10Sδ(q1, q2)∂q1

∂q2
lnE(q1, q2)

(2.19)

− ∂q1
G2(q1, q2)∂ψ

∗
1(q2) + ∂q2

G2(q2, q1)∂ψ
∗
2(q1)

+ 2G2(q1, q2)∂ψ
∗
1(q2)f

(1)
3/2(q2) − 2G2(q2, q1)∂ψ

∗
2(q1)f

(2)
3/2(q1)]

X2 =
ζ1ζ2

16π2
ωI(q1)ωJ(q2)Sδ(q1, q2)[∂I∂J ln

ϑ[δ](0)5

ϑ[δ](Dβ)
+ ∂I∂J lnϑ(Db)]

X3 =
ζ1ζ2

8π2
Sδ(q1, q2)

∑

a

̟a(q1, q2)[B2(pa) +B3/2(pa)]

X4 =
ζ1ζ2

8π2
Sδ(q1, q2)

∑

a

[∂pa∂q1
lnE(pa, q1)̟

∗
a(q2)

+ ∂pa∂q2
lnE(pa, q2)̟

∗
a(q1)]

X5 =
ζ1ζ2

16π2

∑

a

[Sδ(pa, q1)∂paSδ(pa, q2)

− Sδ(pa, q2)∂paSδ(pa, q1)]̟a(q1, q2).
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Here Db = p1 + p2 + p3 − 3∆, Dβ = q1 + q2 − 2∆, and the expressions

fn(w), f
(1)
3/2(x), f

(2)
3/2(x), B2(w) and B3/2(w) are given by

fn(w) = ωI(w)∂I lnϑ[δ](Dn) + ∂w ln(σ(w)2n−1
2n−1
∏

i=1

E(w, zi))

f
(1)
3/2(x) = ωI(q1)∂I lnϑ[δ](x+ q2 − 2∆)

+ ∂q1
ln(E(q1, q2)E(q1, x)σ(q1)

2)

f
(2)
3/2(x) = ωI(q2)∂I lnϑ[δ](x+ q1 − 2∆)

+ ∂q2
ln(E(q2, q1)E(q2, x)σ(q2)

2)

B2(w) = −2T1(w) +
1

2
f2(w)2 − 3

2
∂wf2(w)

− 2
∑

a

∂pa∂w lnE(pa, w)̟∗
a(w)

B3/2(w) = 12T1(w) − 1

2
f3/2(w)2 + ∂f3/2(w)(2.20)

with ∆ the vector of Riemann constants, σ(z) the basic function with
monodromy introduced in [29, 30, 31], and E(z, w) = (z − w) + (z −
w)2T1(w) +O((z − w)3) defining the chiral scalar bosonic stress tensor
−T1(w).

Compared with the earlier expression (2.12) for Xj and for dµ2[δ],
all field theoretic correlation functions have been worked out, and the
new expression only involves complex function theory on the Riemann
surface Σ. It can be checked directly to be independent of the choice
points pa, qα [7].

The measure dµ2[δ] suffices to determine the N = 0 amplitude,
which is also the space-time cosmological constant. In fact, in this
case, there is no vertex operator, and the internal momenta pµ

I can be
integrated out to give

(2.21) AII

∣

∣

∣

∣

N=0

=

∫

M2

(det Im Ω)−5
∑

δ

ǫδdµ2[δ](Ω) ∧
∑

δ

ǫδdµ2[δ](Ω)

with the phases ǫδ yet to be determined by modular invariance.

2.5. Gauge-slice independence of the N-point function. We
consider next the slice-independence of the N -point function [9]. Since

the correlator 〈Q(pI)
∏N

j=1 V(0)(zj)〉 is manifestly independent of any

choice of gauge-slice, and since dµ2[δ] has been shown to be slice-indep-

endent, the term B[δ](d) is slice-independent.
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The term B[δ](c) is not invariant under changes of gauge slices, but
it transforms by [9]
(2.22)

B[δ](c)(zi; ki, ǫi; pI) → B[δ](c)(zi; ki, ǫi; pI) +
N

∑

i=1

diRi[δ](zi; ki, ǫi; pI),

where the forms Ri[δ](zi; ki, ǫi; p
µ
I ) are scalars in zi, de Rham closed

forms in zj for j 6= i, and have the same monodromy as B[δ]. Since
the forms B[δ] are closed in each zi, and since by analytic continuation
[32], the singularities at coincident insertion points zi = zj are harmless,
it follows from a Riemann bilinear relations argument that the terms
Ri[δ] do not contribute to the integrated amplitudes AII(ki, ǫi). Thus
the N -point functions AII(ki, ǫi) are gauge slice-independent.

2.6. The measure dµ2[δ] and the modular covariant form

Ξ6[δ]. Once the gauge slice independence has been established, the chi-
ral amplitudes B[δ] can be evaluated explicitly by making convenient
choices for the points pa, qα.

The first fundamental term is dµ2[δ](Ω), which is the chiral string
measure, and which will determine the phases ǫδ. We find [5, 8]

dµ2[δ](Ω) =
1

16π6

Ξ6[δ](Ω)ϑ[δ](Ω)4

Ψ10(Ω)

∏

I≤J

dΩIJ .(2.23)

The form Ψ10(Ω) is the familiar modular form of weight 10 defined by

Ψ10(Ω) =
∏

δ even

ϑ[δ](Ω)2.(2.24)

The key new form is Ξ6[δ](Ω), whose construction depends on some
particular properties of even spin structures in genus h = 2. Recall
that, in genus h = 2, there are 10 even spin structures δ and 6 odd spin
structures ν, denoted by ν1, · · · , ν6. Any even spin structure δ can be
decomposed as a sum of 3 odd spin structures. If we write δ accordingly
as δ = ν1 + ν2 + ν3, then Ξ6[δ](Ω) is given by

Ξ6[δ] =
∑

1≤i<j≤3

〈νi|νj〉
∏

k=4,5,6

ϑ[νi + νj + νk]
4(Ω).(2.25)

A very important property of Ξ6[δ](Ω) is its transformation law under
Sp(4,Z), which is not quite that a modular form, but rather

(2.26) Ξ6[δ̃](Ω̃) = ǫ4det (CΩ +D)2Ξ6[δ](Ω),

(

A B
C D

)

∈ Sp(4,Z),

where Ω̃ = (AΩ + B)(CΩ +D)−1, δ̃ is the corresponding transform of
the spin structure δ, and ǫ is exactly the same 8th-root of unity which
occurs in the transformation law for ϑ-constants, ϑ[δ̃](Ω̃) = ǫ4det(CΩ+
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D)6ϑ[δ](Ω). There would have been no such factors ǫ4 in the transfor-
mation law for modular forms. This shows that there is a unique choice
of relative phases ǫδ = +1 between the various even spin structures for
the GSO projection, given by

∑

δ dµ[δ](Ω). By examining degenerations
of the surface Σ, it is then not difficult to show that

∑

δ

Ξ6[δ](Ω)ϑ[δ](Ω)4 = 0,(2.27)

and hence
∑

δ dµ2[δ](Ω) = 0. Physically, this means that the cosmolog-
ical constant vanishes in superstring theory, which is a consequence of
space-time supersymmetry. Mathematically, for genus h = 1, the van-
ishing of the cosmological constant was known to follow from the Ja-
cobi identity for ϑ-constants, and thus from the Riemann identities. In
genus 2, however, the identity (2.27) does not follow from the Riemann
identities alone. Rather, it is equivalent to the fact that an Sp(4,Z)
modular form of weight 8 must be proportional to the square of the
unique Sp(4,Z) modular form of weight 4.

2.7. Explicit formula for the holomorphic form H. Once the
relative phases ǫδ = 1 have been determined, we can evaluate directly
the Gliozzi-Scherk-Olive sum

∑

δ ǫδB[δ] =
∑

δ B[δ] instead of evaluating
each B[δ] separately. Using now the unitary gauge with qα the divisor
of a holomorphic one form ̟(z), we find [10]

∑

δ

B[δ](zi; ki, ǫi; p
µ
I ) = 0, 0 ≤ N ≤ 3,(2.28)

while for N = 4, we find

(2.29)
∑

δ

B[δ](zi; ki, ǫi; p
µ
I ) = H(zi; ki, ǫi; p

µ
I )

+
∑

di

(

Λ(zi)〈Q(pI)
4

∏

j=1

eikjx+(zj)〉
∏

j 6=i

̟(zj)

)

where Λ(z) is a certain single-valued smooth scalar function, and the
holomorphic form H(zi; ki, ǫi; p

µ
I ) is given by

(2.30) H(zi; ki, ǫi; p
µ
I ) =

1

64π2
KYSexp(iπpµ

I ΩIJp
µ
J

+ 2πi
4

∑

j=1

pµ
I k

µ
j

∫ zj

ωI)
∏

i<j

E(zi, zj)
ki·kj

where the factor YS is defined to be

3YS = +(k1 − k2) · (k3 − k4)∆(z1, z2)∆(z3, z4)

+(k1 − k3) · (k2 − k4)∆(z1, z3)∆(z2, z4)

+(k1 − k4) · (k2 − k3)∆(z1, z4)∆(z2, z3)(2.31)
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and ∆(z, w) = ω1(z)ω2(w) − ω1(w)ω2(z) is the basic anti-symmetric
biholomorphic form. The kinematic factor K = K(1, 2, 3, 4) is the same
one as in tree-level and one-loop amplitudes. Explicitly, in terms of the
gauge-invariant field strengths fµν

i = ǫµi k
ν
i − ǫνi k

µ
i , it can be written as

K(1, 2, 3, 4) = (f1f2)(f3f4) + (f1f3)(f2f4) + (f1f4)(f2f3)

−4(f1f2f3f4) − 4(f1f3f2f4) − 4(f1f2f4f3),(2.32)

with (fifj) = fµν
i fνµ

j , (fifjfkfl) = fµν
i fνρ

j fρσ
k fσµ

l .

2.8. The 4-point function. Using equation (2.1), the 4-point
function AII follows readily from the exact formula for H(zi; ki, ǫi; p

µ
I )

which we just obtained. The integral over the internal momenta pµ
I

completes the factors E(zi, zj) into Green’s functions, and we obtain
[10]

AII(ki, ǫi)

=
KK̄

212π4

∫

M2×Σ4

|∏I≤J dΩIJ |2
(det Im Ω)5

|YS |2exp(−
∑

i<j

ki · kjG(zi, zj)),(2.33)

where G(z, w) is the conformally invariant Green’s function

(2.34) G(z, w) = − ln |E(z, w)|2 + 2π(Im Ω)−1
IJ (Im

∫ w

z
ωI)(Im

∫ w

z
ωJ).

An expression in the hyperelliptic representation equivalent to (2.33)
was partly guessed in [33], starting also from the measures dµ2[δ] and
dµ0[δ] given in [5, 6, 7, 8]. The derivation in [33] is not gauge slice in-

dependent, however, because the corrections V(1) and V(2) to the vertex
operators were not taken into account.

The 4-point functions for the heterotic string are obtained by re-
placing in (2.1), at common loop momenta pµ

I , the holomorphic factors
by the holomorphic blocks of the 10-dimensional bosonic string coupled
with 32 worldsheet chiral fermions. They are of the form

AHET

(2.35)

=
KK̄

212π4

∫

M2×Σ4

|∏I≤J dΩIJ |2
π12Ψ10(Ω)(det Im Ω)5

W(z1, z2, z3, z4)YS(z1, z2, z3, z4)

× exp

(

−
∑

i<j

ki · kj G(zi, zj)

)

,

where the holomorphic block W(z1, z2, z3, z4) depends on the external
states and can be written down explicitly. For example, for the relatively
more complicated scattering of two gravitons and two gauge bosons, we
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have respectively W = W(R2F 2) and W = W(R4), with

W(R2F 2) = W(F 2)(z1, z2)
{

ǫµ1 ǫ
µ
2∂z3

∂z4
G(z3, z4)

−
∑

ij

ǫµ3k
µ
i ǫ

ν
4k

ν
j ∂z3

G(z3, zi)∂z4
G(z4, zj)

}

W(R4) =
〈∏4

j=1 ǫ
µ
j ∂x

µ(zj)e
ikj ·x(zj)〉

〈∏4
j=1 e

ikj ·x(zj)〉
(2.36)

where x(z, z̄) is a non-chiral scalar field with propagator G(z, w), and

W(F 2)(z1, z2) =
1

2
tr(T a1T a2)

∑

κ

ϑ[κ]8Sκ(z1, z2)
2

W(F 2)(z1, z2) =
1

2
tr(T a1T a2)

∑

κ

ϑ[κ]8
∑

ρ

ϑ[ρ]4Sρ(z1, z2)
2,(2.37)

depending on whether the heterotic theory is the Spin(32)/Z2 or the
E8 × E8 theory.

2.9. Non-renormalization theorems. The low-energy effective
action of superstring theories provides corrections to the Einstein action
involving higher order curvature terms as well as couplings to additional
fields such as gauge bosons [34]. The amplitudes AII , AHET we just
obtained allow us to determine readily the two-loop corrections to terms
such as R4 in the type II superstring, and F 4, F 2F 2, R2F 2, R4 in the
heterotic strings [10]. Here R4 = t8t8R

4, R is the space-time Riemann
curvature tensor, and F is the curvature of the gauge bosons. In de-
termining the low-energy corrections, we have to let ki → 0, but only
after the amplitude has been expressed in terms of the field strengths
fµν

i = ǫµi k
ν
i − ǫνi k

µ
i . A strong motivation for determining these correc-

tions are the conjectured dualities between the Spin(32)/Z2 heterotic
theory and the type I superstring, as well as the S-duality of the type
IIB superstring (see the next section).

For the type II superstring, it is manifest from the explicit form of
AII(ki, ǫi) that the two-loop contribution to R4 vanishes. The heterotic
strings are more subtle, because the contributions of the bosonic left
sector necessarily have poles in the Mandelstam variables sij = −2ki ·kj .
Nevertheless, we find that terms such as sijW(R2) and sijslmW(R4) can
be expressed in expressions such as

(2.38) ∂z1
∂z2

G(z1, z2) exp(−
∑

i<j

ki · kjG(zi, zj)),

∑

i<j

Cµν
ij ∂z1

G(z1, zi)∂z2
G(z2, zj),
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whose integrals against holomorphic differentials tend to 0 as ki ·kj → 0.
This turns out to suffice to establish the desired non-renormalization
theorem, by which the terms R2F 2 and R4 in the heterotic string do
not receive corrections to two-loop order [10].

2.10. S-duality for the type IIB superstring. Here we discuss
joint work with M. Gutperle on a partial check of the famous SL(2,Z)
dualities for the type IIB superstring conjectured by M. Green, M. Gut-
perle, P. Vanhove, H.G. Kwon, and others (see [35, 36, 37], and refer-
ences in [14]). S-duality provides powerful constraints on the form of
the low-energy effective actions. In particular, it was conjectured in [36]
that the D4R4 terms in the type IIB effective action are of the form

SD4R4 = CD4R4

∫

d10x
√
−GD4R4e

1
2
φ2ζ(5)E5/2(τ, τ̄)(2.39)

where τ = χ + ie−φ is the axion/dilaton field, ζ(s) is the Riemann
zeta function, and E5/2(τ, τ̄) is the non-holomorphic Eisenstein series of
weight s = 5/2,

2ζ(s)Es(τ, τ̄) =
∑

(m,n) 6=(0,0)

τ s
2

|m+ nτ |2s
.(2.40)

Expanding 2ζ(5)E5/2(τ, τ̄) in τ , this conjecture predicts in particular

the precise value of the contribution to the D4R4 of the two-loop per-
turbative amplitude.

This prediction can be compared with that of the formula (2.33),
which gives the two-loop amplitude up to an overall constant due to
bosonization formulas. The precise value of this constant can be de-
termined using factorization. We find that it matches exactly that
predicted from Eisenstein series, and thus the perturbative two-loop
amplitude provides a partial confirmation of the conjectured S-duality
[14].

2.11. Orbifolds and Kachru-Kumar-Silverstein models. So
far, we have considered only superstrings evolving in flat Minkowski
space-time. However, the preceding gauge-fixing procedure adapts read-
ily to other space-times, simply by replacing the correlation functions of
the fields xµ

+, ψµ
+ by those of the corresponding conformal field theory

[5]. Here we discuss joint work with K. Aoki on the cosmological con-
stant of some orbifold models proposed by S. Kachru, S. Kumar, and E.
Silverstein [15]. These KKS models are of particular interest since their
supersymmetry is broken, yet their cosmological constant vanishes to
one-loop. There was initially some hope that the cosmological constant
would still vanish to two loops, but we can now show, using the new
gauge-fixing method, that this is not the case [16].
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The KKS models are constructed with an orbifold group G gener-
ated by two elements f = ((rL, sR)1−4, (1, s2R)5, (sL, sR)6; (−)FR), g =
(sL, sR)1−4, (sL, sR)5, (s2L, 1)6; (−)FL) acting on a square torus with self-
dual radius. Here sL, sR, rL, rR are chiral and reflections acting on the
left and right sectors, and the superscripts denote the dimension on
which the operator acts. The orbifold action creates sectors for the the-
ory, indexed by two twists ǫ, α, and the chiral string measure dµ2[δ] is
replaced now in each (ǫ, α) sector by the following measure,
(2.41)

dµC [δ; ǫ, α](pL) =
eiπτǫp2

L

16π6Ψ10

ϑ[δ+j ]2ϑ[δ−j ]2

ϑ4
j (0, τǫ)

∑

δ

〈α|δ〉Ξ6[δ]ϑ[δ]2ϑ[δ + ǫ]2.

Here τǫ is the Prym period matrix associated to the twist ǫ. In genus h =
2, the even spin structures δ fall into two groups, depending on whether
δ + ǫ is even or odd. The group with δ + ǫ even consists of 6 elements,
which can be divided themselves into δ+i and δ+j , j = 2, 3, 4, δ−j =

δ+j + ǫ. These are the spin structures occurring in the above formula

for dµC [δ; ǫ, α](pL). The Schottky relations imply that the choice of j
is immaterial.

The asymptotic behavior of the measure dµ[δ; ǫ, α](pL) is now easily
determined along the divisor of separating nodes. For example, in the
sector ǫ = (0 0|0 1

2), α = (0 0|12 0),
∑

δ

〈α|δ〉Ξ6[δ]ϑ[δ]2ϑ[δ + ǫ]2 6→ 0,(2.42)

so that the KKS cosmological constant does not vanish point by point
on moduli space.

3. Outline of the Derivation

We now provide an outline of the construction of the scattering
amplitudes AII described in Section §2. In the Neveu-Schwarz-Ramond
formulation of superstrings, the superstring action is given by

Im(xµ, ψµ
±; gmn, χm

α) =
1

4π

∫

Σ
d2z(∂zx

µ∂z̄x
µ − ψµ

+∂z̄ψ
µ
+ − ψµ

−∂zψ
µ
−

+χz̄
+ψµ

+∂zx
µ +χz

−ψ−∂z̄x
µ − 1

2
χz̄

+χz
−ψµ

+ψ
µ
−).(3.1)

Here we have fixed a smooth surface Σ of genus h, gmn is a met-
ric on Σ, and xµ, 0 ≤ µ ≤ 9, are scalar fields on Σ which can be
interpreted geometrically as a map from Σ into 10-dimensional flat
Minkowski space-time. The fields ψµ

± and χm
α are respectively (anti-

commuting) Majorana-Weyl spinors and gravitino fields, defined with

respect to a given spin structure δ, so that ψ± ∈ Λ± 1
2
,0[δ](Σ) and
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χz̄
+ ∈ Λ0,1 ⊗ Λ− 1

2
,0[δ](Σ), χz

− ∈ Λ1,0 ⊗ Λ0,− 1
2 [δ](Σ) if we view δ as

a choice of a square root Λ
1
2
,0[δ](Σ) of the canonical bundle of Σ.

The sums over the fluctuating worldsheets spanned by evolving
strings are realized by summing over all fields xµ, gmn, ψµ

±, χm
α. With-

out the spinor fields ψµ
± and χm

α, the action Im would reduce to the
action for harmonic maps from Σ in flat space-time, and its conformal
invariance would clearly produce an integral over the moduli space Mh

of Riemann surfaces of genus h. In the present superstring context,
the metric gmn has been replaced by the “supergeometry” (gmn, χm

α),
and the action acquires a new symmetry, namely local supersymmetry.
We discuss geometric aspects of this symmetry before returning to the
evaluation of the sums over fluctuating worldsheets.

3.1. Two–dimensional supergeometries and supermoduli.

The infinitesimal generator of a local supersymmetry is a spinor field
δζα, and its infinitesimal action on supergeometries is

δem
a = δζ γaχm, δχm

α = −2∇m δζα,(3.2)

with similar actions on pairs (xµ, ψµ
±). Here em

a is an orthonormal

frame for the metric gmn = em
aen

bδab. There is an evident similarity
between local supersymmetry transformations and infinitesimal diffeo-
morphisms, which are generated by a vector field δvn, and are given
by δem

a = vn∇nem
a + en

a∇mv
n, δχm

α = δvn∇nχm
α + χn

α∇mδv
n.

This similarity can be made more precise in the superspace formalism
[38]. Let sΣ be a supermanifold with Σ as body, and local coordinates
z = (zM ) = (z, z̄, θ, θ̄), where θ, θ̄ are anti-commuting. A supergeome-
try can then be identified with a superframe (or superzweibein) EM

A

and a U(1) superconnection ΩM satisfying the Wess-Zumino torsion
constraints

Tab
c = Tαβ

γ = 0, Tαβ
c = 2(γc)αβ ,(3.3)

where the torsion TAB
C and curvature RAB of the superconnection ΩM

are defined by [DA,DB] = TAB
CDC+inRAB, and DAV = EA

M (∂MVB+
inΩMV ) is the covariant derivative on fields V of U(1) weight n. The
group sDiff(Σ) acts on supergeometries by

δEM
B = EM

A(DAδV
B − δV CTCA

B + δV CΩCEA
B).(3.4)

The equivalence with the earlier definition of a supergeometry as
(gab, χa

α) is obtained by putting the superframe EM
A in the Wess-

Zumino gauge, where the frame components Eµ
α and Eµ

a are required
to satisfy Eµ

α ∼ δµ
α + θνe∗ανµ, Eµ

a ∼ θνe∗∗aνµ for some e∗aνµ and e∗∗aνµ

symmetric in ν and µ. In such a gauge, the component Em
a takes the

form

Em
a = em

a + θγaχm − i

2
θθ̄em

aA,(3.5)
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with all other components of EM
A and ΩM expressible as well in terms

of em
a, χm, and A. The auxiliary field A can be set to 0 for all prac-

tical purposes, and we obtain in this manner the desired identifica-
tion of the supergeometry EM

A,ΩM with the pair em
a, χm. A vector

field δVM in superspace can then be decomposed into components δvm

and δζα, and the corresponding superdiffeomorphisms decompose cor-
respondingly into diffeomorphisms and local supersymmetry transfor-
mations. Similarly, super Weyl transformations can be defined which
decompose into the standard Weyl transformations and the super Weyl
transformations proper. The fields xµ and ψµ

± can also be grouped into

a scalar superfieldXµ(z, θ, θ̄) = xµ+θψµ
++θ̄ψµ

−. In Wess-Zumino gauge,

the covariant derivative of a superfield V (z, θ, θ̄) = V0 + θV+ + θ̄V− of
U(1) weight n becomes [28],

(3.6) D(n)
− V = V− + θ̄(∂z̄V0 +

1

2
χz̄

+V+)

− θθ̄(∂z̄V+ +
1

2
χz̄

+∂zV0 + n∂zχz̄
+ V0 −

1

4
χz̄

+χz
−V−).

Introducing the measure d2|2z = d2z dθdθ̄ and the volume element
E(z) = sdetEM

A = (det em
a) (1 + 1

4θθ̄χz̄
+χz

−), the action Im can be
expressed in the following manifestly supersymmetric and super Weyl
invariant form

Im(EM
A, Xµ) =

1

4π

∫

d2|2zE(z, z̄)D+X
µD−X

µ.(3.7)

• Associated to each supergeometry is a notion of superholomor-
phicity. In the superspace formalism, we can define a supercomplex
structure JM

N by [23]

JM
N = EM

aǫa
bEb

N + EM
α(γ5)α

βEβ
N(3.8)

which satisfies JM
NJN

P = −δM N and the integrability condition dζM ≡
0 (mod ζN ), where ζM ≡ dzM − idzNJN

M . A scalar function f(z, θ) is
then defined to be superholomorphic if JM

NDNf = 0, or equivalently
D−f = 0. More generally, a field ω̂(z, θ) on sM of U(1) weight n is said
to be superholomorphic if

D(n)
− ω̂ = 0,(3.9)

where D(n)
− is the covariant derivative on fields of weight n with respect

to the given supergeometry. In particular, for a form ω̂ of U(1) weight
1/2 of the form ω̂(z, θ) as ω̂(z, θ) = ω0 + θω+, the superholomorphicity
condition is equivalent to the following system of partial differential
equations on Σ

∂z̄ω0 +
1

2
χz̄

+ω+ = 0, ∂z̄ω+ +
1

2
∂z(χz̄

+ ω0) = 0.(3.10)



20 ERIC D’HOKER AND D.H. PHONG

• A key property of supergeometries (gmn, χm
α) defined by an even

spin structure δ is that, generically, there exists a unique basis of su-
perholomorphic forms ω̂I of U(1) weight 1/2 dual to the AI cycles, and

hence a super period matrix Ω̂IJ can be defined by
∮

AJ

ω̂J = δIJ ,

∮

BJ

ω̂J = Ω̂IJ .(3.11)

Here the integral over a cycle C of a form ω̂ = ω0 + θω+ of U(1) weight

1/2 is defined by
∮

C ω̂ =
∮

C(dz ω+ − 1
2dz̄χz̄

+ω0). Explicitly, Ω̂IJ and
ΩIJ can be determined from each other by the following equation

(3.12) Ω̂IJ = ΩIJ − i

8π

∫ ∫

d2y d2x ωI(x)χx̄
+Ŝδ(x, y)χȳ

+ωJ(y),

where ωI is a basis of holomorphic 1-forms with respect to the complex
structure defined by gmn, and Ŝδ(x, y) is the modification of the Szegö
kernel of gmn by

(3.13) Ŝδ(z, w) = Sδ(z, w)

− i

16π2

∫ ∫

d2u d2v Sδ(z, u)χū
+∂u∂v lnE(u, v)χv̄

+Ŝδ(v, w),

with E(u, v) the prime form. By construction, the super period matrix

Ω̂IJ is invariant under all symmetry transformations, including super-
symmetry. In genus h = 2, the super period matrix Ω̂IJ is always
well-defined for even spin structures.

• We come now to the essential relation between superholomor-
phicity and holomorphicity that underlies our derivation of superstring
scattering amplitudes. First, we note that there can be no intrinsic re-
lation between the superholomorphicity of a form ω̂ = ω0 +θω+ and the
holomorphicity of its components, if the latter notion of holomorphicity
is taken with respect to the metric gmn. This is simply because the con-
formal class of the metric gmn is not left invariant under supersymmetry
transformations. The only candidate for a supersymmetric substitute is
the super period matrix Ω̂IJ .

Thus, we choose a metric ĝmn whose period matrix is Ω̂IJ . Such a
metric is only determined up to diffeomorphisms, and the relation we
need between superholomorphicity and holomorphicity with respect to
the metric ĝmn has to take into account this gauge choice. Furthermore,
because of the deformation of complex structure from gmn to ĝmn, the
forms ω0 and ω+ are no longer pure (p, 0)-forms with respect to ĝmn, so
they cannot possibly be holomorphic. The guiding principle is that the
θ-component of a superholomorphic form with respect to the superge-
ometry (gmn, χm

α) is a holomorphic form with respect to ĝmn, up to a
de Rham exact differential. We provide below some explicit examples
of this relation between holomorphicity and superholomorphicity in the
case of genus h = 2. In this case, the calculations are relatively simpler
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because there are only 2 odd supermoduli ζα, and perturbation theory
need only be worked out to first even order ζ1ζ2. Similar formulas can
be expected to hold in higher genus.

(a) Let ω̂(z, θ) be a weight 1/2 superholomorphic form with respect

to (gmn, χm
α). Let the supervolume form d2|2zE(z, z̄) be chirally split

as d2|2zE(z, z̄) = dθ̄ ∧ ez̄ ∧ dθ ∧ ez with ez = dz − 1
2θχz̄

+dz̄. (c.f. [23],
eqs. (3.32)-(3.33)). Then

∫

dθ ez ω̂ = ω(z) + dλ(z),(3.14)

where ω(z) is a holomorphic (1, 0)-form with respect to ĝmn, and λ(z)
is a C∞ scalar function. Under changes of metrics ĝmn, λ changes by
δλ = −δvzω(z).

(b) Let Eδ(z,w) be the super prime form (see [28] for the definition).

Then there exists a scalar function f̂0(z, w) so that
∫

dθzi

∫

dθzj
ezi ezj Dzi

+Dzj

+ ln Eδ(zi, zj)

= dzi ∧ dzj ∂zi
∂zj

lnE(zi, zj) − didj f̂0(zi, zj),(3.15)

up to Dirac measures supported at coincident points. By the can-
celled propagator argument, amounting to an analytic continuation in
sij = −2ki ·kj [32], such Dirac measures can always be dropped in pres-

ence of the factor
∏

i<j E(zi, zj)
ki·kj . Thus, up to exact de Rham differ-

entials, the highly non-holomorphic term Dz

+Dw

+ ln Eδ(z,w) reduces to
the holomorphic function ∂z∂w lnE(z, w).

(c) The relation between holomorphicity and superholomorphicity
leads to many new holomorphic forms on moduli space, the existence
of which may not have been suspected otherwise. For example, if we
write ω̂I = ωI0 + θωI+, and let λI be the scalar function defined up to
a constant by ω̂I0 = ωI(z) + dλI(z), then the expression

Π
(1)
IJ (z) = ωI(z)λJ(z) − ωJ(z)λI(z) − ω̂I0(z)ω̂J0(z)(3.16)

is a holomorphic form. Many other holomorphic forms in more variables
can be constructed in the same manner from components of superholo-
morphic forms.

(d) In superstring perturbation theory, it is necessary to consider su-
perholomorphic forms with certain non-trivial monodromies, as in (2.2).
Here the relation between superholomorphicity and holomorphicity has
been established so far only through involved explicit calculations, for
the specific superholomorphic forms arising from correlation functions
of scalar superfields. The relation between the holomorphic form H and
the combination

∑

δ ǫδB[δ] described in Section §2 is a prime example.
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• The supermoduli space of the surface Σ is defined to be

sMh = {(gmn, χm
α)}/{symmetries},(3.17)

where the symmetries are generated by Weyl, super Weyl, diffeomor-
phisms, and supersymmetry transformations. The tangent space
T (sMh) to sMh decomposes as {δgmn} ⊕ {δχm

α}. In local complex
coordinates z, z̄ for the metric gmn, we may set δgz̄z = 0 and δχz̄

− =
δχz

+ = 0 by Weyl and super Weyl transformations. The dimension of
the remaining modes δgzz and δχz̄

+ in T (sMh) after diffeomorphisms
and supersymmetry transformations can be easily determined by their
values at χ = 0, where they are given respectively by the codimensions
of the ∂̄ operators on tensors of U(1) weights 2 and 3/2 respectively.
By the Riemann-Roch theorem, we obtain

dim (sMh) =











(0|0), if h = 0

(1|0)e or (1|1)0, if h = 1

(3h− 3|2h− 2), if h ≥ 2,

(3.18)

where the dimensions indicated for genus 1 depend on whether the spin
structure δ is even or odd, as indicated by the indices e or o.

3.2. Functional integrals. We return to the derivation of the su-
perstring scattering amplitudes. We start from sums over fluctuating
worldsheets given by the following functional integrals

(3.19) A[δ] =

∫

DEM
ADΩMδ(T )

∫ N
∏

i=1

d2|2ziE(zi)

×
∫

DXµe−Im

N
∏

i=1

V (zi, z̄i; ǫi, ǭi, ki)

where V (zi, z̄i; ǫi, ǭi, ki) = exp(ikµ
i X

µ(zi) + ǫµi D+X
µ + ǭµi D−Xµ), k2 =

k · ǫ = k · ǭ = 0, is the generating vertex for the graviton multiplet [39].
Factoring out all symmetries reduces these functional integrals to an
integral over supermoduli space ([23], eq. (3.143))

A[δ] =

∫

|
∏

A

dmA|2
∫ N

∏

i=1

d2|2ziE(zi)

∫

D(BB̄CC̄Xµ)e−Im−Igh

× |
∏

A

δ(〈HA|B〉)|2V (zi, z̄i; ǫi, ǭi, ki).(3.20)

Here mA are (3h− 3|2h− 2) local complex parameters for a slice Ŝ for
supermoduli space,

(HA)−
z = (−)A(M+1)E−

M ∂EM
z

∂mA
(3.21)
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are the super Beltrami differentials tangent to the gauge slice Ŝ, and
the Faddeev-Popov determinants of the gauge-fixing procedure have
been encoded in an integration over the superghost fields B = β + θb,
C = c+ θγ of U(1) weights 3/2 and −1 respectively with action Igh =
1
2π

∫

d2|2zE(BD−C + B̄D+C̄). In components, the superghost action
can be expressed as

Igh =

∫

d2z {b∂z̄c+ β∂z̄γ + χz̄
+Sgh + c.c.},(3.22)

where Sgh = 1
2bγ − 3

2β∂zc− (∂zβ)c is the ghost supercurrent.

• The integrals A[δ] are only a preliminary step in constructing the
superstring scattering amplitudes. To obtain these, one has to identify
in A[δ] the contributions of each chiral sector, and sum these contribu-
tions over δ, with suitable phases ǫδ so as to insure modular invariance.
The chiral sector corresponds to the correct degrees of freedom of the
Minkowski formalism, and the summation over spin structures is the
Gliozzi-Scherk-Olive projection, necessary for eliminating tachyons and
insuring space-time supersymmetry.

The identification of the contributions of each chiral sector is pro-
vided by the chiral splitting theorem of [28], which asserts that

∫

DXµ
N
∏

i=1

e−ImV (zi, z̄i; ǫi, ǭi, ki)

=

∫

dpµ
I

∣

∣〈Q(pI)exp(
1

2π

∫

χSm)

N
∏

i=1

W (zi; ǫi, ki)〉+
∣

∣

2
(3.23)

where Q(pI) = exp{ipµ
I

∮

BI
dz ∂zx

µ
+(z)}, W (z; ǫ, k) is the chiral gener-

ating vertex given by

(3.24) W (z; ǫ, k) = exp{ikµ(xµ
+ + θψµ

+)(z) + ǫµ(ψ+ + θ∂zx
µ
+)(z)}.

The expectation value 〈·〉+ is taken with respect to an effective bosonic
chiral field xµ

+(z) with propagator 〈xµ
+(z)xν

+(w)〉 = −δµν lnE(z, w), and
a fermionic field ψµ

+(z) with propagator 〈ψµ
+(z)ψν

+(w)〉 = −δµνSδ(z, w),
where Sδ(z, w) is the Szegö kernel. The expression Sm is the effective
matter supercurrent Sm = −1

2ψ
µ
+∂zx

µ
+. The point of this formula is

that, by introducing the parameters pµ
I , the real bosonic field xµ(z)

has been replaced by a chiral field xµ
+, and all terms mixing opposite

chiralities such as χz̄
+, ψµ

+ with χz
−, ψµ

− have cancelled out. Physically,
as in the case of the bosonic string discussed in [11], the parameters pµ

I ,
1 ≤ I ≤ h, 0 ≤ µ ≤ 9, can be interpreted as internal loop momenta.

• We also need to split chirally the super volume form d2|2zE(z, z̄)
on the superworldsheet. As we saw earlier, from [23], eqs. (3.32)-(3.33),

we have d2|2zE(z, z̄) = dθ̄ ∧ ez̄ ∧ dθ ∧ ez with ez = dz− 1
2θχz̄

+dz̄. If we
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now let

V(z; ǫ, k) =

∫

dθezW (z; ǫ, k)

= ǫµ{(∂zx
µ
+ − ikνψµ

+ψ
ν
+)dz − 1

2
dz̄χz̄

+ψµ
+}eik·x+(z),(3.25)

we can write

(3.26) A[δ] =

∫

dpµ
I

∫

S

∣

∣

∣

∣

(3h−3|2h−2)
∏

A=1

dmA 〈
∏

A

δ(HA|B)Q(pI)

× exp{ 1

2π

∫

χS}
N
∏

j=1

Vj〉
∣

∣

∣

∣

2

.

Here the expectation value is with respect to all chiral fields xµ
+, ψ

µ
+,

b, c, β, γ, and S = Sm + Sgh is the total supercurrent, incorporating the
effective matter supercurrent Sm as well as the ghost supercurrent Sgh

from the superghost action Igh. Naively, after implementation of the
Gliozzi-Scherk-Olive projection, the scattering amplitude AII should
be given by

(3.27) AII =

∫

dpµ
I

∫

S

∣

∣

∣

∣

(3h−3|2h−2)
∏

A=1

dmA
∑

δ

ǫδ〈
∏

A

δ(HA|B)Q(pI)

× exp{ 1

2π

∫

χS}
N
∏

j=1

Vj〉
∣

∣

∣

∣

2

.

We should stress that all complex coordinates and correlation functions
are at this time written with respect to the metric gmn from the slice Ŝ.

So far, the gauge-fixed formula (3.26) holds for an arbitrary choice

of (3h − 3|2h − 2)-dimensional slice Ŝ in the space of supergeometries.
The issue is whether the odd supermoduli dmα can be integrated out
to produce a global form over moduli space. Perhaps surprisingly, this
turns out not to be the case with the naive projections used in the early
1980s, and the origin of the problem has been somewhat of a mystery
ever since [11, 12]. We discuss it and its resolution in the next section.

3.3. Deformation of complex structures. The above Faddeev-
Popov type gauge-fixing procedure shows that, upon cancellation of all
anomalies, the sums over all supergeometries can be reduced to sums
over supermoduli space, after factoring out all symmetries. The new
difficulty peculiar to superstring perturbation theory is that the super-
string amplitudes have to be expressed as sums over moduli space and
not as sums over supermoduli space. To go from supermoduli to mod-
uli, a correct structure for supermoduli space as a fibration over moduli
space has to be identified, and the odd supermoduli degrees of freedom
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integrated out. This deceptively simple problem has to be approached
with some care.

• The projection (gmn, χm
α) → gmn from supergeometries to ge-

ometries seems a natural candidate for constructing such a fibration.
However, it is not well-defined as a projection from supermoduli space
to moduli space, as supergeometries equivalent under supersymmetries
do not project to geometries equivalent under diffeomorphisms and Weyl
transformations

(gmn, χm
α) ∼ (gmn + δgmn, χm

α + δχm
α)

↓ ↓
gmn 6∼ gmn + δgmn

.(3.28)

The only alternative is to rely instead on the super period matrix Ω̂ and
the projection

(gmn, χm
α)

↓
Ω̂IJ

(3.29)

which is invariant under supersymmetry and does descend to the com-
plement of a lower-dimensional subvariety in supermoduli space. We
develop now the gauge-fixing procedure based on this projection.

• As in our earlier discussion of the relation between super-
holomorphicity and holomorphicity with respect to Ω̂IJ , the projection
(gmn, χm

α) → Ω̂IJ has to be supplemented by a choice of metric ĝmn

whose period matrix is Ω̂IJ . There is no canonical ĝmn, and different
choices of ĝmn are related infinitesimally by δĝmn = ∇mδvn + ∇nδvn,
where δvn is a smooth vector field on Σ. In genus h = 2, the deforma-
tion from ĝmn to gmn is only of first order in ζ1ζ2, and we may define
its Beltrami differential µ̂z̄

z = 1
2 ĝ

zz̄gz̄z̄ in local holomorphic coordinates
for ĝmn. Then µ̂z̄

z is defined by the condition

i

∫

Σ
ωIωJ µ̂z̄

z d2z = ΩIJ − Ω̂IJ .(3.30)

This equation determines µ̂z̄
z only up to a gauge choice of δµ̂z̄

z = ∂z̄δv
z.

A choice of metrics is necessary because the correlation functions
of conformal and superconformal field theories require an underlying
geometry or supergeometry, and not just an equivalence class under
diffeomorphisms and/or supersymmetry transformations. It will be an
important check of the consistency of our gauge-fixing procedure for
superstring amplitudes that, after integration over all insertion points,
the final amplitude is independent of the choice of µ̂z̄

z.

• We can construct a slice Ŝ for supermoduli space which fibers over
the period matrices Ω̂ as follows. Let Ω̂IJ , 1 ≤ I ≤ J ≤ 2, be the 3 local
holomorphic coordinates for moduli space, and choose a 3-dimensional
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slice Ŝ of frames êm
a whose period matrices are the matrices Ω̂IJ . For

each of these frames êm
a, choose 2 generic gravitino sections χ̂α, α =

1, 2, and set χ̂ =
∑2

α=1 ζ
αχ̂α, where ζα are 2 anticommuting parameters.

We can choose next a (3|2)-dimensional slice of supergeometries (em
a, χ)

whose period matrices ΩIJ and Ω̂IJ satisfy the equation (3.12). This can

clearly be done, because ΩIJ and Ω̂IJ differ by terms of order O(ζ1ζ2),
and thus gravitino sections χ̂α with respect to êm

a can be considered as
gravitino sections χα with respect to em

a.
There are three significant complications in this gauge-fixing proce-

dure, compared to the earlier one based on the simpler but ill-behaved
projection (gmn, χm

α) → gmn:
(a) The first is that the Beltrami superdifferentials HA = θ̄(µ̂A −

θχA) defined by the slice Ŝ have components µ̂A and νA which are both
non-vanishing, unlike in the earlier case where one of the components
µ̂A or νA is always 0. This reflects the fact that, to maintain Ω̂IJ fixed,
both gmn and χm

α have to be deformed simultaneously.
(b) The second is that the correlation functions of the underlying

conformal field theories are expressed in the background of the metric
gmn. To re-express them in the background of the metric ĝmn, we need
to carry out a deformation of complex structures, and hence an insertion
of the stress tensor T (z).

(c) The third is that the vertex operators V have to be deformed as
well. This produces new vertex operators

V(z) = V(0)(z) + V(1)(z) + V(2)(z),(3.31)

where V(0) is the naive vertex operator of (2.6), and V(1), V(2) are de-
formation corrections.

Taking all these points into account, we obtain the following first
formula for the gauge-fixed amplitude,

A[δ] =

∫

dpµ
I

∫

M2×ΣN

∣

∣

∣

∣

B[δ](zi; ki, ǫi; p
µ
I )

∣

∣

∣

∣

2

(3.32)

where the chiral forms B[δ](zi; ki, ǫi; p
µ
I ) are given by

B[δ](zi; ki, ǫi; p
µ
I ) =

∏

I≤J

dΩ̂IJ

∫

∏

α=1,2

dζα 〈∏a b(pa)
∏

α δ(β(qα))〉
det ΦIJ+(pa) · det 〈Hα|Φ∗

β〉

× 〈Q(pI)exp{ 1

2π

∫

(χ(z)S(z) + µ̂(z)T (z))}
N
∏

j=1

Vj〉.(3.33)

Here pa, 1 ≤ a ≤ 3, and qα, 1 ≤ α ≤ 2, are two sets of arbitrary auxiliary
points on Σ, ΦIJ(z, θ) = ΦIJ0 + θΦIJ+ is the basis of superholomorphic
differentials of weight 3/2 defined by − i

2(ω̂ID+ω̂J + ω̂ID+ω̂J), Φ∗
β =

Φβ0 + θΦ∗
β+ is another basis of superholomorphic differentials of weight
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3/2 normalized by Φ∗
β0(qα) = δαβ and Φ∗

β+(pa) = 0, and S(z) is the
supercurrent.

The three points which we stressed above are reflected in the ap-
pearance in this formula of the full vertex operator V(zi), of the finite-
dimensional determinants ΦIJ+(pa) and 〈Hα|Φ∗

β〉 corresponding to the
gauge slice constructed, and of the insertion of the stress tensor Tzz

implementing the deformation of complex structures.

At this moment, after the deformation of complex structures has
been carried, all correlation functions in B[δ](zi; ki, ǫi; p

µ
I ) are expressed

with respect to the metric ĝmn. The metric gmn and its period matrix
no longer enter the picture, and we can now just denote Ω̂IJ by ΩIJ for
simplicity.

3.4. Gauge slice independence. We derive next explicit formu-
las for B[δ](zi; ki, ǫi; p

µ
I ). In the process, we establish the independence

of the amplitudes from all choices entering the gauge-fixing process.
This also facilitates later explicit evaluations, since we shall be free to
make convenient choices for different calculations.

• We begin with the 0-point function, in which case the dependence
of B[δ] on the external momenta is trivial, and B[δ] reduces essentially
to the measure dµ2[δ],

B[δ](pµ
I ) = exp(iπpµ

I ΩIJp
µ
J) dµ2[δ](Ω), N = 0,(3.34)

and dµ2[δ] is itself given by

dµ2[δ](Ω) =
〈∏a b(pa)

∏

α δ(β(qα))〉
det ΦIJ+(pa) · det 〈Hα|Φ∗

β〉

×
{

1 − 1

8π2

∫

d2zχz̄
+

∫

d2wχw̄
+〈S(z)S(w)〉

+
1

2

∫

d2zµ̂z̄
z〈T (z)〉

}

.(3.35)

The correlation functions of the supercurrent and stress tensor can now
be evaluated in terms of prime forms and Green’s functions. This gives
the expression (2.8)-(2.12) for dµ2[δ] described earlier. The indepen-
dence of gauge choices is then obtained by showing that the variations
of dµ2[δ] under changes of χα(z) as well as µ(z) vanish point by point
on the moduli space M2. The case of χα(z) = δ(z, xα) is particularly
convenient. In this case, dµ2[δ] reduces to the expression (2.17). This
expression can be independently verified to be independent of all points
pa, qα, and xα. Note that the Beltrami differential µ̂(z) has cancelled
out, so we have manifest independence from the choice of metrics ĝmn.

• Next, we show the gauge slice independence of the N -point func-
tion. Since dµ2[δ] has been shown to be gauge slice independent, and

since the factor 〈Q(pI)
∏N

i=1 V(zi)〉 does not depend on any gauge choice,
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the term B[δ](d) is gauge-slice independent. As for the term B(c), we can
show that it transforms as

δB[δ](c) =
N

∑

i=1

diRi[δ],(3.36)

with Ri[δ] given respectively by

Ri[δ] = −δvzi

〈

Q(pI)

N
∏

j=1

V(0)
j

〉

dµ0[δ](3.37)

Ri[δ] = −
〈

Q(pI)δξ
+(zi)ǫ

µ
i ψ+(zi)e

ikix+(zi)

×
( 1

2π

∫

χS
∏

V(0)
l +

∑

j 6−i

V(1)
j

∏

l 6=i,j

V(0)
)〉

dµ0[δ]

under changes of Beltrami differentials by δµ̂z̄
z = ∂z̄δv

z and changes
of gravitino slices by δχz̄

+ = −2∂z̄δξ
+, δµ̂z̄ = δξ+χ+

z̄ . Note that there
are no exterior derivative in the moduli variables ΩIJ . As explained
in Section §2, changes in B[δ] of the above form leave the integrated
amplitudes invariant.

3.5. Modular forms and ϑ constants. The chiral amplitudes
B[δ](zi; ki, ǫi; p

µ
I ) have now to be evaluated, certainly explicitly enough

so that the relative phases ǫδ can be determined, which would lead
to a modular invariant integral formula for the superstring amplitude
AII(ki, ǫi). In principle, all the correlation functions needed are of free
fields, and the chiral determinants needed can be obtained from the
chiral bosonization formulas of [29], [30], [31]. However, these formulas
depend typically on many extraneous points whose presence makes the
modular transformations obscure. For our purposes, it is then important
to completely eliminate these points, and remarkably, this turns out to
be possible.

• We begin with the evaluation of the 0-point function, or equiv-
alently, of dµ2[δ]. Here we exploit the independence of the expression
(2.17) to work in the split gauge, where the points q1, q2 are chosen to
satisfy the δ dependent relation

Sδ(q1, q2) = 0.(3.38)

All dependence on pa, qα then manifestly cancels out, and we obtain
the expression
(3.39)

dµ2[δ] =
∏

I≤J

dΩIJϑ[δ]4
〈ν1|ν2〉Mν1ν2

+ 〈ν2|ν3〉Mν2ν3
+ 〈ν3|ν1〉Mν3ν1

16π2M2
ν1ν2

M2
ν2ν3

M2
ν3ν1

,

where the bilinear ϑ-constant Mνiνj
is defined by

Mνiνj
= ∂1ϑ[νi]∂2ϑ[νj ] − ∂2ϑ[νi]∂1ϑ[νj ].(3.40)
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In general, derivatives of ϑ functions do not transform well under mod-
ular transformations. However, the following identity overcomes this
difficulty and leads to the expression (2.25) announced earlier for dµ2[δ]

M2
ν1ν2

= π4ϑ[δ]2
∏

k=3,4,5

ϑ[ν1 + ν2 + νk]
2.(3.41)

• To evaluate the N -point function, we need to evaluate the contri-
butions of the vertex operators as well as of the component dµ0[δ] of the
string chiral measure. Since the relative phases ǫδ of the GSO projection
have been already determined to be 1, it suffices to consider the sum
over spin structures δ of these contributions with these phases. In this
case, clearly the split gauge is not appropriate since it is δ-dependent.
Instead, we shall work in the unitary gauge, where the points qα are
chosen to be the zeroes of a fixed holomorphic (1, 0)-form ̟(z)

̟(q1) = 0, ̟(q2) = 0.(3.42)

This gauge has the very important property that there exists a single-
valued scalar function Λ(z) satisfying

µ̂z̄
z = Sδ(q1, q2)µ(z)

µ(z)̟(z) = ∂z̄Λ(z).(3.43)

We then need many ϑ function identities, of which the most difficult
are perhaps the ones involving the fermion stress tensor, and hence the
term

(3.44) ϕ[δ](w; z1, z2) = Sδ(z1, w)∂wSδ(w, z2) − Sδ(z2, w)∂wSδ(w, z1).

For the N -point function with N ≤ 3, the existence of the function Λ(z)
turns out to imply the integral identities

∫

µ(w)I13(w; z1, z2) = 0
∫

µ(w)̟(w){I14(w; z1, z2, z3)

+ I14(w; z2, z3, z1) + I14(w; z3, z1, z2)} = 0(3.45)

where the expressions I13(w; z1, z2) and I14(w; z1, z2, z3) are defined by

I13(w; z1, z2) =
∑

δ

Z[δ]Sδ(q1, q2)ϕ[δ](w; z1, z2)Sδ(z2, z1)

(3.46)

I14(w; z1, z2, z3) =
∑

δ

Z[δ]Sδ(q1, q2)ϕ[δ](w; z1, z2)Sδ(z2, z3)Sδ(z3, z1).

These identities imply in turn that
∑

δ B[δ] = 0 for N ≤ 3.

• The 4-point function is considerably more complicated, since we
need to extract Dolbeault exact differentials from

∑

δ B[δ] before we
can arrive at a holomorphic and gauge-independent form H. Also, we
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need identities of two types, those involving sums with Z[δ], and those
involving sums with Ξ6[δ]. We illustrate these identities with some
examples. Consider first the sums involving Z[δ]:

I15(w; z1, z2, z3, z4)

(3.47)

=
∑

δ

Z[δ]Sδ(q1, q2)ϕ[δ](w; z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z1)

I16(w; z1, z2, z3, z4)

=
∑

δ

Z[δ]Sδ(q1, q2)ϕ[δ](w; z1, z2)Sδ(z2, z1)Sδ(z3, z4)
2,

IS
15(w; z1, z2, z3, z4)

=
1

2
(I15(w; z1, z2, z3, z4) + I15(w; z2, z1, z3, z4))

IA
15(w; z1, z2, z3, z4)

=
1

2
(I15(w; z1, z2, z3, z4) − I15(w; z2, z1, z3, z4)),

their integrated versions,

I15(z1, z2, z3, z4) =
1

2π

∫

µ(w)I15(w; z1, z2, z3, z4)

I16 =
1

2π

∫

µ(w)I15(w; z1, z2, z3, z4),(3.48)

the following cyclically permuted integrated versions,

IC
15(z1, z2, z3, z4) = +I15(z1, z2, z3, z4) + I15(z2, z3, z4, z1)

+ I15(z3, z4, z1, z2) + I15(z4, z1, z2, z3)

IC
16(z1, z2; z3, z4) = +I16(z1, z2, z3, z4) + I16(z3, z4, z1, z2),(3.49)

their symmetrized versions,

3 IS
15(z1, z2, z3, z4) = IC

15(z1, z2, z3, z4) + IC
15(z1, z3, z4, z2)

+ IC
15(z1, z4, z2, z3)

3 IS
16(z1, z2, z3, z4) = IC

16(z1, z2; z3, z4) + IC
16(z1, z3; z4, z2)

+ IC
16(z1, z4; z2, z3),(3.50)

and their anti-symmetrized versions,

3 IA
15(z1, z4|z2, z3) = IC

15(z1, z2, z3, z4) − IC
15(z1, z3, z2, z4)

3 IA
16(z1, z4|z2, z3) = IC

16(z1, z2; z3, z4) − IC
16(z1, z3; z2, z4).(3.51)
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Then we have the following identities

IS
15(z1, z2, z3, z4) = −2IS

16(z1, z2, z3, z4) = −4Z0

4
∑

i=1

∂Λ(zi)
∏

j 6=i

̟(zj)

(3.52)

IA
15(z1, z4|z2, z3) = −IA

16(z1, z4|z2, z3) =
ζ1ζ2

4π2
∆(z1, z4)∆(z2, z3),

where ∆(z, w) is the bi-holomorphic form in z, w introduced earlier,
and Z0 is the following quantity,

Z0 =
Z12

π12 Ψ10(Ω)E(q1, q2)2σ(q1)2σ(q2)2
,(3.53)

with Z the partition function of a single chiral boson, expressible in
terms of arbitrary points r1, r2, r3,

Z3 =
ϑ(r1 + r2 − r3 − ∆)E(r1, r2)σ(r1)σ(r2)

E(r1, r3)E(r2, r3)σ(r3) detωI(rj)
.(3.54)

Next, consider the sums involving Ξ6[δ](Ω)

I20(z1, z2; z3, z4) =
∑

δ

Ξ6[δ]ϑ[δ]4Sδ(z1, z2)
2Sδ(z3, z4)

2

(3.55)

I21(z1, z2, z3, z4) =
∑

δ

Ξ6[δ]ϑ[δ]4Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z1).

Then we have the identities

I20(z1, z2; z3, z4) = −4π4Ψ10(Ω)(∆(z1, z3)∆(z2, z4) + ∆(z1, z4)∆(z2, z3)

(3.56)

I21(z1, z2, z3, z4) = 4π4Ψ10(Ω)(∆(z1, z2)∆(z3, z4) − ∆(z1, z4)∆(z2, z3)

as well as the identity
(3.57)

∑

IJKL

ωI(z1)ωJ(z2)ωK(z3)ωL(z4)
∑

δ

Ξ6[δ]ϑ[δ]3∂I∂J∂K∂Lϑ[δ](0) = 0.

All these identities combine to give the desired formulas for
∑

δ B[δ](zi;
ki, ǫi; p

µ
I ) and H(zi; ki, ǫi; p

µ
I ). A crucial phenomenon is that all effects

of gauge choices reside only in the exact differentials R(zi; ki, ǫi; p
µ
I )

which drops out of the final physical amplitude AII(ki, ǫi), and that
H(zi; ki, ǫi; p

µ
I ) is completely gauge independent.

3.6. Proof of non-renormalization theorems. To obtain scat-
tering amplitudes in the heterotic string, we combine the anti-holo-
morphic factors from the type II superstring amplitudes with the holo-
morphic factors from the 10-dimensional bosonic string and internal
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fermions. The correlation functions can be evaluated in a straightfor-
ward manner. The main issue in the non-renormalization theorems is
whether the poles in the Mandelstam variables sij = −2ki · kj from the
holomorphic sector survive after combination with the anti-holomorphic
sector and integration on the worldsheet. The most difficult amplitudes
are the R2F 2 and the R4 amplitudes, so we discuss them briefly.

For R2F 2, the holomorphic sector is W =W(R2)(z1, z2)W(F 2)(z3, z4),
with

(3.58) W(R2) = (ǫ1 · ǫ2) ∂z1
∂z2

G(z1, z2)

−
∑

ij

(ǫ · ki) (ǫ · kj) ∂z1
G(z1, zj)∂z2

G(z2, zj).

This term leads to poles in sij . However, up to total derivatives on Σ,
sijW(R2) can be replaced by expressions of the form

(3.59) s12W(R2) → 2(f1f2)∂z1
∂z2

G(z1, z2)

− 2
∑

ij

kµ
i f

µν
1 fνρ

2 kρ
j ∂z1

G(z1, zi)∂z2
G(z2, zj).

Since the anti-holomorphic sector YS always includes an sij factor, and
since the above right hand side integrates to 0 against anti-holomorphic
forms, these amplitudes do not contribute to the low-energy effective
action.

For R4, the holomorphic sector is given by the expression W =
W(R4) in (2.36). In this case, only the expressions sijsklW(R4) can be
replaced, up to total derivatives and to terms which vanish when sij →
0, by sum of regular expressions tending to 0 as sij → 0. However, when
we expand the exponential factor exp(

∑

ij sijG(zi, zj)) at low energy, we
find that the contributions of the constant term integrate to 0. Thus we
need only consider the terms from the exponential factor with at least
one power of sij . Combined with the other factor skl from YS , we can
apply then the previous result for sijsklW(R4), and obtain the desired
non-renormalization theorem.

3.7. S-duality and factorization. The expressions (2.33) deter-
mine the superstring scattering amplitudes only up to a constant factor
depending only on the topology of the worldsheet. This constant factor
C2 should be determined ultimately by the factorization properties of
the physical amplitudes. To compare with the S-duality predictions for
the two-loop correction to the D4R4 term in the effective action, we
need to compare two non-vanishing quantities, and the above constant
factor has to be determined precisely. For this, we have to analyze the
contributions in AII(ki, ǫi) of the region of the moduli space M2 near
the divisor of separating nodes, and identify the resulting pole in s ≡ s12
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at s = 4
α′ . Restoring the string tension parameter α′, the coupling con-

stant λ, and the normalization κ for the massless vertex operators, we
can write the amplitude AII as

(3.60) AII(ki, ǫi) = C2e
2λKK̄κ4

∫

M2

|∏I≤J dΩIJ |2
(det Im Ω)5

×
∫

Σ4

|YS |2exp

(

− α′

2

∑

i<j

ki · kjG(zi, zj)

)

and we find [14]

(3.61) AII = −δ(k)2
6π3C2/α

′

s− 4/α′ e
2λKK̄B(3)

1 (k1, k2,−q)B(3)
1 (k3, k4, q),

where B(3)
1 (k1, k2, q) and B(3)

1 (k3, k4,−q) are one-loop 3-point functions
given by

B(3)
1 (k1, k2,−q) =

∫

M1

|dτ11|
|Im τ11|5

∫

d2z1d
2z2exp

α′s
4

{G(z1, z2)

−G(z1, p1) −G(z2, p1)}

B(3)
1 (k3, k4, q) =

∫

M1

|dτ22|
|Im τ22|5

∫

d2z3d
2z4exp

α′s
4

{G(z3, z4)

−G(z3, p2) −G(z4, p2)}.
Comparing this with the factorization of tree-level and one-loop ampli-
tudes, we obtain the desired constant C2. With the normalization for

the tree-level 4-point function given in [14], we have C2 =
√

2
26(α′)5

.

Taking the limit ki → 0 in AII , the low-energy two-loop contribution
to the D4R4 is then found to be

A
(D4R4)
2 = 8V2C2e

2λ(α′)2(s2 + t2 + u2)κ4KK̄,(3.62)

where V2 is the volume of the fundamental domain of Sp(4,Z)/Z2. This
volume has been determined by Siegel [41], and combined with the value
for C2 just found, we find complete agreement with S-duality.

3.8. Orbifolds and KKS models. The difficulties with gauge-
fixing superstring amplitudes reside only with the superghost part of
the theory. For more general space-times, the same method applies
and gives well-behaved amplitudes, as long as the earlier matter part
xµ, ψµ

± is replaced by a compactification which respects world-sheet
supersymmetry.

For Z2 orbifold models, the essential new features are the twisted
bosonic propagator Bǫ(z, w) = 〈∂zx(w)∂wx(w)〉ǫ, and the supersym-
metric extension of the Prym period matrix. The first is found to be

Bǫ(z, w) = Sδ+
i
(z, w)Sδ−i

(z, w) + biωǫ(z)ωǫ(w)(3.63)
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where ωǫ(z) is the Prym differential. On the other hand, there are

subtleties with the second: while the supersymmetric extension Ω̂IJ

can be identified both as period matrix of a new complex structure
ĝmn and as covariance matrix of the chirally split amplitudes [28], the
Prym matrix τ̂ǫ of ĝmn and the covariance τ̃ǫ of the chirally split twisted
amplitudes are distinct supersymmetric extensions of the Prym matrix
τǫ. Their difference is

(3.64) ∆τǫ = − i

8π

∫ ∫

d2zd2wχz̄
+Sδ(z, w)χw̄

+

×
{

ωǫ(z)ωǫ(w) − ωI(z)ωJ(w)
∂τ̂ǫ

∂Ω̂IJ

}

,

where τ̂ is viewed as a function of Ω̂IJ . Only after taking properly into
account such corrections can we arrive at the correct Z2 gauge-fixed
orbifold measure.

4. Directions for Further Investigation

In this section, we discuss a number of directions for possible further
investigation.

4.1. Higher genus superstrings. The solution of two-loop su-
perstrings gives us some optimism for an eventual complete solution of
superstring perturbation theory. Nevertheless, the two-loop case ben-
efits of a number of simplifying features: the ∂̄ operator is always in-
vertible for even spin structures δ, the super period matrix Ω̂IJ of a
supergeometry is always defined (instead of away from a subvariety),
and we can construct explicitly the fiber of supermoduli space over a
fixed Ω̂IJ . In the bosonic string at 3-loops, it has been pointed out that
the spurious poles in the bosonic string integrand resulting from the
ϑ divisor can be cancelled by the zeroes from the measure

∏

I≤J dΩIJ

[42]. We can hope that a similar mechanism will take place for the
superstring. However, a manageable construction of the fibers remains
a challenging problem, and clearly much work will be needed.

Alternatively, we can look for Ansätze for the 3-loop superstring
measure from factorization constraints, now that the 2-loop measure is
known. For example, if in analogy with the 2-loop case, we take as
Ansätz for the 3-loop string measure an expression of the form

dµ[∆](Ω(3)) =
ϑ[∆](Ω(3))4Ξ6[∆](Ω(3))

8π4Ψ9(Ω(3))

∏

I≤J

dΩ
(3)
IJ ,(4.1)

where Ψ9(Ω
(3))2 =

∏

∆ even ϑ[∆](Ω(3)) is Igusa’s modular form [43],

then Ξ6[∆](Ω(3)) must be a modular covariant form of weight 6 satisfying
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the factorization constraint

limt→0Ξ6[∆](Ω(3)) = η(Ω(1))12 Ξ6[δ](Ω
(2))(4.2)

in the limit where the genus 3 surface with period matrices degenerates
into surfaces of genera 1 and 2 with period matrices Ω(1) and Ω(2),
and the genus 3 spin structure ∆ factors into two even spin structures.
Polynomials in ϑ constants have been found which can be candidates
for Ξ6[∆](Ω(3))2. It may be valuable to pursue this further [44].

In another direction, we may try to generalize directly the higher
genus 4-point function from the very simple final expression (2.33) for
genus 2 and factorization properties. Several candidates have now been
proposed along these lines [45].

4.2. Odd spin structures. For N sufficiently large, the odd spin
structures of the worldsheet Σ will begin contributing to the N -point
function. It would be important to extend our gauge-fixing method to
this case as well. The chiral splitting of the matter fields xµ, ψµ

± has
been carried out in [28] for odd spin structures δ. A new phenomenon
is the emergence of an additional superholomorphic form ω̂0 which is

the supersymmetric extension of the holomorphic form hδ(z) on κ
1/2
δ (Σ).

This is a source of new difficulties, since from a certain point of view, the
analogue of the super period matrix is now (h+1)×(h+1) dimensional.

4.3. BRST formalism. The BRST symmetry is a powerful sym-
metry of gauge fixed quantum field theories and particularly of string
theories. Higher loop superstring amplitudes based on BRST symmetry
have been proposed a long time ago by Friedan, Martinec, and Shenker
[3]. However, the BRST invariance guarantees the gauge slice indepen-
dence of these amplitudes only up to total derivatives on local patches
on moduli space [11]. In retrospect, we see that the gauge-fixing method
based on super period matrices has produced both local and global cor-
rections to the BRST prescription, under the form of an insertion of the
stress tensor and of the finite-dimensional determinants in (2.9). It may
be valuable to re-examine the amplitudes in this light, and determine
whether they can be arrived at by a BRST-like prescription. The BRST
formalism has also been re-examined for the bosonic string in [46], from
other considerations.

4.4. Effective actions. As we had mentioned earlier, the two-loop
amplitudes allow us to determine the two-loop corrections to the effec-
tive action, and as a by-product, to get an indirect check of the many
dualities conjectured in string theory [47, 48, 49]. The consistency
with the conjectured S-duality of the type IIB superstring has now been
checked. However, the relation with dualities of the non-renormalization
of the R4 term and the correction to the D2F 4 term in the heterotic
string is still obscure (see [14] and references therein).
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4.5. Normalizations of determinants. The bosonization formu-
las of Fay [30], Faltings [31], and Verlinde-Verlinde [29] determine the
chiral determinants of ∂̄ operators up to constants depending only on
the genus. The exact value of these constants for the ∂̄ operator on
scalars has received significant attention over the years [50]. It would
be useful to determine them for the ∂̄ operator for all weights.

References

[1] M. Green and J. Schwarz, Supersymmetrical string theories, Phys. Lett. 109 B

(1982) 444–448.
[2] D.J. Gross, J.A. Harvey, E.J. Martinec, and R. Rohm, Heterotic String Theory.

1. The Free Heterotic String, Nucl. Phys. B 256 253 (1985); Heterotic String
Theory. 2. The Interacting Heterotic String, Nucl. Phys. B 267 (1986) 75.

[3] D. Friedan, E. Martinec, and S. Shenker, Conformal invariance, supersymmetry,
and string theory, Nucl. Phys. B 271 (1986) 93.

[4] E. D’Hoker and D.H. Phong, Loop amplitudes for the fermionic string, Nucl.
Phys. B 278 (1986) 225;
G. Moore, P. Nelson, and J. Polchinski, Strings and supermoduli, Phys. Lett. B

169 (1986) 47–53.
[5] E. D’Hoker and D.H. Phong, Two-Loop Superstrings I, Main Formulas, Phys.

Lett. B529 (2002) 241–255; hep-th/0110247;
E. D’Hoker and D.H. Phong, Lectures on two loop superstrings, hep-th/0211111.

[6] E. D’Hoker and D.H. Phong, Two-Loop Superstrings II, The chiral Measure on
Moduli Space, Nucl. Phys. B636 (2002) 3–60; hep-th/0110283.

[7] E. D’Hoker and D.H. Phong, Two-Loop Superstrings III, Slice Independence and
Absence of Ambiguities, Nucl. Phys. B636 (2002) 61–79; hep-th/0111016.

[8] E. D’Hoker and D.H. Phong, Two-Loop Superstrings IV, The Cosmological Con-
stant and Modular Forms, Nucl. Phys. B639 (2002) 129–181; hep-th/0111040.

[9] E. D’Hoker and D.H. Phong, Two-Loop Superstrings V, Gauge Slice Inde-
pendence of the N-Point Function, Nucl. Phys. B715 (2005) 91–119; hep-
th/0501196.

[10] E. D’Hoker and D.H. Phong, Two-loop Superstrings VI, Non-renormalization
theorems and the 4-Point function, Nucl. Phys. B715 (2005) 3–90; hep-
th/0501197.

[11] E. Verlinde and H. Verlinde, Multiloop calculations in covariant superstring the-
ory, Phys. Lett. B192 (1987) 95–102;
H. Verlinde, A note on the integral over fermionic supermoduli, Utrecht Preprint
No. THU-87/26 (1987) unpublished.

[12] J. Atick, J. Rabin, and A. Sen, An ambiguity in fermionic string theory, Nucl.
Phys. B 299 (1988) 279–294;
G. Moore and A. Morozov, Some remarks on two-loop string calculations, Nucl.
Phys. B 306 (1988) 387–404;
J. Atick, G. Moore, and A. Sen, Some global issues in string perturbation theory,
Nucl. Phys. B 308 (1988) 1; Catoptric tadpoles, Nucl. Phys. B 307 (1988) 221–
273;
H. La and P. Nelson, Unambiguous fermionic string amplitudes, Phys. Rev. Lett.
63 (1989) 24-27.

[13] E. Martinec, Non-renormalization Theorems and Fermionic String Finiteness,
Phys. Lett. B171 (1986) 189;

[14] E. D’Hoker, M. Gutperle, and D.H. Phong, Two-loop superstrings and S-duality,
Nucl.Phys. B 722 (2005) 81–118, hep-th/0503180.



COMPLEX GEOMETRY AND SUPERGEOMETRY 37

[15] S. Kachru, J. Kumar, and E. Silverstein, Vacuum energy cancellation in a non-
supersymmetric string, Phys. Rev. D 59 (1999) 106004, hep-th 9807076;
S. Kachru and E. Silverstein, Self-dual nonsupersymmetric type II string com-
pactifications, JHEP 9811 (1998) 001, hep-th 9808056;
S. Kachru and E. Silverstein, On vanishing two-loop cosmological constants in
nonsupersymmetric strings, JHEP 9901 (1999) 004, hepth 9810129.

[16] K. Aoki, E. D’Hoker, and D.H. Phong, Two-loop superstrings on orbifold com-
pactifications, Nucl. Phys. 688 (2004) 3–69, hep-th/0312181;
K. Aoki, E. D’Hoker, and D.H. Phong, On the construction of asymmetric orb-
ifold models, Nucl.Phys. B 695 (2004) 132–168, hep-th/0402134.

[17] S. Mandelstam, Interacting string picture of the fermionic string, in ‘Workshop
on Unified String Theories’, eds. M. Green and D. Gross, 1986, World Scientific,
577;
N. Berkovits, Calculation Of Scattering Amplitudes For The Neveu-Schwarz
Model Using Supersheet Functional Integration, Nucl. Phys. B 276 650 (1986);
S. Mandelstam, The n loop string amplitude: Explicit formulas, finiteness and
absence of ambiguities, Phys. Lett. B 277 82 (1992).
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