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1. About these lectures

Number theory and automorphic forms cannot be separated nowa-
days in modern mathematics, although from a historical perspective
both subjects grew in their own way for some time. Since number the-
ory came first, I tend to think of automorphic forms as tools to serve
the arithmetic. This attitude will be apparent during my lectures. Of
course, with the advances in the first field, the second one benefits
as well, that is to say number theory also offers new tools for general
theory of automorphic forms.

I will not talk about geometric aspects of automorphic forms nor
their connections with physics, representation theory. However, I shall
emphasize their role in harmonic analysis because they are indispens-
able in analytic number theory, which is my primary subject of interest.
A lot has been presented to the general forum about modular forms in
algebraic number theory, in particular after resolution of the Fermat
last theorem [W], [BCDT]. Therefore I shall limit my venture to the
topics which help to grasp the essence of modularity in number theory
as a whole.
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The results shown during these lectures are selected for illustration
of great ideas and to articulate the state of the particular subjects,
so they are not always the sharpest or the deepest up to date accom-
plishments. These notes were prepared just for the audience of my
talk, so they must be regarded as a draft for a more substantial expo-
sition, which unfortunately was never written. The author expresses
his apology for not fulfilling his promise.
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2. Classical Automorphic Forms

These are generalizations of periodic functions. Let

Γ = Γ0(q) =

{(
ab

cd

)
∈ SL2(Z); c ≡ 0 (mod q)

}
and χ(mod q), a Dirichlet character. Let k ≥ 0 be an integer with

χ(−1) = (−1)k.

A function f on the upper half-plane

H =
{
z = x+ iy; x ∈ R, y ∈ R+

}
is said to be modular of level q, character χ, and weight k if f(z) is
holomorphic and it satisfies the automorphy equations

f

(
az + b

cz + d

)
= χ(d) (cz + d)k f(z)

for any γ =
(
ab
cd

) ∈ Γ. Moreover f(z) is required to be holomorphic at
every cusp. In particular, for the cusp at infinity this condition means
that f(z) has the Fourier expansion

f(z) = λf (0) +

∞∑
1

λf(n)n
k−1
2 e(nz), e(z) = e2πiz.

Note we pull out the factors n
k−1
2 to make λf (n) nicer for analysis. The

Eisenstein series and the Poincaré series are basic examples:

Pm(z) =
∑

γ∈Γ∞\Γ
χ(d)(cz + d)−k e(mγ z), m = 0, 1, 2, . . . ,

but not really significant for arithmetic. More important in this regard
are, for example, the theta series

θPQ(z) =
∑
m∈Zr

P (m) e(Q(m) z).

They are associated with a positive definite quadratic form Q(x) =
1
2
txAx and harmonic polynomials P (x). The modularity of θPQ(z) and

estimates for its Fourier coefficients (Ramanujan’s conjecture holds due
to P. Deligne only if r is even), leads to the equidistribution of integral
points on ellipsoids (see results for any r ≥ 3 in Duke [D1] and Duke-
Schultze-Pillot [DS-P]). If f has no zero terms at every cusp, it is
called a cusp form. The linear space Sk(Γ, χ) of cusp forms is a finite
dimensional Hilbert space with the inner product

〈f, g〉 =

∫
Γ\H

f(z)ḡ(z) ykdµz
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where Γ \ H is a fundamental domain and dµz = y−2 dxdy is the
SL2(R) invariant measure. This structure makes the space Sk(Γ, χ)
very wealthy, not only for analytic considerations, but it also plays a
role in higher arithmetic. First of all, it allows one to select primitive
forms (also called newforms, which are eigenfunctions of all the Hecke
operators

(Tnf)(z) =
1√
n

∑
ad=n

χ(a)
(a
d

)k/2 ∑
0�b<d

f

(
az + b

d

)
.

Let

Tnf = λf(n) f, for all n � 1.

With proper normalization, the eigenvalues λf(n) agree with the Fourier
coefficients, i.e.

f(z) =

∞∑
1

λf (n)n
k−1
2 e(nz).

The significance of primitive forms is most visible in the multiplicativity
of the coefficients

λf (m)λf(n) =
∑
d|(m,n)

χ(d)λf

(mn
d2

)
.

Better yet, this property transcends in the Euler product for the asso-
ciated L-function

L(f, s) =
∞∑
1

λf(n)n−s =
∏
p

(
1 − λf (p) p

−s + χ(p) p−2s
)−1

.

Why does a God given L-function (of degree two) correspond to a
primitive cusp form? Well, because it is defined by an Euler product
at first place. Starting from an Euler product the problem of analytic
continuation is paramount. It shows somehow that the eigenvalues
λf(p) at different places see each other and are equidistributed to cause
a considerable cancellation. For example, the analytic continuation of
the Artin L-functions

L(ρ, s) =
∏

p unr

det

(
1 − ρ

([
K/Q

p

])
(Np)−s

)−1

Lram(ρ, s)

yields (essentially) the reciprocity law.
Harder cases are the L-functions defined geometrically, the most

successful example being the Hasse-Weil L-function of an elliptic curve

E : y2 = x3 + ax+ b, ∆ = −16(4a3 + 27b2) �= 0,
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the modularity of which is among the greatest achievements of math-
ematics in the past century (see [W], [BCDT]).

Simpler, but still attractive, examples of primitive cusp forms are
those associated with quadratic number fields K = Q(

√
D). Suppose

K is imaginary, i.e. its discriminant D < 0. Let ψ be a character of
the class group H = I/P and

λψ(n) =
∑
Na=n

ψ(a).

Then the L-function

L(s, ψ) =
∞∑
1

λψ(n)n−s

=
∑

a

ψ(a)(Na)−s =
∏

p

(
1 − ψ(p)(Np)−s

)−1

corresponds to a modular form fψ(z) of weight k = 1, level q = |D|
and character χ = χD (the Kronecker symbol). If ψ is not real, then

fψ(z) =
∞∑
1

λψ(n) e(nz) ∈ S1 (Γ0(|D|), χD) .

In general, how large is the space Sk (Γ0(q), χ) in terms of the level q?
If k � 2, we know that

dimSk (Γ0(q), χ) � kq;

but for k = 1, we see an entirely different picture.
All the weight-one primitve cusp forms are presumably associated

with two-dimensional Galois representations and conversely (see the
works of Deligne-Serre [DS] and Serre [Se]). If q is prime (necessarily
q ≡ 3 (mod 4)), note that the complex Hecke characters ψ of the ideal
class group of K = Q(

√−q) yield exactly 1
2
(h(−q) − 1) distinct cusp

forms, whereas the conjecture of J-P. Serre [Se] asserts there are at
most O(qε) other cusp forms, i.e.

dimS1 (Γ0(q), χ−q) = 1
2

(h(−q) − 1) +O(qε) 	 q
1
2 log q.

Using a trace formula, it is not difficult to estimate the dimension of
S1 (Γ0(q), χ−q) by O(q/ log q).

Why is any better bound hard to get? A comprehensive answer can
be given only by considering the whole spectrum of cusp forms, includ-
ing the real-analytic ones of Maass. The reason is that S1 (Γ0(q), χ−q) is
just one eigenspace of the Laplace operator ∆1 with eigenvalue λ1 = 1

4
,

which is not isolated (the bottom of the continuous spectrum). Con-
sequently, any attempt to catch this part exclusively by playing with
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test functions in relevant trace formula is doomed to failure due to the
uncertainty principle of harmonic analysis. The arithmeticity of the
weight one cusp forms must be exploited. In view of these intrinsic
barriers, the following estimate of W. Duke [D2] came as a surprise:

dimS1 (Γ0(q), χ−q) 	 q
11
12 .

Duke’s work is a spectacular example of how arithmetical arguments
enhance the analytic ones. He makes best use of the new technology
— the amplification method. A thorough presentation of this method
is given by P. Michel [M2].
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3. Maass Forms - Spectral Theory

The completeness of a space in which to operate is an indispensable
working condition in analysis. The Hilbert space of automorphic forms
is where the modern analytic number theory works most effectively.

Consider functions F : H → C which transform by

F

(
az + b

cz + d

)
= χ(d)

(
cz + d

|cz + d|
)k

F (z)

for any γ =
(
ab
cd

) ∈ Γ . This is like in classical modular forms (peri-
odicity, or symmetry), however the holomorphy condition is replaced
by the requirement that F satisfies the second order partial differential
equation

(∆k + λ)F = 0.

Here λ = λ(s) = s(1 − s)ε C is a complex number - an eigenvalue of
the Laplace - Beltrami operator

∆k = y2

(
∂2

∂x2
+

∂2

∂y2

)
− iky

∂

∂x
.

Because ∆k is elliptic, its eigenfunctions F = F (z) = F (x, y) are real-
analytic in x, y. These are called Maass forms after [M].

We are interested in the L2-space of automorphic functions with
the inner product

< F,G >=

∫
Γ\H

F (z)G(z)dµz

in which ∆k has self-adjoint extension and is bounded below, precisely

< F,−∆kF > � |k|
2

(
1 − |k|

2

)
< F, F > .

The Fourier series expansion of a Maass form is a little bit more
complicated than that of the classical forms, the exponential function
being replaced by a Whittaker function. Nevertheless the theory of
Hecke operators is pretty much the same. A primitive Maass cusp
form uj(z) of the Laplace eigenvalue λj = sj(1 − sj) = 1

4
+ t2j is a

common eigenfunction of all the Hecke operators Tn, say

Tnuj = λj(n)uj, n = 1, 2, 3, . . .

(the operators Tn are given by the same formula as for the holomorphic
forms, but with k replaced by zero due to our normalization).

A. Selberg [S] established the complete spectral resolution of ∆k. He
showed that besides the infinite dimensional discrete spectrum spanned
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by Maass cusp forms, there is a continuous spectrum spanned by the
Eisenstein series on the critical line. The presence of the continuous
spectrum obscures the picture, however there are examples when the
Eisenstein series do help to derive sharp estimates for the classical L-
functions. Let me quote from [CI] the following

L(s, χq) 	 |s|2003q 1
6
+ε, if Re s = 1

2
,

the implied constant depending only on ε. Perhaps we should tell
that this estimate (which improves the celebrated bound |s|q 3

16
+ε of D.

Burgess in the q-aspect) uses the Riemann Hypothesis for varieties over
a finite field (proved by P. Deligne).

To see the position of the classical holomorphic cusp forms in the
whole spectrum of Maass forms, it is necessary to apply two differential
operators of order one

Kk =
k

2
+ y

(
i
∂

∂x
+

∂

∂y

)

Λk =
k

2
+ y

(
i
∂

∂x
− ∂

∂y

)
.

The first operator Kk raises the weight of forms by 2, and the second
operator Λk reduces the weight of forms by 2. Note that

∆k = −Kk−2Λk − λ
(
k
2

)
= −Λk+2Kk − λ

(−k
2

)
.

Moreover if F,G,∆kF,∆kG are bounded, then

< F,−∆kG > =< KkF,KkG > + λ
(−k

2

)
< F,G >

=< ΛkF,ΛkG > + λ
(
k
2

)
< F,G > .

In particular, for F = G, we see that λ
( |k|

2

)
= |k|

2

(
1 − |k|

2

)
is indeed

the bottom of the spectrum as said earlier. For k = 1, this is at
λ1 = 1

4
. Moreover it follows that Kk, Λk operate on eigenspaces of ∆k

isometrically except for the lowest one, which is annihilated. These,
the lowest Maass cusp forms, say F (z), correspond to the classical
holomorphic cusp forms f(z) by the formula

f(z) = y
k
2F (z),

(
∆k + λ

(
k
2

))
F = 0.

It was not known to H. Maass whether his space of real-analytic
cusp forms, say Ck(Γ, X), has infinite dimension. To answer this ques-
tion, A. Selberg [S] developed the trace formula and his elegant zeta
function by means of which he established the following asymptotic
formula for the discrete spectrum (the so called Weyl’s law). Put

(∆k + λj)uj = 0, λj = λj(sj) = sj(1 − sj), sj =
1

2
+ itj .
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Then we have

#{j; 0 < tj ≤ T} ∼
1

4π
vol (Γ\H)T 2, as T → ∞,

where

vol (Γ\H) =
π

3
q
∏
p|q

(
1 +

1

p

)
.

The Phillips-Sarnak work [PS] on spectral deformations gives strong
evidence that the abundance of cusp forms is the feature (a treasure)
of arithmetic groups, not a general rule. Hence it is very surprising
and frustrating that nobody has ever constructed a Maass cusp form
of weight-zero for the full modular group SL2(Z), in spite of the fact
that there are infinitely many of them by counting!

A very challenging problem is to estimate the multiplicity of the
spectrum (the dimension of the eigenspaces) as the energy levels (the
eigenvalues) grow to infinity. The existing results are so poor we do
not bother to state anything here.

The next fundamental question about Maass cusp forms is how are
the masses distributed. Naturally, they are distributed evenly in an
asymptotic sense as the energy level tends to infinity. No excessive
accumulation should occur due to the constant negative curvature of
the Riemann surface Γ\H (the habitat in which Maass forms reside).
Indeed, Z. Rudnick and P. Sarnak [RS] have a conjecture (known as
the Unique Quantum Ergodicity Conjecture) that the measures dµjz
associated with the eigenstates uj(z) tend to the Riemannian measure
on Γ\H, precisely

dµjz =
|uj(z)|2
< uj, uj >

dµz → dµz

vol (Γ\H)
, as tj → ∞.

It is an important condition that uj(z) are primitive Hecke forms,
otherwise the assertion is obviously false as the following sequence(
yk/2f(z)

)j
, j = 1, 2, 3, . . . shows, where f(z) is a fixed classical cusp

form of weight k. Therefore again the arithmeticity plays a role. W.
Luo and P. Sarnak [LS] proved the Ergodicity Conjecture on average
in the following quantitative format

∑
0<tj≤T

∣∣∣∣
∫

Γ\H

f(z)dµjz − 3

π

∫
Γ\H

f(z)dµz

∣∣∣∣
2

	 T 1+ε.
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The proof uses heavily analytic properties of the Rankin-Selberg L-
function

L(f ⊗ f, s) =

∞∑
1

|λj(n)|2n−s.

A completely different approach has been recently taken by E. Lin-
denstrauss. It is based on ergodic methods of G. Margulis, M. Ratner.
He did prove the Quantum Ergodicity Conjecture for arithmetic com-
pact surfaces Γ\H (Γ is a quaternion group), but he barely got the
limit with no spare margin. Lindenstrauss arguments [L] appeal to
arithmetic from a different angle than the spectral methods and are
also used for problems in diophantine approximations.

However, the Quantum Ergodicity Conjecture for the congruence
group Γ = Γ0(q) is still open. In this case, the arithmeticity mani-
fests itself beautifully in the Triple Product L-functions. Suppose for
simplicity that Γ = SL2(Z) and u1, u2, u3 are even Hecke-Maass cusp
forms of weight k = 0. The master L-functions of these forms are

L(s, uj) =

∞∑
1

λj(n)n−s

=
∏
p

(1 − αj(p)p
−s)−1(1 − βj(p)p

−s)−1

which satisfy the following functional equation

Λ(s, uj) = π−s Γ

(
s+ itj

2

)
Γ

(
s− itj

2

)
L(s, uj) = Λ(1 − s, uj).

The Triple Product L-function (see [G]) is defined by the following
Euler product of degree eight

L(s, u1 × u2 × u3) =
∏
p

∏
γj=αj ,βj

(1 − γ1γ2γ3p
−s)−1, if Re s > 1.

It has analytic continuation to the whole complex plane and it satisfies
the functional equation

Λ(s, u1 × u2 × u3) = π−4s
∏

Γ
(

1
2
(s± it1 ± it2 ± it3)

)
L(s, u1 × u2 × u3)

= Λ(1 − s, u1 × u2 × u3).

After fundamental works by Garrett [G] and Harris-Kudla [HK],
Thomas Watson [Wa] in a recent thesis gave us a beautiful formula for
the central value

Λ
(

1
2
, u1 × u2 × u3

)
=
(

6
π

)2
Λ(1, sym2u1)Λ(1, sym2u2)Λ(1, sym2u3)
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∫

Γ\H

u1(z)u2(z)u3(z)

‖u1‖ ‖u2‖ ‖u3‖ dµz
∣∣∣∣
2

.

Here Λ(s, sym2uj) denotes the completed L-function for the symmetric
square representation attached to uj;

L(s, sym2uj) =
∏
p

(1 − α2
jp

−s)−1(1 − αjβjp
−s)−1(1 − β2

j p
−s)−1

Λ(s, sym2uj) = π− 3s
2 Γ
(s

2

)
Γ

(
s+ itj

2

)
Γ

(
s− itj

2

)
L(s, sym2uj)

= Λ(1 − s, sym2uj).

Note that ‖uj‖2 = 6
π
Λ(1, sym2uj) > 0, hence by Watson’s formula

L
(

1
2
, u1×u2×u3) ≥ 0, which is consistent with the Riemann hypothesis

for L(s, u1 × u2 × u3). However Watson’s formula was created for a
more profound consequence, that is towards the Quantum Ergodicity
Conjecture. To this end, fix a cusp form u1(z) = u(z) and choose
u2(z) = u3(z) = uj(z) with varying tj . In this case, Watson gets

L
(

1
2
, u× uj × uj

)
= Qj

∣∣∣∣
∫

Γ\H

u(z)
|uj(z)|2
< uj, uj >

dµz

∣∣∣∣
2

where Qj is a product of the involved gamma functions and the values
L(1, sym2uj). By Stirling’s formula and by

(log tj)
−1 	 L(1, sym2uj) 	 log tj

(which is another great result in analytic theory of automorphic L-

functions due to Hoffstein and Lockhart), we find thatQj � t
3
2
j (log tj)

±3.
Hence, the Quantum Ergodicity Conjecture, which boils down to∫

Γ\H

u(z)
|uj(z)|2
< uj, uj >

dµz → 0, as tj → ∞,

would follow from the bound

L
(

1
2
, u× uj × uj

)	 t
3
2
−δ

j

with δ any positive number, no matter how small. Such bound with δ =
0 comes straight by the convexity principle for analytic functions (also
the functional equation is needed), so we are asking for a subconvexity
bound. The Grand Riemann Hypothesis would finish the job, but
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getting it done unconditionally is quite a problem. Note that in the
special case u1 = u, u2 = u3 = uj, the triple product L-function factors

L(s, u× uj × uj) = L(s, u)L(s, u⊗ sym2uj),

hence we are really faced with a subconvexity problem for L-functions
of degree six (down from eight).

In the last decade, the subject of subconvexity bounds for L-functions
dominated analytic number theory as many interesting problems in
arithmetic were reduced to just such a bound. A powerful technology
was developed, the amplification method, which produces subconvex-
ity bounds for L-functions of degree two. The method has been signif-
icantly refined and successfully applied to some L-functions of larger
degree by Philippe Michel [M1], see his comprehensive survey [M2]
with many beautiful and surprising applications. Other deep results
are given by E. Kowalski, P. Michel and J. Vanderkam [KMV].
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4. Orthogonality of Hecke Eigenvalues

At first glance it seems obvious that the eigenvalues λf(n) are “in-
dependent variables” as the cusp form f varies over a family F . Ana-
lytic number theory offers an adequate language and tools to quantify
such a statement. To cut the exposition, from now on, we consider
only the classical holomorphic forms. Because distinct forms in a basis
are orthogonal, so seem to be their coefficients. What does it mean?
Specifically one should expect that a general vector of complex num-
bers α = (αn), n � N , is almost orthogonal to almost all Hecke vectors
(λf(n)), n � N . In other words, a general linear form

Lf(α) =
∑
n�N

αnλf(n)

is quite often small relative to the �2-norm

‖α‖2 =
∑
n�N

|αn|2.

Of course, one cannot beat the trivial bound |Lf(α)|2 	 N‖α‖2 for

any given f (just choose αn = λf(n)), but a non-trivial estimate for
the average is possible because distinct fεF pretend they do not see
each other. The best estimate one can hope for is∑

fεF
|Lf(α)|2 	 (|F| +N)‖α‖2.

Indeed, if F is a sufficiently large family, such a result is known in
literature as the large sieve inequalities (just a name!). First, the large
sieve inequalities were established for the Dirichlet characters (GL1

forms so to speak) and later in the 1980’s for the GL2 cusp forms.
Needless to say, such kind of estimates came by a demand and they
are extremely powerful in applications. In practice, the large sieve
inequalities are as good as the Grand Riemann Hypothesis itself (see
the classic book of E. Bombieri [B]).

Let me mention a large sieve inequality for the family Fχ, which
is an orthonormal basis of Sk(Γ0(q), χ), k � 2. Define the coefficients
ψf(n) by

f(z) =

∞∑
1

ψf(n)

(
(4πn)k−1

Γ(k − 1)

) 1
2

e(nz)

(a new more convenient normalization of Hecke eigenvalues). We have∑
fεFχ

|
∑
n�N

αnψf (n)|2 =

(
1 +O

(
N

q

))
‖α‖2
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where the implied constant depends only on k. This shows that the
normalized coefficients ψf (n) have size about q−

1
2 on average; and if

q � N , most of the linear forms

Mf(α) =
∑
n�N

αnψf (n)

enjoy a cancellation of terms due to the variation of the argument of
ψf(n). By comparison with the trivial bound, we gained a factor N

1
2 ,

which is the maximal possible.
The larger the family F that is put into the play, the stronger or-

thogonality that comes out. Driven by this principle, X. Li performed
(in a forthcoming thesis at Rutgers) extra averaging over the charac-
ters χ( mod q). Yes, she did get extra savings, but surprisingly not
the maximal one which one would hope for by speculating with the
Grand Riemann Hypothesis, or by applying generally accepted heuris-
tical arguments. In fact, one of her results asserts that

2

ϕ(q)

∑
χ( mod q)

χ(−1)=(−1)k

∑
fεFχ

|Mf(α)|2 =
1

q

∑
h�Nq−1

∑
t�Nq−1

(t,q)=1

|Pht(α)|2 +O(N ε‖α‖2),

where q is prime, αn are any complex numbers for n � N with q �
N � q2 and

Pht(α) =
2π

t

∑
n�N

αnS(hq, n; t)Jk−1

(
4π

t

√
hn

q

)

is the dual linear form. Here, S(hq, n; t) is the original Kloosterman
sum and Jk−1(x) is the Bessel function. The error term is superb, but
the dual linear form Pht(α) can be made exceptionally large. To this
end, fix h, t and choose the coefficients

αn = S(hq, n; t)Jk−1

(
4π

t

√
hn

q

)

(call them “absolute” Kloosterman sums), showing that

Pht(α) �
(
qN

h

) 1
4

‖α‖.

Hence, some of the original linear forms Mf(α) must be as large as
Pht(α) above. This is quite a disturbing discovery because it means
that the Fourier coefficients ψf (n) (so also the Hecke eigenvalues λf(n))
bend towards the direction of the vector α = (αn) of absolute Klooster-
man sums. Changing h and t, we get a panorama of favorite directions.
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A quantitative analysis reveals more surprises, but we have no room to
discuss them in these lectures.
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5. Orthogonality of Elliptic Curves

The demand for orthogonality of Hecke eigenvalues becomes harder
when the family is small relative to the size of the conductor. Of special
interests are the families of elliptic curves

E : y2 = x3 + ax+ b, ∆ = −16(4a3 + 27b2)

where a, b εZ, 1 � a � A, 1 � b � B. The corresponding modular
forms fab(z) are primitive cusp forms of weight two and level q �
X = 16(4A3 + 27B2). We have about AB 	 X

5
6 such curves while

the total number of all primitive cusp forms of weight two and level
q � X is about X2. Therefore we are dealing with a very small subset
indeed. Moreover the coefficients a, b in the Weierstrass equation do not
need to run over all integers in segments so one can select still smaller
subfamilies without destroying their integrity (spectral completeness).

If m is odd square free, the Hecke eigenvalue for the cusp form
fab(z) is given by the character sum

λab(m) =
µ(m)√
m

∑
x(mod m)

(
x3 + ax+ b

m

)

where µ(m) is the Möbius function (a vital factor in certain investi-
gations). In addition to λab(m), it is also interesting to consider the
reduced character sums

λ∗ab(m) =
µ(m)√
m

∑
x(mod m)
(x,m)=1

(
x3 + ax+ b

m

)
.

Note that

λab(m) =
∑
d|m

µ(d)√
d

(
b

a

)
λ∗ab
(m
d

)
.

The orthoquality of λ∗ab(m) is very good, as the following estimate
shows

Theorem. For any complex numbers αa, βb we have


∑
1�m�M

|
∑

1�a�A

∑
1�b�B

αaβbλ
∗
ab(m)| 	 ‖α‖ ‖β‖(M+

√
A)(M+

√
B)M−1+ε

where the implied constant depends only on ε (the superscript � re-
stricts the summation to square free numbers).

Observe that we have stated the result in a fashion which is dual
to the large sieve type. By trivial estimation using Hasse’s bound
λ∗ab(m) 	 τ(m), we would only get ‖α‖ ‖β‖√ABM . For applications,

one wishes to save slightly more than M
1
2 , while our theorem does
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satisfy the wish if M2 	 AB . Choosing A = X
1
3 and B = X

1
2 , we

have elliptic curves of discriminant ∆ab = −16(4a3 + α+ b2) 	 X and

we obtain the desired saving factor of M
1
2 by the theorem, provided

M 	 X
5
12 . This is quite a large range, yet not completely satisfying.

For example, to estimate correctly the Hasse-Weil L-functions, one has
to pass the barrier at M = X

1
2 . The following conjecture would open

the barrier, and it sounds plausible.
Conjecture. For any complex numbers γm supported on square free

numbers, we have∑
1�a�A

|
∑

1�m�M
γmλab(m)|2 	 (A+M)

∑
1�m�M

|γmτ(m)|2

where the implied constant may depend only on b slightly.
When b is a square, we have elliptic curves of positive rank. The

conjecture in this case would be helpful for solving the class number
problem of the imaginary quadratic fields K = Q(

√
D), the goal being

h(D) �
√
|D|(log |D|)−1.

The large sieve type inequalities for families of elliptic curves also have
applications (indirectly) for estimation of the analytic rank. These
questions are addressed with very strong results in recent Ph.D. theses
by S. Miller (Princeton) and M. Young (Rutgers).
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