NSF-CBMS Regional Conference Series in Probability and Statistics Volume 8

ANALYSIS OF LONGITUDINAL AND CLUSTER-CORRELATED DATA

Nan Laird Harvard University

Institute of Mathematical Statistics Beachwood, Ohio American Statistical Association Alexandria, Virginia Conference Board of the Mathematical Sciences

Regional Conference Series in Probability and Statistics

Supported by the National Science Foundation

The production of the *NSF-CBMS Regional Conference Series in Probability and Statistics* is managed by the Institute of Mathematical Statistics: Patrick Kelly, IMS Production Editor; Julia Norton, IMS Treasurer; and Elyse Gustafson, IMS Executive Director.

Library of Congress Control Number: 2004102584

International Standard Book Number 0-940600-60-9

Copyright © 2004 Institute of Mathematical Statistics

All rights reserved

Printed in the United States of America

Contents

	Pre	face	i
	Ack	nowledgments	ii
1	Lor	ngitudinal Data Analysis	1
	1.1	A Linear Model for Correlated Data	6
	1.2	Examples and Special Cases	13
	1.3	Models for the Variance/Covariance Matrix $\ldots \ldots \ldots$	19
	1.4	Cross-sectional versus Longitudinal Effects	21
	1.5	Missing Data Issues	27
2	Estimation in the LMCD Assuming Normally Distributed Errors and Complete Data		
	2.1	ML Estimation of β and Σ	39
	2.2	Properties	41
	2.3	(REML) Restricted Maximum Likelihood Estimation	42
	2.4	REML Estimation: A Bayes Approach	47
	2.5	Patterned Σ	48
	2.6	Closed Form Solutions for $\widehat{\beta}_{ML}$, $\widehat{\Sigma}_{ML}$ and $\widehat{\Sigma}_{REML}$.	48
3		imation in the LMCD Assuming Normally Distributed ors with Unbalanced Designs/Missing Data	53
	3.1	ML and REML Estimation for the Unequal n_i Case	54
	3.2	A General Formulation for Incomplete Data	57

	3.3	Derivatives of the Log-likelihood for the Incomplete Data Model and the EM Algorithm	. 59		
4	Semi-Parametric Estimation in the Linear Model for Cor- related Data				
	4.1	Weighted Least Squares Estimators of β	66		
	4.2	Properties of the Weighted Least Squares Estimator	67		
	4.3	Weighted Least Squares with Data-Dependent Weight Func- tions			
	4.4	Estimation of the Optimal Weight Function	70		
	4.5	Locally Optimal Weighted Least Squares	72		
	4.6	Model Based and Robust Variance Estimation	72		
	4.7	Joint Estimation of β and θ	74		
	4.8	Efficiency of OLS Estimators	75		
	4.9	Remarks	77		
	4.10	Studies with Clusters of Random Size or Missing Data	78		
5	Rar	ndom Effects and the Linear Mixed Model	81		
	5.1	Two-Stage Random Effects Models	82		
	5.2	A Linear Mixed Model (LMM)	87		
	5.3	ML Estimation for the LMM	89		
	5.4	REML Estimation in the LMM	92		
	5.5	Estimating the Random Effects	94		
6	Longitudinal Data Analysis for Counts and Binary Out- comes: Generalized Estimating Equations (GEE) 99				
	6.1	The Generalized Linear Model (GLM) for Univariate Outcomes.	100		
	6.2	Generalized Linear Models for Longitudinal Data	104		
	6.3	Estimation via GEE.	106		
	6.4	Estimating the Correlation Matrix.	108		
7	Like	elihood Models for Repeated Binary Data	113		
	7.1	A brief overview of log-linear models	115		

	7.2	The Multivariate Logistic Transform (MLT)	118
	7.3	A Mixed Parameter Transform	120
0	D	dense Triffe et e Mandelle Gere Dense et el D'une - De te	105
8	Ran	dom Effects Models for Repeated Binary Data	125
	8.1	GEE approach to estimating β \hdots	127
	8.2	Likelihood Approaches	129
	8.3	An Approximate Likelihood Approach: PQL	130
9	Non	ignorable Nonresponse	133
	9.1	Terminology	135
	9.2	Methodology: General Comments	136
	9.3	Examples	140

Preface

The analysis of data with outcomes measured repeatedly on each subject has experienced several transforming developments in the last twenty years. This monograph presents a unified treatment of modern methods for longitudinal and/or correlated data that have developed during this period. The basic approach that we take to modeling longitudinal data is to extend familiar univariate regression models to multivariate or correlated outcomes. We deal with linear models for measured data and generalized linear models for binary and count data. We show how methods can accommodate missing outcomes and/or unbalanced designs. Both likelihood and moment methods of estimation are covered, as are random effects approaches to data modeling and parameter estimation.

The monograph assumes that the reader has a solid foundation in statistical inference, linear and generalized linear regression models, and a basic knowledge of multivariate methods. It is appropriate for second year doctoral students or postdoctoral fellows in Statistics/Biostatistics as well as researchers or faculty interested in learning about the field.

Acknowledgments

This monograph grew out of notes written for a course on longitudinal/multivariate data analysis taught by myself and others at the Harvard School of Public Health. I am grateful to many collegues and former students for their comments and contributions to the monograph. I am especially indebted to Andrea Rotnitzky, who wrote drafts of several sections of Chapters 1, 3 and 4. I am also grateful to Stuart Baker, Christl Donnelly, Garrett Fitzmaurice, Joe Hogan, Nick Lange, Stuart Lipsitz, Nick Horton and Jim Ware for collaborations over the years which have contributed greatly to my own work in this area. Roman Torgovitsky provided especially helpful comments on the monograph at a crucial point. Finally, the impetus to turn course notes into a monograph came when Paul Speckman organized a National Science Foundation workshop on longitudinal data at the University of Missouri at Columbia. I am grateful for the NSF support, and to NIGMS for supporting my research in longitudinal data during the last twenty years.