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1. Introduction

A Galton-Watson process Z. can be thought of in the following way. There is
one cell alive in generation zero. This cell dies and gives birth to a random
number Z1 of baby cells in the first generation. Each of these cells dies and gives
birth to a random number of cells in the second generation. The number of cells
in the second generation is Z2. The process continues; Z. is the number of cells in
the nth generation. The number of daughters born to a cell is allowed to be a
random variable whose distribution depends upon the generation of the cell in
question. In this paper the following questions are answered under certain
conditions.

(i) What are the mean and variance of Z.?
(ii) Does Z./E(Zn) converge to a nonzero and nonconstant random varia-

ble W?
(iii) If the answer to (ii) is yes, what are the mean and variance of W?
(iv) What is the behavior of P(Zn # 0) for large n?
If X and Y are random variables and A and B denote events, then E(X) is

mean of X, Var (X) is the variance of X, E(XIY) is the conditional mean of X
given Y, P(A) is the probability that A happens, and P(A IB) is the conditional
probability that A happens, given that B occurs. This paper is the first chapter
of [1].

2. Definition of Zn, the probability generating function of Zn,
and the Markov nature of Zn

First, Zn is defined inductively. Let Xn,k, for n = 0, 1, 2, * , k = 1, 2, **,
be a family of independent nonnegative integer valued random variables such
that, for n fixed, Xn,, k = 1, 2, * , are identically distributed. Define Zo = 1,
and having defined Z., define

(1) Xn+i= FXn,k if Zn 2 1,

O0 if Z,, = 0.
159
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This definition may be expressed more simply by allowing the equation
0

(2) E ak = 0
k=1

to be true for any sequence ak. This convention will be followed throughout the
rest of this paper. With this convention,

(3) Zn+1 = ; A, Z. 2 0,
k=1

for n = 0, 1, 2, - - .
In the rest of this paper, s will denote an arbitrary number such that

0 < s _ 1. Let

(4) fn(s) = E P(X, l = j)si
j=o

for n = 0, 1, 2, *-. Then ft(s) is called the probability generating function of
X.j. The probability generating function of Z. will now be determined. Let

(5) f°(s) = , fn+ (s) =fn(fn(s)).

PROPOSITION 1. The probability generating function of Zn is fn(S).
PROOF. Let fR(s) be the probability generating function of Zn. Evidently

Proposition 1 is true when n = 0. Assume Proposition 1 is true when n =k:

(6) fk+1(8) = E(sZk+1)

= , E (S2-1 XkilZk = m) P(Zk = m).
m=0

Now since the Xkj are independent of Zk,

(7) fk+l(s) = E (I X) P(Zk = m).
m=0

Since the Xk,, are themselves independent,

(8) fk+l(s) = E (E(sXk.1))mP(Zk = m)
m=0

= k(fk (8)) = fk+l(s)

by the induction hypothesis and (5). Thus, Proposition 1 is true. Let Zn,O = 1,
and having defined Zn,k, let

z.,h
(9) Zn,k+l E X.+k,j-

j=0

Now Zn,k, for k = 0, 1, 2, * , may be interpreted as follows. One cell is alive
in the nth generation; this cell dies and gives birth to a random number, dis-
tributed as Xn,l, of baby cells. Each of these cells dies and gives birth, inde-
pendently of one another, to a random number, distributed as Xn+1,1, of baby
cells. This process continues for k generations, giving rise to Zn,k (n + k)th gen-
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eration cells, having started with one nth generation cell. Notice that Zo,k is the
same as Zk.
For n = 0, 1, 2, * , let f°ff+(s) = s, and having defined f.+k(8), let

(10) fk+l+'(g) =f-+'(fk+.(S))
PROPOSITION 2. The probability generating function of Zn,k isfnn+k(8)*
PROOF. The proof of this proposition is practically the same as for Proposi-

tion 1.
PROPOSITION 3. Let Z.,k,1 j = 1, 2, , be independent and identically dis-

tributed random variables, distributed like Zn,k and independent of Z,1 Zn-,, *--,
Z1, Zo. Then Zn+k is distributed like

Z.
(11) E Zn,k,j'3=0

or, what amounts to the same thing, for each nonnegative integer k,
(12) fn(fll+k(S)) = fn+k(S), n = 0, 1, 2, ...
PROOF. Certainly (12) is evident when k = 0. Assume (12) is true when

k = t. Then, by (10),
(13) f n(pn+'+'(S)) = f n[fn+V(n+1(8M)]
By the induction assumption,
(14) fn[fr+1(fn+j(8))] =rf (f.+j(8)).
By the definition of fn+'+1(8),
(15) fn+1(f +,(8)) =fn+t+1(8).
Thus, (12) is true for k = 0, 1, 2, * - - .
COROLLARY 1. The branching process Z. is a Markov chain.
PROOF. Let ni, * , n, be less than n, and let

(16) n, = max {nj}.

By Proposition 3,
(17) P(Z. = tnj = m * ,XZn = 4ni)

= P( Zni,n-ni,i = tnlZn, = 4,, * =Z tn)

=P E Znj,n-n,i = tnlZni = tn

since the Znin_i,i i = 1, 2, * , are independent of Zn1, Zn, * * Zn. So Cor-
ollary 1 is true.
Note that Zn is not necessarily a stationary Markov chain. It would be sta-

tionary if the Xn,k were identically distributed for all n and all k, in addition to
being independent; however, in that case, Zn would be the ordinary Galton-
Watson process studied in [2] and in [3].
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3. The mean and variance of Zn; the convergence of Zn/EZn

In the rest of this paper, products of the form
n

(18) aoal... a. = II a
j=0

will frequently be used. For simplicity, the convention
-i

(19) II as= 1
j=0

will be adopted for all sequences a,.
Much of the theory concerning the asymptotic behavior of Z,n(as n X ) will

now be developed, frequently using the methods in [2]. Let

(20) mn = E(Xn,1), n = 0, 1, 2, *--,

and suppose from now on m, < cc.
PROPOSITION 4. The expectation

n-1
(21) EZn= II m,

j=0

and
n+k-1

(22) EZ,',k II mj
j=n

for k = 0, 1, 2, .
PROOF. Equation (21) will be proved. The proof of (22) is very much the

same. When n = 1, equation (21) is true because

(23) E(Zo) = El = 1.

Now assume (21) is true when n = k. Then

(24) E(Zk+l) = E (E Xk,j) = E(Zk)E(Xk,l),

since Zk is independent of the Xk,j. Thus, Proposition 4 holds.
Let

(25) Wn = E(Z.) n =0, 1, 2,*.

Here and from now on it is assumed the mn > 0.
PROPOSITION 5. The random variable W. is a martingale.
PROOF. By (21),

(26) E(W.+kIW.) = (+kIZ1')
II mj
j=O
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Thus, by Proposition 3,

E ( L Z. k jlZ")
(27) E(WE+(lWz) = n;k-i

II mj
j=o

ZnE(Zn,k ,l)
n+k-1
IIn,
j=O

Thus, by (21) and (22),
Zn

(28) E(Wn+kIWn) = E(Z ) - W^.

Moreover, by Corollary 1, Wn is a Markov chain; hence,

(29) E(Wn+klWn, Wn-, *-- X, Wo) = E(Wf+klWf).
So Wn is a martingale, which was to be proven.
COROLLARY 2. The random variable W. approaches a random variable W al-

most surely as n -* 00; moreover, EW < oo.
PROOF. For all n,

(30) EjW.1 = EW. = 1.

The martingale convergence theorem (see, for example [5], p. 396) may now be
applied to W. to yield Corollary 2.

Unfortunately, it is possible for W to reduce to zero almost surely. For exam-
ple, this is the case if the Xn. are independent and identically distributed with
mean less than or equal to one (see [2], pp. 7-8; in this vein, also see [2], p. 14).
Now, necessary and sufficient conditions will be developed for the convergence

of W, to W in quadratic mean as n -* oo. These conditions will then be easily
seen to guarantee that W is not almost surely equal to zero.

Let

(31) an = Var Xn,l, n = 0, 1, 2,*.

It will be assumed from now on that ol <0.
PROPOSITION 6. The variance

/n-1 M2 n-I r2
(32) Var Z _0 i)IIm2E lk n = O, 1, 2, * mj

j=o

PROOF. First, formulas willbe determined for the first and second derivatives
fn'(s) and fn" (s), respectively, of fn(s):
(33) f n'(s) = fn-11(f._1(s))f _.(s),
(34) f n"(s) = fn-1"(f._-(s)) (f-_(s))2 + fn1(f._-(s))fn'-i(8).
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Now if X is a nonnegative integer valued random variable with probability
generating function g,

(35) EX = g'(1),
(36) Var X = g"(l) + g'(1) -(g(l))2
whenever the quantities on either side of these equations are finite.
Due to the finiteness of m. and an, it can be seen inductively that the quantities

in (33) and (34) are finite. Upon substituting s = 1 in (34) and using (21), (35),
and (36), it is seen that for n = 1, 2, * * -,

n-2 (n-2 \2
(37) Var Zn = Var Zn-1- .nj mj + (i2 is)2) mn-I

n-2 n-1i n M)2
+(an-n+-n-i) II mj + II m,-III ,).

j=O j=O j=O /
So, upon simplifying this equation,

n-2
(38) Var Zn =mn Var (Zn_-1) + n- I mj.5=0
Thus,
(39) Var Zn Var Zn-1 + __n_-
(39) ~~~~n-1 n-2 -+ n-2

II mj II mj m_ III m1
j=0 j=O j=O

Hence, since Var ZO = 0, summing both sides of this equation yields

(40) ~~~~~~VarZn n 2kt(40) (n-1 2 E k-2
(Imj m_1 ][I Mi

Xj=O j=O
Finally,

(41) Var Zn = (II m,) k

j=0
'which was to be proven.

COROLLARY 3. The variance
n-1 k(42) VarW ° Ik-1k=0 2 i

j=0

PROOF.

(43) VarW. = VarZn _ Var Zn
(43)VarWn = Var_1 - n-1 \ 2
- I~~~~]I mj IIIm

j=0 j=O

and Corollary 3 follows from Proposition 6.
LEMMA 1. The expected squared difference

(44) E((Wn+k - Wn)2) = E(W k)- E(W2).
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PROOF. We know

(45) E((Wn+k - W.)2) = E(W2+k) - 2E(W,n+kW.) + E(W2).
Now
(46) E(W.+kWn) = E(E(W.+kWnjWn)).
So by Proposition 5 and Corollary 1,

(47) E(Wn+bWn) = E(E(WnIlW)) = E(Wn).
Thus Lemma 1 is true.
The following theorem is a consequence of Corollary 3 and Lemma 1.
THEOREM 1. The following statements are equivalent:
(i) Wn converges in quadratic mean to W, with EW = 1 and

2

(48) VarW= E k-l <cM;
k=Om IImk

j=o
(ii)

m 2

(49) lim VarW =. k-i <c°°
jkO

PROOF. Statement (i) certainly implies (ii). Assume now that (ii) is true.
Then by Corollary 4 and Lemma 1, W. converges in quadratic mean to a random
variable W* with E(W*2) < oo, using the L2 completeness theorem (see, for
example [5], p. 161). Thus, there is a subsequence W., of W. such that Wn'
converges almost surely to W*. But it is known from Corollary 2 that W., ap-
proaches W almost surely as n a-+ o. Hence, W and W* coincide almost surely.
The mean and variance of W will now be determined. By the triangle inequality,
(50) EWn- ElWn- W < EW _ EWn + ElWn- Wl.
Thus, EW = 1, since EWn = 1 for all n, and the L2 convergence of W. implies
the L1 convergence of W, (see, for example [5], p. 164). By the Minkowski
inequality,

(51) (Var W.)% + [E((W -W)2)]
> (Var W)% > (Var W.)% - [E((Wn - W)2)]%.

Notice that the finiteness of the left side for n sufficiently large follows from
the facts that Var Wn < Xo and E((Wn - W)2) -+0 as n -* oo. Thus, it is valid
to apply Minkowski's inequality for n sufficiently large. By letting n --+ Xc and
squaring in (51), it is seen from Corollary 3 that

2

(52) VarW = k-i < X
k=O m2 IIm3

j=0
which was to be proven.
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COROLLARY 4. If (ii) in Theorem 1 is true, then W is not almost surely equal
to zero. Moreover, if in addition, on > 0 for some n, then W is not a constant almost
surely.
PROOF. If (ii) is true, then EW = 1, so W cannot be equal to zero almost

surely. If in addition an > 0 for some n, then Var W > 0, so W cannot be a
constant almost surely.

4. Rate of convergence of Zn to zero in probability when mn -+ 1 as n -X c

In what follows, it will be assumed that the series in (ii) of Theorem 1 diverges,
that is Var Wn -a ) as n -- c. Sufficient conditions on the fn(s) will be deter-
mined to allow

n -

(1-fn+l(s))-l ((1 - s) :II m) 1
(53) (1- VarW l -2as n-oo

uniformly in s, for 0 < s < 1.
The methods used to establish (53) will be the same as those in [2] (see pp.

20-21), except that some preliminary lemmas will be needed. Also the assump-
tion of a third moment (that isf"'(1) < o) is dropped. Equation (53) is analo-
gous to Lemma 10.1, equation 10.1 of [2] (see p. 20). Presumably, the methods
in [4] (see p. 515) can also be modified to yield (53) under appropriate conditions.
In [4] the condition thatfn"(1) <0 was dropped. Under the conditions imposed
on fn(8), it will then easily be seen that P(Zn 3£ 0) behaves like 2/Var Wn as
n -. oo. Thus, Corollary 4 is about as good as can be expected, as far as the
nondegeneracy of W is concerned.
The conditions on fn(s) are that for some B < o and some probability gen-

erating function f(s), with f'(1) = 1 and f"(1) < 0,
(a) B > mn 2 1 for all n, and Mn -1 as n -- 00;
(b) B > d, > 1/B for all n, and there is a function, On(S), bounded on

0 s - 1 uniformly in n, where

(54) On(S) --*o(1 - s) 2

as s increases to 1 uniformly in n, and

(55) 1 -fn() = Mn(l - S) - 2fn (1)(1 - 8)2 + On(s);
(C) fn(s) - f(s) as n a-+0 uniformly in s; and
(d) 1 -fn(°) _ 1/B for all n.
THEOREM 2. If (a), (b), (c) and (d) are true, then so is (53).
It can be seen from the proof of Theorem 2 and the proofs of the preliminary

lemmas that (a) through (d) are not the only possible set of conditions needed
for (53). The basic idea of these conditions is to force fn(s) to behave eventually
very much like f(s).

For the rest of this paper assume (a) through (d) hold and let f(k) (s) be the
k-fold iterate of f(s).
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LEMMA 2. For each n,
(56) q= lim fnk(°)
exists.
PROOF. The probability that Z,,k iS equal to zero isf.+'(0). Evidently, from

the inductive definition of Zn,k, this probability is nondecreasing as k increases.
Hence, f"+k(0) is a nondecreasing sequence in k, bounded above by 1. Hence,
limfjn+k(0) exists. Notice that qn may be interpreted as the probability that the
branching process Zn,k dies as k -> oo. None of the assumptions (a) through (d)
are needed for Lemma 2. However, under these assumptions, Theorem 2 yields
the fact that qn = 1 for all n. Now a weaker result will be proven using (c).
LEMMA 3. Let e > 0 be given. There is an N, independent of s such that k,

n 2 N implies
(57) ~~~~~0< 1 _-fn+k(8) _ a.(57)
PROOF. For all n and k,

(58) 1 -f.±+k(O) 2 1 _f+lk(S) 20
Thus, it suffices to establish (57) when s = 0. Now when j > k, for all n,

fn,+(O) 2, fn+k(°)
as was seen in the proof of Lemma 3. By Theorem 6.1 of [2] (see p. 7), choose
N1 such that

(60) 1 - f(Nf1)(0) _ 2

By the uniform continuity of f(i)(s) forj = 0, 1, 2, N, N- 1 and 0 _ s _ 1,
choose SN1, > 0 independently of j such that Is - tj < 5N, implies

(61) f("-(8) -f (11(t)l|-2N
for j = 1, 2, * , N1; 0 < s, t _ 1. Also, from (c) choose N2 independently of s,
so large that n 2 N2 implies
(62) Ifn (8) -f(s) I < bNu.
for 0 < s < 1. Then for n > N2,

(63) Ifmn+j(f+J+I(8)) -f(fn++Jl'(8))I| _AN .
so

(64) If(i(fn+ (8)) _ f (i+l)(f. +N(s)) |<

for 0 _ s _ 1, 0 _ j _ N1 - 1, and n 2 N2. Hence, for n 2 N2,

(65) Ifiz+NI(O) _ f(N1)(0)I = N|(E)) _-f (i++)(fN+N. (°))
(65) ~ ~aeflIef(fn+
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Thus, for n> N2,

(66) 1 - ffl+N1(8) < 1 -f(N1)(O) + If+N+2(0) - f(Ni)(O) .<.

Let

(67) N = max {N1, N2}.
From (59) and (66) with N1 = k, j, n > N implies
(68) 1 -f"(O) 2 O.
So Lemma 3 is true.
LEMMA 4. There is a constant d such that for all k and for 0 . s < 1,

(69) |1 -fk(8) - mk(l -)I < d < 1.
Mk(l - s)

PROOF. We know

1 -fk(s) - mk(l - s) NPO(l - si)
mk(l- s) = , kmk(l-)

where

(71) Pk; = P(Xk,l = j).
Thus,

1 fk(s) mk(l s) Pki
mk(l - s) j=Mk =0

and the left side of this equation increases to

(73) -1 _mk

as s increases to 1. Hence for all k and for 0 _ s < 1,

(74) 0 > 1 -fk(s) - mk(l - ) > -1 + fk() > +(74)0. Mk(1-s) Mk f
by (a), (b), and (d). So Lemma 4 is true for

(75) d = 1-

LEMMA 5. If 0 _ s < 1, then
(76)

1 1 +An ak
1 -f+l(s)(1) JM, k= mlm1 f +1( )- k ° Mk II Mi

j=o j=o

E Ok(fnk+ 1 (8) ) + E d(fk+1(S)

k=O (1 - fflk(s))2m1 H m fk(1 -
1f&(8))mk II M

jh=0 auO

where ak = f /k (1)/2; dk(8) is bounded uniformly in k for O _< s < 1,



GALTON-WATSON PROCESSES 169

(77) dk(s) O

as s increases to 1, uniformly in k, and Ok(S) is as described in (b).
PROOF. By (b),

(78) 1 -fk(S) = mk(l - s) - ak(l - S)2 + Ok(S).
Thus,

17-f(s) = [Mk(l )(1__ k(S) -1

Or, for 0 < s < 1,

1 + ak(l - s) O_k(s) dks
(80) 1 _Mk Mk(1-s8) + Mk

(80) 1 -fk(S) mk(1 s) M;(1 s)

where dk(s) has, as shall be seen, the required properties. Equation (80) holds
since for all k,

ak s) - Ok(s)I
(81) Mk= -k( - s < d < 1

Mk lS) mk -S)
for 0 _ s < 1, by Lemma 4. (Here Ok(S) is as described in (b).) To see that dk(s)
has the required properties, notice that

(82) d*(s) = 2E u= u
mk j=2 1-U

where
(83) u = ak(1 - s) SOk() 1 -fk(8) - mk( - S) > 0

mk mk(l -s) Mk(l -s)
Thus, for 0 _ s < 1,

(ak(1- ) Ok(8)
(84) ~~~~dk(s) <ik sk MkOs))2(84) 1-

<
1-)1s

by Lemma 4. The right side approaches zero uniformly in k as s increases to
one, by (a) and (b). Moreover, these assumptions also allow the right side to be
bounded uniformly for 0 _ s < 1 and all k.
Now, multiply both sides of (80) by 1/(llt= mj), plug in fk'(s) for s, then

add the resulting equation for k = 0, 1, 2, * , n. After cancellation, it is seen
that Lemma 5 is true.
LEMMA 6. Let A,, be the second term on the right side of (76). Then

A,, 1(85) VTar Wn,+1 2 a
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PROOF. By Corollary 3,
n m2 - mk
E

hk= Mk III M,
(86) A. = Var W+, + =_ ,-i;

Var W.2+, 2 Var W.2+, 2 Var W.+,
and the second term approaches zero as n -X o by a special case of the Toeplitz
lemma (see, for example [5], p. 238), since Var W, - ,

(87 Bn /M k MjI1 n /M k M)-1(87) B k=0 (mk rI mI) 2 Var Wn+1 2 B A mi)1
k=O \j=O k=O j=O

by Corollary 4 and (b), and mk -÷ 1 as k -x o by (a). Hence, Lemma 6 holds.
LEMMA 7. Let

n Ok(f t++I (8)) dk(f't+ (8))
(88) Dn(-) mk I m,(1 -f t (s))2 1 -f"k+:(8)

j=0
Then

(89) D12(8) --+ as n-aVar W.+,1
uniformly in s, for 0 _ s < 1.

PROOF. Let 5 > 0 be given. Choose e > 0 so that 0 < 1 - s < e implies

(90) O)(8 dk(1g) <'

for all k. Let N be chosen as in Lemma 3. Let B1 < X be an upper bound for
the quantity on the left side of (90). Then, for 0 < s < 1,

(91) ID12(s)lI!9 +- 12N k1 B
m=1 11tm[ ki k=N+l mk II m1 kn-N+1 Mk II m,

=O j=O O

for n 2 2N. The truth of Lemma 7 now follows by dividing both sides of this
inequality by Var Wn+l and letting n -) oo, since 5> 0 was arbitrary.
From Lemmas 5, 6, and 7, it is clear that Theorem 2 is true.
COROLLARY 5. Under the hypotheses of Theorem 2,

(92) P(Zn1 0)VarW. -2 as n -*,

(93) Zn2-O0 almost surely as n - oo,

and W = 0 almost surely.
PROOF. The result (92) follows immediately from (53), upon plugging in

s = 0. Also for every k,

(94) P(Z -O0 asn -+oo) P(Zk = 0) = 1-P(Zk 0 0).
So (93) follows from (92), since Var W,, -X o as n -o. Also, for each k,
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(95) P(W = O) 2 P(Zk = O) = 1 - P(Zk# O),
so using (92) as before, P(W = 0) = 1.
EXAMPLE. The geometric probability generating functions

n

(96) f^1(s) = 2n + 1 n = 1, 2,
12n+ 1

provide an example where 1 - fn(0) can be computed explicitly. Assume X..,
has the probability generating function fn(8). Then for n = 1, 2, *

n+(97) m,,..1=
and

(98) or
2 = (2n + 1)(n + 1)
(9)n

From [7] (see pp. 46-47), after some calculations, it can be seen that

(99) f (o) 1 (1k+E )1 1-=1
j=O

for n =1, 2,*. Also,
(2k + 1)(k + 1)

ni 2 n-1
(100) Var Wn = i ,k-i = __k'

k=O m2 lim, (=Ok+) 2k

n-I 2k-+ 1 n 2 n 1
k=Ok(k + 1) == k1+ 1 + k2 k(k + 1)

Hence, (1 - fn(0)) Var Wn -+2, confirming (92).
From the proof of Lemma 5, it seems as though the behavior of iterates of

geometric probability generating functions really ought to determine the behav-
ior of iterates of wide classes of probability generating functions. This suggests
that the theory in [7] might play a role in proving theorems like Theorem 2. It
should be pointed out that the importance of the geometric probability gener-
ating functions was also noticed in [4] (see p. 515).

It is anticipated that results concerning the limiting behavior of Zn, given
that Zn does not approach zero as n -* oo, may be determined by methods in
[2] or [4]. Reference [6] also contains a good survey of these methods.
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