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1. Introduction

This paper will be concerned with the Markovian birth process, and in this
section we shall establish notation and mention some properties of the process.
We suppose that a sequence {Aj: j = 1, 2, ...} of positive constants is given.
Development of the process Z, is controlled by the conditions

±tt+ o(6t) when k = j + 1,
(1.1) P{Z+ = k| Z, = j} = 1 - j 6t + o(8t) when k = j,

o(6t) when k :/ j + 1,j.
We suppose that ZO = 1. In view of well-known applications of this model, it is
sometimes convenient to refer to Z, as the population size.

Let Tn be the epoch of the nth jump in the process Z, for n = 1, 2, , and
write To = 0. Let X, be the sojourn time in state n. that is to say, X,, = T-
T-. A well-known property of the process is that the X,, are independent and
that

(1.2) P{Xj < x} = 1 - e-jX

The mean and variance of the jth sojourn time are

(1.3) EXj=)j1, Var Xj=)2,
respectively. In this paper, we shall make use of the random series formed by
the sojourn times when centered at their means. The nth partial sum S, of this
series is given by

n

(1.4) 8n = (X, - EX,) = Tn - ET,
j= 1

An important property of the birth process is whether or not it is "honest,"
that is, whether or not

(1.5) , P{Z, = n} = 1 forall t . 0.
n= 1
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The next section of the paper will provide an outline of some previous
applications of the sojourn time series, including the well-known criterion for
Z. to be honest. We shall also introduce a further subdivision of the class of
honest processes according to the behavior of the series (1.4).

In Section 3, we shall outline certain facts about summation formulas in a
form suitable for our particular purpose. Then in the main part of the paper
(Sections 4, 5, and 6) we will use the series (1.4) to study limiting behavior, for
large values of the time, in one of the two classes into which we divide the
honest processes. The theory will be developed in Sections 4 and 5, and some
comments and numerical studies will be given in Section 6.

2. Some previous applications of the sojourn time series

The invitation to present a paper at this Symposium included the suggestion
that it should contain a brief summary of results in the topic in the five years
since the last Symposium. However, it seems appropriate to start earlier with
its presentation in 1951 in the first edition of Feller's Introduction to Probability
Theory and Its Applications. In that edition, the following theorem is proved.
THEOREM 2.1. In order that (1.5) shall hold (that is, that the process shall be

honest), it is necessary and sufficient that the series
00

(2.1) Z C71
j=1

diverge.
In accordance with the limitation to countable sample spaces which Feller

adopted in his Volume 1, he did not introduce the sojourn time series, and
Theorem 2.1 was proved by analytic manipulations based on the differential
difference equation for P{Z, = n}. However, in later editions (Feller [2]), the
fact that i- 1 = EXi is noted and some heuristic remarks are added.

In [3], Theorem 2.1 reappears. It is proved as an application of Laplace
transforms to the Kolmogorov differential equations but the sojourn times are
also mentioned. We may quote in the present notation ([3], Chapter VIII,
Section 5): "If lim ET, < o, the distribution of T, tends to a proper limit G.
Then G(t) is the probability that infinitely many jumps will occur before epoch
t." Also in [3], the probability P {Z, = n} is obtained explicitly by noting that it
is the same as P{Tl < t, Tn > t} and evaluating the latter as a sum of
exponentials.
The sojourn time series can be made the primary tool for a proof of Theorem

2.1 and it is used thus, for example, in the text by Breiman [1]. Here a general-
ization to birth and death processes also occurs (see also John [6]). We will not
reproduce proofs that are easily available. The idea is simple: the basic step is to
use Chebyshev's inequality to show that finiteness of the series of means (2.1)
implies that T, has an a.s. finite limit.
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More precise information can also be obtained from the sojourn time series.
P. W. M. John [7] showed that when Ai = )j2, the defect 1 - E P{Z, = n} can
be obtained explicitly in terms of the Jacobi theta function 04(0, e-it). The
author (Waugh [8]) used the theory of Hirschman and Widder [5] about con-
volutions of negative exponential densities to estimate the tail of the density of
Tn in the "dishonest" case and also to estimate the rate at which honest pro-
cesses grow. An essential part of the latter investigation was the division of the
birth processes into three classes, and we shall require this in the present paper.
The classes are:

(2.2) H: the dishonest or divergent birth processes, for which E Aj` < xc
and so a fortiori E A2J < cc, and E Xj is convergent a.s., no
centering being required; here we write a.s. to mean "with
probability 1";

(2.3) H,: honest processes for which E '1 = cc but E 272 < o so that
the centered sojourn time series E (Xj -EXj) converges a.s. to a
random variable S;

(2.4) Hd: honest processes for which both E = cc and E A2 = co.

The process with linear birth rates Aj = jA is both a birth process belonging
to H, and a branching process. As a branching process, it is known to have
associated with it a random variable W such that Z,/EZ --- W a.s. as t -- oo.

(See, for example, Harris [4].) Recently the author [9] used sojourn time con-
siderations to show that W = exp { -AS - y}, where y is Euler's constant. The
rest of the present paper is concerned with the generalization of this result to
the class H,.

3. Summation formulas

We shall require the Euler-Maclaurin summation formula and some related
results. In this section, we shall state them in a form suitable for this particular
problem.

Let f be a real valued function defined on [1, oc) such that

f(n) =

(3.1) f(x) > 0,
f (X) --. 0 as x --- cc,

f is absolutely continuous.

One such function is the trapezoidal approximation given by

(3.2) g(x) = (x - j) (k,-+,, _ C17) + 7 1

for j . x _ j + 1, where j = 1, 2, . We shall be considering processes
belonging to the class H, and in view of the conditions (2.3) on the sequence
{2A}, it will be seen that g satisfies the conditions (3.1). In general, there will be
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an infinity of possible functions f for a given sequence {in}. We shall make
particular use of the function g, but also will find it convenient to use other
functions f.
The Euler-Maclaurin summation formula is

(3.3) f(j) ff(x) dx + [f(1) + f(n)]
j=1 1

+ f;(x - [x] -)f'(x) dx.

Here a square bracket enclosing a single symbol denotes the greatest integer
function. Equation (3.3) holds, of course, under wider conditions than (3.1).
Let

(3.4) P(x) = f(u) du

and

(3.5) k(n) = f (x - [x] - )f'(x) dx + 2[f(1) + f(n)]

Then the Euler-Maclaurin formula (3.3) reads

(3.6) E f(j) - F(n) = k(n).
j= 1

We shall be concerned with functions f for which there is a corresponding
constant k such that k(n) -- k as n -x ce.
EXAMPLE 3.1. If Aj = j then we can takef(x) = x ,giving F(x) = log x.

It is well known that k(n) y, which is Euler's constant.
EXAMPLE 3.2. For the trapezoidal function g, we have the integral

[x]-1

(3.7) G(x) = 2A1 + E C + 12 [x]l + 2(X - [x])([X, + A[X 1])
j=2

The integral portion of the remainder term in (3.3) vanishes and (3.3) or equi-
valently (3.6) is just

n

(3.8) E g(j) - G(n) = '()A`' + A1

as n -.

4. A limit theorem for the class H,
4.1. The limit theorem.
THEOREM 4.1. Let Z, be an honest birth process for which the centered sum

of sojourn times is convergent, that is, {Z,: t 01} e H, Let f be a function satis-
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fying (3.1) for which (3.6) converges. Let F be the integral (3.4) and k the corres-
ponding constant. Then

(4.1) lim {F(Z,) - t} = -S -k a.s.

PROOF. Since Tj is the epoch at which the population size jumps to j + 1,
we have the equivalent events

(4.2) {Z, = n} {T,11 < t, Tn> t}.
Hence,

(4.3) Z, = max {n: Tn1 _ t}
= max {n: t - ET,- - S, . 0}.

Now ET,-, = 2` + A-' + ±+ `,.
Hence, for each t. there is a largest

integer n for which the inequality in (4.3) holds because t - ET1l -- -oc.
while S_1 S which is finite a.s. Also, Z, -- cc as t -o cc. We can rewrite (4.3)
as

(4.4) Zr = max {n: t - S - (Sn- - S) > ETn-,1}.
Using (3.6), we have ET,1 = F(n - 1) + k(n - 1) which gives

(4.5) Z, = max {n: t-S-(Sn~i-S) _ F(n- 1) + k(n- 1)}
= max {n: F(n - 1) < t - S - k + S - 8l- k(n - 1) + k}

Let E > 0. Since Sn1 -S a.s. and k(n - 1) -- k, as n -+ oc, there is a.s. an

integer no such that

(4.6) I-S -l8,-k(n - 1) + k| <

for all n > nO. Thus, for t > T,01. we have

(4.7) max {n: F(n - 1) . t - S -S k - } < Z,
< max {n: F(n - 1) _ t - S - k + 4

a.s.
Now, since f never vanishes, F is strictly monotone increasing: hence, it has

a well-defined inverse function F'1 (also increasing) and we can write (4.7) as

(4.8) min {n: n > F '(t - - k-)} < Z

< min {n:n > F`(t - S - k + c)}.

Now

(4.9) F (t -s - kd-ie) < min {n: n >Fs(t1-.i-mk-l

and the two sides of (4.9) differ by at most 1. Similarly,

(4.10)\ min {n: n > F- 1(t -S8 - k + c)} < F- 1(t -S8 - k + 8) + 1



506 SIXTH BERKELEY SYMPOSIUM: WAUGH

so that (4.8) gives

(4.11) F-1(t - - k -) < Z, < F-1(t- S - k + e) + 1.

Since F1 is strictly monotone increasing, this gives the two inequalities

t- S - k < F(Z),
(4.12) F(Z,- 1) < t-S-k +
Now

(4.13) F(Zt) -F(Zt- 1) = f (u)du O

a.s. as t -- cc, since f(u) 0 as u -x cc, while Z, o- a.s. Applying this to
(4.12), we can clearly obtain

(4.14) t-S-k-2e < F(Z,) < t-S-k + 2e

a.s. for all sufficiently large t, and since E was arbitrary this proves (4.1).
4.2. Approximation based on (4.1). Branching processes. The limit (4.1) can

be written as an approximation valid for large t:

(4.15) Z F-1(t - S - k)

so that for large values of the time, the stochastic fluctuations of the population
size are accounted for by the single random variable S. Now as mentioned in
Section 2, for a large class of branching processes it is known that there is a
random variable W such that the population size Y, suitably reduced has W as
its limit

(4.16) Y- W
EY,

a.s. as t -x c. Thus, the branching processes and the class H, of birth processes
have in common this property that their values for all sufficiently large values
of time can be approximated by a function of t and of a single random variable.
Later (Section 5.2, Case (i)), we shall apply our results to the Markovian binary
fission process, which is both a branching process and a birth process of the
class H, and compare (4.16) with the particular version of (4.15).

4.3. "Stochastic lag" in the development of a population. For many branching
processes, EY, is proportional to ePt where p is a constant (the "Malthusian
parameter"). Thus for large t, (4.16) can be written as an approximation

(4.17) log Y, z pt + log W.

In biological experiments, the logarithm of the population size is sometimes
plotted and observed to follow, approximately, a straight line. Here the popu-
lation, perhaps supposed to descend from a single individual at some past time,
has already reached a substantial size at the time of observation. If growth were
actually deterministic, commencing with a single individual at time zero, the
logarithm of the population size would simply be represented by a straight line
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through the origin. However, it will be seen that the approximate value of
log Y. in (4.17) vanishes for a time T given by

(4.18) T = -p-1 log W.

This hypothetical starting time for the population will be called the (stochastic)
lag. It is the counterpart, for the model, of the intercept on the time axis obtained
by extrapolating back an observed graph from an experiment. Such observations
are frequently interpreted in the biological literature as indicative ofa disturbance
in the conditions of growth at the outset (while the population, for example a
clone of malignant tissue cells, is too small to be observed). Thus, it is important
to investigate the distribution of T.

Reference to (4.15) will show that our size dependent birth processes also
exhibit a lag phenomenon, in fact, since F(1) = 0, T will always be given by

(4.19) T = S + k.

In Section 5, we shall obtain T explicitly for the special birth processes that we
introduce there.

5. Application of the limit theorem in some special cases

5.1. General {AJ, trapezoidal approximation. Substituting the function G
of (3.7) in the limit (4.1), we obtain

Z, - 1

(5.1) 4j' + E ±+ - t -S-s 'A-
j=2

Since Z, -X and hence '2A' --- 0 a.s., we can add 'Azj to either side and state
the resulting theorem.
THEOREM 5.1. As t tends to infinity,

Z,

(5.2) E -1 -t -s a.s.

PROOF. The simplicity of the limit (5.2) suggests the possibility of a proof
without the use of (4.1) and this can in fact be given as follows. At any time t,

Tz, is the epoch of the next jump and Xz, is the duration of the current sojourn
time. Thus, we can write

(5.3) t = OXz,
where 0 _ 0 . 1. Thus,

(5.4) E 2f 1 - = OXz -Tz - E1 2 1
j=1 j=1

= oXzt - Szt -

a.s. as t -- o, since Z. -- e and Xz, -+0 a.s.
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5.2. A, proportional to apower of n. Let Aj = (jA)l for a fixed constant A > 0.
The conditions (2.3) are satisfied provided that 2 < a _ 1. We can takef (x) =
(Ax) ` for all positive x and, of course. we can obtain F in closed form. There
are two cases which we shall treat separately. If a = 1 then the birth process is
also a branching process, the birth rate per head per unit time is independent of
the population size. If a 7& 1 this is not so.

Case (i): a = 1. (See Example 3.1). We have F(x) = A-1 logx and k = y1A.
Hence using Theorem 4.1, we get

(5.5) log Z, - At -)- S-A y

a.s. as t -- olD.
To compare (5.5) with the result (4.16) from the theory of branching pro-

cesses, note that EZ, = eAt so that (4.16) is

(5.6) Ze-t IW

a.s. as t -- o.

Thus, (5.5) is equivalent to (5.6) with W = exp {-AS -y}. As mentioned
in Section 2, this special case of the limit (4.1) will be found in Waugh [9]. The
limit can be stated as an approximation for large t as Z1 t exp {At - AS-y}
and the lag is T = S + (y/2).

Case (ii): 2 < a < 1. In this case, we have

(5.7) F(x) = :(u) ` du

A-=(1 - (x' - 1)

and the remainder term in the Euler-Maclaurin formula (3.6) depends on a. We
shall write the remainder term and its limit as k,(n) -+ as n -- c. The limit
theorem (4.1) gives

(5.8) A-1(1 -ay-i(Zt2 _ 1) - t -+ - - k.

As an approximation for large t, this can be written

(5.9) Zt1 {iA(t - S - k2)(1 - a) + 1}"/'a.
The lag is T = S + k,. Since k- y/1 as a - 1, we see that this lag. and also
(5.9), have the corresponding expressions for Case (i) as their limits.

Note that for a continuously growing deterministic population model given
by

(5.10) dy = (AY)" Y(O) = 1,
dt

the population size is

(5.11) y(t) = {)Lat(1 -a) + 1}1'(-2

which bears the same relation to the stochastic approximation (5.9) as the ex-

ponential eA' does to Z, in the branching case.
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6. Comments, and numerical studies of Theorem 4.1

From the statement of Theorem 4.1 and from the examples of Section 5, it
will be seen that the expression for the limit that is obtained is somewhat
arbitrary, being determined by the choice of the functionf. Clearly, it is only the
expression obtained that is arbitrary and two approximations to Z, stemming
from different choices of f must approach one another in the limit as t -- c0.
Nevertheless, it has considerable implications, in particular for the stochastic
lag. Recalling (4.19), that T = S + k, it will be seen that the constant k. which
is determined by the choice of the function f, enters into the lag. For example,
in Case (i) of Section 5.2 where Aj = jA and f(x) = (Lx) -1 we obtain k =7/.
The trapezoidal approximation g determined by the same sequence {Aj} gives
k = (2A)'. In any case, since ES = 0. we have

(6.1) ET = k.

Of course, this arbitrariness of the stochastic lag corresponds to the fact that
the observed lag is determined by a process of extrapolation. There is often a
natural choice of fitted function, as, for example, when a biologist fits a straight
line to log Yt for a branching process. Similarly, the function (5.7) of Case (ii)
and the approximation (5.9) arise naturally and, in fact, specialize to the case
just mentioned, of a straight line for log Zt, when a = 1.
Some simulations of populations growing with birth rates as in Case (ii) of

Section 5.2 were made and compared with the fitted function (5.9). These
illustrate various points. The simulated populations settled down to approxi-
mately continuous growth quite quickly, say, after time t = 6.0 when a = 0.9
and t = 10.0 when a = 0.7. The time scale is determined by A = 1 which gives
a mean life length of 1 in the branching case.
When ac < 1, (5.9) shows that the approximation to Z, grows as a power of t,

whereas for a = 1 growth is as e't. Nevertheless, it will be seen that for a = 0.9,
over a range which is likely to be of interest in studying cellular colonies, growth
of log Z, is approximately linear. Thus, if growth is moderately size dependent,
the error involved in treating it as a branching process will not be too serious.
For a = 0.7 the departure of log Z, from linearity is more marked. Note that the
birth rate per head is given by n-'An = iltn- 1, which is independent of n when
a = 1 (branching case) and the greatest dependence occurs as a 2 when the
birth rate per head is approximately proportional to 1/ n.
The simulations provided a sample of values of T. Two samples of 100 each

were taken in the case a = 0.7, giving sample means of 0.4660 and 0.7222. The
value of ET = ka for a = 0.70 is 0.5549. It should be noted that Var T is quite
large relative to this mean, being given by

(6.2) Var T = A-22 i j-2e = A-2,(2o)
j=1

where 4 is the Riemann zeta function. For a = 0.7 and A = 1 we have
S.D.(T) ; 1.75.
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The mean k,, is notably insensitive to the value of a in the range 2 < 1,
being 0.5396 (a = 0.50) and 0.5772 (a = 1.00) and varying very nearly linearly.
In view of the variance of T, an approximate mean lag of 0.55 for all degrees of
size dependence in Case (ii) might be adopted without much error.
The four figures illustrate simulations as follows. Figure 1 was made with

a = 1 and is, thus, just a simulation of a branching process. Figure 2 is for
a = 0.9 and Figures 3 and 4 are both for a = 0.7 to show two of the fitted
functions which are shown as dotted lines, and which meet the time axis at
different values of the lag T.

cc~

0.02.0 2.0 3.0 4.0 5.0 0.0 7.0 8.0 0.0 20.0

T AXIS

FIGURE 1
Simulation of birth process with ax = 1.0 (branching process).
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0

o1 _

0.0 0 2,0 1,.0 4.0 5'.0 60 7.0 8.0 0.0 10.0
T AXIS

FIGURE 2
Simulation of birth process with a = 0.9.
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