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1. Description of a desirable model

Let us suppose that we are investigating a system whose state can be ade-
quately specified by n real numbers x1, , x'. We shall suppose that by some
acceptable scientific theory it is predicted that, in the absence of disturbances
from outside the system, the xi develop in time in accordance with certain
differential equations,

(1.1) xi = ~~~~~~gio(t, x), i = ,**,n.

If there are disturbances or noises, n1(t), . nr(t), the underlying theory of
such systems will often permit us to conclude that

(1.2) 0=g(t, x) + E g,(t, x)n (t), i = 1, n,
p= 1

where g, is the sensitivity of the ith coordinate to the pth noise. However in the
underlying theory, equation (1.2) will usually have a limited domain of applica-
bility; in particular, we could not usually retain confidence in the trustworthiness
of (1.2) if the noise were unbounded. But for sufficiently well-behaved bounded
noises we can rewrite (1.2) in the form

(1.3) dx' = gO(t, x) dt + E g'(t, x) dzP,
p

or

(1.4) xi(t) =
xi + gO[s, x(s)] ds + Ef gjs, x(s)] dzP(s),

p

where

(1.5) ZP(t) = zP(a) + nBP(S) ds;
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with bounded nP or Lipschitzian z,, these are solvable by traditional methods, and
(perhaps with still stronger requirements on the z") will describe the evolution
of the system with as much certainty as the underlying scientific theory of such
systems permits.

Usually however, we are interested, not in the response of the system to
specified noises z,, but in statistical properties of the responses of the system to
random noises. As is well known, this causes a dilemma. The processes z" most
amenable to probabilistic study are martingales, especially the Wiener process
and closely related processes. But these have almost surely non-Lipschitzian
sample functions and lie outside the domain of applicability of the scientific
theory that led to (1.4). The integrals with respect to ze in (1.4) cannot even be
interpreted as Riemann-Stieltjes or Lebesgue-Stieltjes integrals. Interpreting
them as Ito integrals restores meaning to all terms in (1.4), but gives no ground
for confidence that the solution (1.4) will continue to represent the time develop-
ment of the system. It is a familiar fact that the uncritical use of (1.4) can lead
to mismatches between system and model that are often considered paradoxical.

E. Wong and M. Zakai have made a major contribution [8]. [9] to the removal
of these "paradoxes." Suppose that we are studying a system which, for
Lipschitzian disturbances ze. is governed by (1.4) with n = r = 1. For notational
simplicity we omit the superscripts on xA, zp. gl, and so forth. Let z be a
Brownian motion process on an interval [a, b]. Let 7r be a finite set of numbers
tl, tk+l with

(1.6) a = t, < t2 < ..< tk+ = b.

and let Z be the process whose sample paths coincide with those of z at the ti
and are linear between them. Then the solutions X of (1.4) with Z in place of z.
that is, the solutions of the ordinary equations

(1.7) X(t) = x0 + J 0gI[s, X(s)] + J g1[s X(s)] dZ(s),
are random variables; and as the mesh of n (that is, max [tj+ 1 - tJ]) tends to
0, the X converge in quadratic mean to a limit x. But this limit is not the solution
of (1.4), but of

(1.8) x(t) = xO + goIs, x(s)] ds + { 1[s, x(s)] dz(8)

2 gl[s x(s)]gl ,[s. x(s)] ds.

(Wong and Zakai have also established this for a more general class of disturb-
ances than Brownian motion processes, see [9].)

These results of Wong and Zakai show us, at least in some important cases,
how to model systems affected by noise. If for Lipschitzian disturbances the
system evolves according to (1.4) (with subscripts and superscripts suppressed),
then if the physically admissible Lipschitzian distances are idealized to Brownian
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motion processes equation (1.4) should be replaced by (1.8). If this is done, the
solution of (1.8) will be close in quadratic mean to the solutions of (1.4) for at
least some Lipschitzian disturbances with finite dimensional distributions close
to those of the Brownian motion idealization.

Nevertheless, it is at least inconvenient, as well as aesthetically unsatisfying,
to have different equations for different types of disturbances. It would be prefer-
able to have a theory of integration that would apply both to processes with
Lipschitzian sample functions, to Brownian motion and to other martingales
that have so often proved useful; and correspondingly, it would be preferable
to have a method of modeling systems that is consistent with the basic model
(1.4) when the disturbances are Lipschitzian and gives "nearly" the same result
when a Lipschitzian disturbance is replaced by a martingale type idealization
that is in some reasonable sense "clos&' to it. More specifically, we shall seek
to replace (1.4) by another set of so called differential equations (really integral
equations) with the following desirable properties.

(a) Inclusiveness. The integrals in the equations should be defined for some
recognizable class of processes ze, large enough to include all processes with
Lipschitzian sample paths and also to include all Brownian motion and such
modifications of Brownian motion as have been useful in applications.

(b) Consistency. For Lipschitzian disturbances, the solutions of the
equations should coincide with the solutions of the equations (1.4) that are
given to us (for smooth disturbances) by the scientific theory of the system.

(c) Stability. This property is not easy to describe precisely. Suppose that
we have introduced some sort of topology in the space of random processes,
so that the convergence of a sequence of processes z1. Z2 ... to a limit process
z is meaningful and is in principle experimentally verifiable, with the customary
allowance for experimental error. Then, under unexcessive restrictions, if
processes (zj. .*, z;) converge to (zl, * * Zr). the solutions (xj, ..x. )
corresponding to the zjP should also converge to the solutions (x1. * x")
corresponding to the limit (z1, , Zr). As a special case, if n = r = 1, the
solution of the equation when z is Brownian motion should coincide with the
solution of Wong-Zakai equation (1.8).

In order to develop such a theory. we must define, for a class of processes with
the inclusiveness property (a) the types of integrals needed in the equations; we
must develop a calculus for these integrals that will permit us to study differential
equations; we must specify the differential equations of our model; we must
show that these differential equations are solvable; and we must show that their
solutions possess the consistency property (b) and the stability property (c).
The remainder of this paper is an outline of the steps in this program.

During the Sixth Berkeley Symposium, I had the pleasure and profit of several
conversations with Professor Eugene Wong. In particular, the present version of
Theorem 9.1 owes its existence to his tactfully expressed dissatisfaction with an
earlier version in which weaker conclusions were drawn from stronger
hypotheses.
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2. Definition of the integral

To avoid repetition, we henceforth suppose that (Q, a?, P) is a probability
triple, that T is a set of real numbers, that [a, b] is a closed interval contained
in T, and also that

(2.1) f = (f(T' co): Tr E T. co E Q), Z' = (z (t. co): t c [a, b], o c- Q),
k =1, q, are real stochastic processes on T and on [a, b], respectively. By
a partition of [a, b] (with evaluation points in T) we shall mean a finite set

(2.2) H = (t1, , 1;
of real numbers such that

(2.3) a =t, S 12 S tt+ 1 = b

and -ri eT,i = 1, , {. The ti are called the division points of 11, and the ci the
partition points of H. (We usually omit the words "with evaluation points in T. ")

Apart from notation, the partitions H with ci = ti were used one hundred
and fifty years ago by Cauchy to define the integral of a continuous function;
so we shall call them Cauchy partitions. Partitions with zi in [ti, ti+ ,] for each i
were used by Riemann, and we shall call them Riemann partitions. But for use
with stochastic processes it proves highly advantageous to use partitions such
that ti > zi, i = 1, , A, and these we shall call belated partitions.

If H1 is a Cauchy, or Riemann, or belated partition, with notation (2.2), we
define
(2.4) mesh HI = max {t+1 - min {tj, rj}:j = 1, *, }.

Corresponding to the processes (2.1) and the partition (2.2), we define the
Riemann sum S( H; f, zl' , zq) to be the random variable (r.v.) whose value
at co (in Q) is given by

(2.5) S(H;f, Z1, * Zq)(C) = E {f(zi; C) 171 [zk(ti+1) - Zk(ti, w)]V
i= 1 k= 1

We can now define the family of integrals that we shall use in our models.
DEFINITION 2.1. The process f has a belated integral with respect to

(z1, -., zq) over [a, b] if, H being restricted to the class of belated partitions of
[a, b], there is an r. v. J such that S(FH; f, z1, ..., zq) converges in probability to J
as mesh Hl tends to 0. Every such J is called a weak version of the integral, and is
denoted (possibly ambiguously) by

b

(2.6) (w) fb(t, co) dz'(t, w), , dzq(t, co).

Such a J is a strong version of the integral, and is denoted by

(2.7) f(t, ow) dz1(t, co), dzq(t, CO),
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iffor each coo in Q such that the limit (with notation (2.2))

(2.8) t (Co0) = lim f(ti, co) l [zk(ti+ 1, 0)0) zk(ti, )w0)]
mesh H - k=l1

exists it is true that J(coo) = {(coo).
As usual, we omit the co when convenient. It is quite easy to show that iff is

integrable with respect to (z1, * *, zq), a strong version of the integral exists.

3. The stochastic model

If the sample functions off are bounded and those of the zk are Lipschitzian,
there is no difficulty in proving that if q > 1, then

(3.1) J'f(t) dz (t) ... dzq(t) = 0.

Suppose then that the functions fi and gp and the derivatives of the latter with
respect to the xi are continuous. By (3.1), if the sample functions xi all satisfy
(1.4) and the functions

(3.2) gp0(x, t), i = 1, ,n; p, = 1, ,r; te T, xE R

are continuous, then the integrals

(3.3) E jz gp' [x(s), s] dzP(s) dz'(s)
p,G a

exist and are zero for all i in {1, * , n} and t in T. Hence, the xi also satisfy

(3.4) Xi(t) = xL(a) + f g[x(s), s] ds + E f gjx(s) S] dzY(s)
p

+ 21 E f g0 [x(s), s] dzP(s) dz6(s),

i = 1, ***,n; a < t < b, the integrals either being computed for each sample
curve or understood as strict versions of belated integrals. No matter how we
choose the (continuous) functions (3.2), we obtain the consistency property (b).
But soon we shall show that the belated integrals can be defined for a class of

processes large enough to possess the inclusiveness property (a). When this
larger class of z" is permitted, the integrals in (3.3) no longer all vanish, and the
stability property (c) does not hold for all choices of functions (3.2). In fact, it
is far from clear that it will hold for any such functions. We make the choice

n

(3.5) gp,0(x, t) = 42 E gp,.j(X, t)ga(x, t), i = 1, **,n.
j=1

This is our selection principle. We do not consider that we have added a
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correction term (3.5) to the "standard" equation (1.4). Rather, from the aggre-
gate of all equations (3.4), we have selected the one specified by (3.5) instead of
the simplest looking one with all functions (3.2) equal to 0. All the equations
(3.4) are equally in accord with the underlying theory that gave us equations
(1.4), assuming as before that this theory has been established only for
Lipschitzian z'. But setting the functions (3.2) equal to 0 gives us merely typo-
graphical simplicity, while (as we shall ultimately show) the choice (3.5) gives us,
at least under some restrictions. the much more important virtue of stability.

4. Principal existence theorem for the belated integral

Throughout this paper. note T will denote a set of real numbers and [a. b] a
closed interval contained in T. Moreover, the symbol F,(z E T) will always denote
a a-subalgebra of a?. and we shall always assume if z and a are in T and a . z,
then F, _ F,
For the sake of brevity, if x is a process defined on some subset D. of T. we

shall use the expression "x is F. measurable" to mean 1'for each t in Dx. (x(t, ) is
F, measurable." Furthermore, to avoid complicated typography we use F(-) to
denote F, whenever convenient; in particular. we write F(tj) instead of writing the
tj as a subscript to the F.
The processes (z'. zr) that play the principal role in our theory are those

processes on [a, b] that satisfy the following conditions.
CONDITION 4.1. Each zl(p = 1, * . r) is F. measurable, and there exist posi-

tive numbers K and 6 and a positive integer q such that if p e {1. , r} and
a . s . t . b and t - s < 6, then a.s.

|E([zP(t) -zP(s)] IF.) _ K(t - s),
(4.1) E([zP(t) -zP(8)]2k IF5) < K(t - s) k 1. .q.

If x is a vector in R', we define |xl = [E1(Xi)2]112: if (x(X); co Q) is an n
vector valued r.v., we define 1lxi= E(ixi2)1"2 whenever this expectation exists.

At this stage we observe that the existence of the integral in Definition 2.1
can be proved, for q = 1, under much weaker hypotheses than Condition 4.1;
for q > 2 considerable weakening is also possible, though not as much as for
q = 1. But the gain in generality is bought at a high price in simplicity. With
Condition 4.1, we already have as much inclusiveness as was asked for in (a) and
Definition 2.1 is only slightly more complicated than the standard definition of
the Riemann integral. Greater inclusiveness would require introducing concepts
and methods too sophisticated for ,some potential users, and would not justify
its cost.
The next lemma is an essential element of several later proofs. Its proof differs

only trivially from that of Lemma 1 in [5].
LEMMA4.1. Let F,. ,F.bea-subalgebras of 41withF, - F2 F.Fm

Let uar,.. . ur and A,, ,Am be r.v. with finite second moments such that for
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each k in {1, * , m}, all uj with j _ k and all Aj with j < k are Fk measurable.
Let Cp, Dj for j = 1,. , m, be numbers such that a.s.

(4.2) |E(Aj|Fj)| _ Cj, E(AJ2 1Fj) < Dj.
Then

m m m 112
(4.3) E uj Aj _ 2 E Cj|lujI| + i Djlluj||2}

j=1 ~j=1 {j=1

It is convenient to state a frequently used corollary.
COROLLARY 4.1. Let Condition 4.1 be satisfied, and let H (with notation (2.2))

be a partition of [a, b]. For eachj in {1, * *, 1}, let uj be an F[tj] measurable r.v.
with finite second moment. Then

e q12
(4.4) | uj 11 [Zk(tj+i) - Zk(tj)] < B{ Z IujI2(tj+1 tj)-

j=1 k=1 =

where B = 2K(b - a)112 + K'12
PROOF. We define

q

Ai = H [2k(tj+1) - Zk(tjJ,
k= 1

(4.5) Cj = Dj = K(tj+1 - tj).

The hypotheses of Lemma 4.1 are satisfied, so

(4.6) | ujAj < 2K E {I1ujII(tj+1 - tj)}1I2{(tj+ -tj)}1I2
j=1 j=1

( We ) ~~~~~1/2
+ {j 1E1ujI2K(tj+, - tj)}

j=1

Applying the Cauchy-Buniakowsky-Schwarz inequality to the first sum in the
right member yields the desired conclusion.
We can now state and prove an existence theorem of particular importance in

the rest of this paper. In this theorem the integrand is assumed to have the
following rather strong continuity property:

(d) f is bounded in L2 norm on T, and is continuous in L2 norm at almost all
points of [a, b].

For such integrands we have the following theorem.
THEOREM 4.1. Let zl, * * *, zq satisfy Condition 4.1. Let (f(r): rET) be F.

measurable and satisfy (d). Then for every subinterval [c, e] of [a, b], f has a
(belated stochastic) integral over [c, e], and this integral has an Fe measurable
version. Moreover, for every c > 0 there is a 5' with 0 < 6' < 3 such that, for all
subintervals [c, e] of [a, b] and all belated partitions of [c, e] with mesh H < 3'
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it is true that

(4.7) IIS(H f, z, *, zq) - Sef(t) dz'(t) ... dzq(t)ll < e.

PROOF. Consider the case in which f is continuous in L2 norm on T. If H'
and H" are belated partitions

11' = (tl *, te+ j; T.',***,1)
(4.8) 11" = (ti, ,t+ 1; , ,

of [c, e] with the same division points,

(4.9) S(H;, z1, , zq) - S(H";f, z1, zq)
q

= E [f(Ti) -f(t,')] H [Zk(tj+ 1) - zk(tj)].
j=1 k=l

By Corollary 4.1,

(4.10) IIS(H';f, z1,* , zq) - S(H";f, Z1, zq)Jl
_ B(e - c)1/2 max lIf(Tj) -fiT; )11.

For q = 1, the restriction to HT and H1" with the same division points is easily
removed. Given two partitions

(4.11) H = (ti, ,

of [c, e], we say that the latter is obtained from the former by adjunction of
division points if each t' is one of the ti', and if [tj', tj'+,] c[tj tj+ 1] then Tj' =T.
In this case it is easily seen that

(4.12) S(H';f, z') = 8(H";f, z1).

If H1' and H" are any two belated partitions of [c, e], in computing their
Riemann sums (for q = 1) there is thus no loss of generality in supposing that
H' and H"' have the same division points, so

(4.13) IIS(";f , zl) - S(Hn;f, z1)11 ' B(e - c)1/2 max lIf(,) - f(,r7)11,
and this can be made arbitrarily small by restricting HT and H" to have small
mesh. So the Riemann sums converge in L2 norm and mesh H tends to 0, and
Theorem 4.1 holds if q = 1 andf is continuous in L2 norm. The latter restriction
can be removed by much the same devices as in the case of the ordinary Riemann
integral.

If q > 1 and H" is obtained from IH' by adjunction of division points, the
analogue of (4.12) fails. For example, if q = 2 and each [tj, tj+ i] of H' contains
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in its interior either a single division point of [1" (which we then call si) or no
such point (in which case we define si to be ti), we readily calculate

(4.14) S(fl'f, Z1, z2) _ S(H";f z1, z2)

-
E f(tj){[Z'(Sj) - Z1(tj)][Z2(tj+l) - Z2(sj)]

j=1
+ [Z2(sj) _ Z2(tj)][Zl(tj+1) - Z1(8jffi,

which is not in general 0. However, we can find a useful estimate of its norm.
Define M(n') = maxj[tj+1 - tj]. Since we have assumed Condition 4.1 holds,
we find

(4.15) |E([z1(sj) - z1(tj)] [z2(tj+1) -_z2(sj)] IF(tj))|
= IE(z1(sj) - zl(tj)E([z2(tj+1) -z2(j)]|F(sj))|F(tj))|
< K(tj+1-sj)Eflz1(8j) z'(tj) |F(tj))
_ K(tj+1 - sj)[E([z1(sj) -z1(tj)]21F(tj))]1/2
< K312ii(H)1/2(tj+1 - tj).

The same estimate holds with z1 and z2 interchanged. Similarly,

(4.16) E([z (sj) - z1(tj)]2[z2(tj+1) - z2(s8)]2 IF(t1))
_ K2MT) (tj+1 -ti),

and likewise with z1 and z2 interchanged. We now apply Lemma 4.1 to each of
the two sums in (4.14); by (4.15) and (4.16), we obtain

(4.17) IIS(H';f, z1, z2) S(",,;f, z1, Z2)11 _ C[p(H')]1/2,
where

(4.18) C = 2K sup {Df(z) || c T} [2K112(b - a) + (b - a)1/2].
If q > 2, the estimate (4.17) (with a different c) is still valid, the proof is not

essentially different but the details are more tedious.
We shall repeatedly use the following procedure.
PROCEDURE 4.1. Given a partition H = (t1, * * *, te ;+ * *, Te), we adjoin

to H as new division points the midpoints of all those intervals [t1, t + 1] such that
t +1 - t >- 12u(n).
We form a sequence of partitions

(4.19) H0 = H', 2',H2,---, nl,

each formed from the preceding by applying Procedure 4.1. We carry it to a
large enough a so that no interval of the original H' remains unsubdivided; then
each interval of H1 will have length at least jp( Ha). Since

(4.20) M(M) = 2-k1u(Ht),
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we may also suppose that Mu( H) is less than half the length of the smallest
interval in H"`. Next, starting with H", we form the sequence

(4.21) Hno = H"t, H'j, n , nI

by repeated application of Procedure 4.1. We can and do choose /3 so that

(4.22) 2-1/2p ) < jp(H) . 2"2ij(H):

this is possible by the analogue of (4.20). By (4.17) and (4.20),

(4.23) IIS(Ha;f, z1, z2) - S(H;fz,Z2)II
a-1

_EC[M1,lth)]112
n'0

< (2 + 212)C[IA(nt)]112
Similarly,

(4.24) IIS(Ha;f z1,z2) _ S(l1f, z1, z2)1I
. (2 + 2"12)C[jU(H")]"2.

Every interval in H' has length at least p( Hr), and likewise for HL. So every
interval in H' has length at least j'( H)/2312. and vice versa. Thus, each interval
of Ha contains at most three division points of HI. We can adjoin these to Hla in
two stages, obtaining a partition H' such that (by (4.17))

(4.25) ZISSHa*, z,Z2) _ S(;fat Z1, z2)
. 2C[uI(H')]12.

Similarly, we can adjoin the division points of HA" to Ha in at most two stages,
obtaining a partition H" such that

(4.26) IS(H*; fz, z2) S( , Z2)
-< 2C[Mt(IA)]1/2.

Now H' and H'* have the same division points. By (4.10). (4.19), (4.20). (4.21),
and (4.22), for L2 continuous f, the Riemann sums for HT, for H', for H" and
for H" have differences (in the order named) that have L2 norms which are
arbitrarily small if mesh H' and mesh H"` are small. This implies that
S( H; f, z1, . . , Zq) converges in L2 norm as mesh H tends to 0, and the integral
exists. The uniform closeness of Riemann sum to integral follows from the
fact that all estimates of L2 norms were uniformly valid; and we could have
used Fe everywhere in place of a? without changing anything, which would give
us an Fe measurable integral.
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5. An estimate, and a second existence theorem

Suppose that the hypotheses of Theorem 4.1 are satisfied, and that 11 (with
notation (2.2)) is a belated partition of a subinterval [c, e] of [a, b]. By
Corollary 4. 1,

t ) ~~~~~~1/2
(5.1) 1JS(H; f, z1. z B). B{ lf(j)12(tj+ -tj)

But by the special case of Theorem 4.1 in which i2 contains a single point and
q = 1 and z(t) = t, the belated integral of I|f with respect to t exists. Since
Cauchy partitions are both Riemann partitions and belated partitions, the
belated integral of fl is its Riemann integral, and by letting mesh 11 tend to 0
we obtain from (5.1)

(5.2) i (1) dz'(t) . dzq(t) . B f(t)112 dt}

If T is an interval, and f is F. measurable and (f(r, co): wo e t, a) e Q) is dt dP
measurable on T x Q, and

(5.3) J [f(T)2] dT < ce.

it is possible to find (as in [1], p. 440) a sequence of bounded processes
fl,2 , * satisfying the hypotheses of Theorem 4.1 such that

(5.4) lim bs E(Ifn _ f12 ) dT = 0:
n-cJ a

in fact, by a slight modification of the construction in [1] we may choose fn
that are continuous in L2 norm. Then by (5.2) the integrals

(5.5) r ff(t) dzl(T) ... dzq(,), n = 1, 2. 3,
c

form a Cauchy sequence in L2 (Q, P), and hence have a limit in that space. We
can accept this limit as the definition of the integral of f with respect to
(z1, . Zq), thus extending the class of integrable functions so as to have the
same sort of closure properties as the Ito integral. Such properties are valuable
in many investigations. But in this paper we have no need of them, so we pursue
this no farther.

In Definition 2.1, we used the concept of convergence in probability. In
Theorem 4.1. we obtained more: the Riemann sums converged in L2 norm.
There is an intermediate kind of convergence that is sometimes encountered,
that we shall call uniform convergence in near L2 norm. We define it in the setting
of functions of partitions, although it evidently can be applied to more general
limit processes. (In the definition, 1A denotes the indicator function of the set A.)
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DEFINITION 5.1. Assume that to each subinterval [c, e] of [a, b] and to each
belated partition H of [c, e] there corresponds an r.v. x(H, [c, e]) and an r.v.
xo([c, e]). Then x(HI,. [c, e]) converges to xo([c, e]) in near L, norm, uniformly
on subintervals [c, e] of [a, b], if to each positive E there corresponds a positive 3
and a subset A of £. with P(A) > 1 - e such that for all [c, e] _ [a, b] and all
H1 with mesh HA < 3,

(5.6) '11A[X(H, [c, e]) - xo([c. e])]|| < E.

Clearly this implies uniform convergence in the metric of convergence in prob-
ability, and is implied by uniform convergence in L2 norm.
Many processes f possess the following important property:
(e) f is separable, and with probability 1 the sample function [f(-r, co): z e T]

is bounded. (Note that the bound is not assumed to be independent of co.)
For integrands f with this property, we can prove the following theorem.
THEOREM 5.1. Let Condition 4.1 be satisfied. Let [f(T): T E T] satisfy (e), and

be F. measurable, and be continuous in probability at almost all points of [a, b].
Then for every subinterval [c, e] of [a, b], f has a belated integral with respect to
(z', ... zq) over [c, e], and this integral has an Fe measurable version. Moreover,
the Riemann sums S(H ; f, z1, * *, zq) corresponding to belated partitions H of
[c, e] converge to the integral over [c, e] uniformly in near L, norm as mesh
H -- 0.
PROOF. Let S - T be a separate set forf. There is a subset A of Q2 with PA = 0

such that for every open interval I and every co in £1 - A, the functions
[f(z, cl): z e I n1 T] and [f(,r, w): z e IN S] have equal suprema and equal infima.
Let E be positive. For each positive N we define AN(T) (. E T) to be the set of all
coinQsuch that jf(s, o)l . Nfors = zcandforalls < Tin S. This isPFmeasur-
able, and P[A NC0)] is nonincreasing. By (e), we can choose N large enough so that

(5.7) P[AN(b)] > 1 - P.

Let ON(T,*) be the indicator function of AN(T). Then by definition of AN, fPN
is bounded. It is also fairly obviously F, measurable at each T in T, and it is
continuous in probability (hence, being bounded, it is continuous in L2 norm)
except on the union of the null set of discontinuities off and the countable set
of discontinuities of P(AN(z)). So, by Theorem 4.1 for every [c, e] _ [a, b] the
Riemann sums

(5.8) 801; fOtN, Z. , Zq)

converge as mesh 1-- 0 to the integral of fON over [c, e], uniformly with
respect to [c, e]. But the sums (5.8) coincide on AN(b) - A with

(5.9) S(.f' Z1, . . . Z2)
From this and (5.7), it follows readily that the sums (5.9) converge in near L2
norm to a limit, which is by definition the integral off over [c, e]; and the con-

vergence is uniform with respect to [c, e].
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6. Examples

Suppose first that z' and Zq are both the same Wiener process w. Then if
a _ s . t _ b, w(t) - w(s) is independent of F, Let H (with the usual notation
(2.2)) be a belated partition, and define

(6.1) Aj = [W(tj+1) W(tj)]2 (tj+1 -t ), j =1 ,f

Then E(Aj1 F(tj)) = 0, E(Aj2 F(tj)) = 2(tj -tj)2.
Iff satisfies the hypotheses of Theorem 4.1 by Lemma 4.1,

1/2

(6.2) E f(ti)A _ { 211f(tj)II2(tj+ - tj)2
j=1 =

which tends to 0 with mesh H1. By Theorem 4.1, S(Hl f, z1,z2) has a limit as
mesh H -* 0; by (6.1) and (6.2), S( H; f, t) has the same limit. So iff satisfies the
hypotheses of Theorem 4.1, .we have

(6.3) f(t) (dw = b (t) dt

This also holds if f satisfies the hypotheses of Theorem 5.1.
The next lemma is useful because it often permits us to discard integrals with

several dz". It applies to disturbances that satisfy the following condition.
CONDITION 6.1. To each positive £ there corresponds a positive 3 and a set

A - Q with P(A) > 1 - c such that if a _ s . t . b and t - s < ,

(6.4) Iz(t, cw) - zp(s, 0)I < g(t - s)

for all co in A.
For example, by a well-known theorem of Kolmogorov (see Neveu [7], p. 97)

zP satisfies Condition 6.1 if there is a constant K such that

(6.5) E([zP(t) - zP(s)]8) < K(t - s)4, a . s . t . b.

TI¶EOREM 6.1. Let the hypotheses of Theorem 4.1 or Theorem 5.1 be satisfied.
If q _ 3, and zl, zq, satisfy Lemma 6.1, then

(6.6) f f(t) dz'(t) ... dzq(t) = 0.

PROOF. Suppose first that If(T, co)| has an upper bound N on T x Q2. Let e be
positive, and let 3 andA serve for all zk in Condition 6.1. If H1 (with notation (2.2))
is a belated partition with mesh H < min (1, 3), for all w in A we have

p q

(6.7) Z f(Tj' w)) H (zk(tj+ 1, CO) Zk(tj, w)) _ Nq(b - a).
j=o k=c

So the Riemann sums converge in near L2 norm to 0, and the integral is 0.
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Iff satisfies the hypotheses of Theorem 4.1, for each positive N, we define

f(,, co) if -N _ f(o) _ N,
(6.8) fN(z. w) -N if f(z., c() > N,

-N if f(z, cO) < -N.

By the proof just completed, the integral offN is 0 for all N. So by (5.2),

(6.9) J'f(t) dz'(t) ... dzq(t) _ B{J I|f(t) - fN(t)II2 dt}

The right member tends to 0 as N -- o, so the left member is 0.
If the hypotheses of Theorem 5.1 are satisfied, with the notation of that

theorem, f4'N has integral 0 for all N. so the integral of f is 0.
There are other useful sets of conditions that eliminate integrals, but we will

confine ourselves to two simple cases.
THEOREM 6.2. If the hypotheses of Theorem 4.1 or of Theorem 5.1 hold with

q > 2, and z (t) = t, then Jb f(t) dz1 dz" = 0.
PROOF. With H as in (2.2), define

(6.10) ik = Zk(tl+1) - Zk(tj).
Then

(6.11) Etf Aj |) = (tj ) E(H Ajk Fj

(6.12) E(LH ]2F) (tj+ 1 E)([n 12,tj)
If q = 2, the right members of (6.11) and (6.12) do not exceed K(tj+ 1 tj)2 and
K(tj, _ tj)3, respectively, by Condition 4.1; so, under the hypotheses of
Theorem 4.1, Lemma 4.1 assures us that IIS(H;f, zl, z")1j tends to 0 with
mesh H . If the hypotheses of Theorem 5.1 hold, the conclusion is established by
the use of the functions 4>N of Theorem 5.1.

If q > 2, let r and s be integers at most lq with r + s = q- 1. Then

(6.13) E(Hz| ) . {E([H ]X |j)}l2{ ([k~
1 +,1 ] )}IF

Since [H~r'jk]2 < yrj[zjk]2r and 2r _ q, by Condition 4.1, the first factor in the
right member of (6.13) does not exceed a constant multiple of (tj+l -tj)112.
The same is true of the second factor, so the left member of (6.11) does not

exceed a multiple of (tj+ 1 -tj)2. Likewise the left member of (6.12) does not
exceed a multiple of (tj+ 1 -w3.
The rest of the proof is as for q = 2.
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THEOREM 6.3. Let z1 and z2 be processes such that if a _ s . t < b, then
z1 (t) - zl (s) and z2 (t) _ z2 (s) are conditionally independent as conditioned by F.
Let the hypotheses of Theorem 4.1 hold. Then

(6.14) {b f(t) dz1 (t) dz2(t) = 0.

PROOF. We use the same notation as in the preceding proof. Then

(6.15) |E(Aj, z1Ajz22 F,(tj)) = IE(A, z1 F(tj))E(Ajz2 F(tj))
. K2(tj+l -tj)2,

(6.16) EffAjzIAjZ2]2 F(tj)) = E([Ajz]2 |F(tj))E([Alz2]2 |F(tj))
_ K2(tj+1 -tj)2.

By Lemma 4.1, I|S(1;f. Z1, Z2)|| tends to O with mesh H.

7. Existence theorem for a functional equation

If the hypotheses of Theorem 4.1 are satisfied and we define a process F on
[a, b] by setting

(7.1) F(t) = { f(s) dz'(s) ... dzq(s), t e [a, b],

we know by Theorem 4.1 that F(t) has finite second moment and can be chosen
F. measurable. By (5.2), we know that it satisfies a Holder condition of exponent
1/2 in L2 norm. Processes with these properties occur often enough in succeeding
pages to justify giving them a name.

DEFINITION 7.1. Let H112(T, F.) be the class of all (real or vector valued)
processes x on T such that for all t in T, x(t) is F, measurable and E(Ix(t)|2) < oo,
and there is a number H* such that if s and t are in T,

(7.2) |Ix(t) - x(s)1| _ H*(t-s)112.
COROLLARY 7.1. If the hypotheses of Theorem 4.1 are satisfied and F is

defined by (7.1), F belongs to H112([a. b], F.).
Instead of restricting ourselves to stochastic "differential equations" such as

(3.3), we shall discuss a class of functional equations

(7.3) xi(T) = y1(T), T e T, T < a,

(7.4) xi(t) = yi(t) + r g0(s x(s)) ds

+ ,f gx, a.,g(S,X(S)) dz,(s) dza(,s) ... dzO(s),
~~~~~~~~~n a <t<b
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where the letters denote members of {1, * , r}, and W is a finite set of finite
ordered sequences (p, a, , 4) of members of {1, , r}. The functions
gO, g will be called coefficients. We shall make the following assumptions.

AssUMPTION 7.1. The class YR is a linear class of n-vector valued processes on
T that contains H1/2(T, F.), and is closed under uniform convergence in L2 norm.

ASSUMPTION 7.2. Each coefficient g is defined on T x a, and for fixed x in bi,
g(., x) is bounded in L2 norm on T and is continuous in L2 norm at almost all
points of [a, b].

ASSUMPTION 7.3. IfF is a u-subalgebra of X, and t e T, and x is a process in
.A such that x(z) is F measurablefor all z < t in T. then g(t, x) is also F measurable.
For Theorem 7.1 it would be adequate to choose H112 (t. F.) for .A. However,

in the case of differential equations a little more latitude is convenient. Suppose
that G' and G' are functions on T x R' such that., for a certain subset No
of T with Lebesgue measure 0 and a certain positive L. it is true that G' and
G,'e,_,, are continuous in all variables at all points (t, x) with t E T - N0 and
x e R', and for all t in T and x1, x2 in R'

(7.5) IGO(t. xI) - Go(t, x2)I . LIxi -x21.
and likewise for the Ga... Then for all processes x with finite second moments
we can define

(7.6) gi (t, x) = Go(t. x(t)),

(7.7)~ ~ g ¢tx) = Gp a ...,,p,(t, x(t)), t E T.

and Assumption 7.3 is satisfied. To attain Assumptions 7.1 and 7.2 also, we can
make the following assumption.

ASSUMPTION 7.4. a is the class of all processes bounded in L2 norm on T
and continuous in L2 norm at almost all points of [a, b].
We can simplify notation a little by defining zo(t) = t for all real t, and ad-

joining the one element sequence (0) to W6. With this understanding, equations
(7.3) and (7.4) take the notationally simpler form

(7.8) Xi(T) = yi(r), T cE T. r < a,

(7.9) xi(t) = yi(t) + L gpa ,(s, x(s)) dzP(s) ... dzP(s),

t = l, An;a < t . b.

THEOREM 7.1. Let the coefficients in (7.8) and (7.9) satisfy Assumptions 7.2
and 7.3, and let the zP satisfy Condition 4.1. Assume also that there exists a positive
L such that if x1 and x2 are in Y and t e [a. b], for each coefficient g in (7.8) and
(7.9) it is true that

(7.10) 11g(t, xI) - g(t, X2)|| _ L sup {Ilx,(s) - X2(S)I: s e T. s . t}.
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Let y belong to BP and be F. measurable. Then there is an F. measurable process
x( ) in -3, such that x'(T) = yt(z), reT, T _ a, and (7.8) holds for a . t < b.
If y() E H1/2 (T, F.), so does x(). Moreover, if xl is any F. measurable process
satisfying (7.8) and (7.9) then P[xl(t) = x(t)] = 1 for all t in T.
PROOF. Hypothesis (7.10) guarantees that the coefficients are nonanti-

cipative; if x1 and x2 belong to b) and x1(T) = X2(T) if - E T and r < t, then
g(t, x1) = g(t, X2). If x is defined only on the part of T in (- cc. t] and has an
extension x to T that belongs to Y0, by (7.10) all such extensions x give the same
value to g(t, x). To simplify notation, we shall define g(t, x) to mean that
common value.
We use Picard's method. We define xO = y, and then successively

(7.11) Xk+ (-) = y'(-c) T E T. T < a,

(7.12) X+i(r) = yi(r) + EIg. ,(sXk) dzP dz dz'.

By hypothesis xO is in Y. If we assume Xk in that class, the integrands in (7.11)
and (7.12) satisfy the hypotheses of Theorem 4.1 by Corollary 7.1, x i 1 belongs
to H1/2(T, F.). Thus, (7.11) and (7.12) define Xk for k = 0. 1, 2,3. Define,
for every process x on T and every t in T.

(7.13) N(t, x) = sup {|lx(-r)II c- T, T . t}.
If a is one of the coefficients in (7.8) and (7.9) and k _ 1, by (5.2) and
hypothesis (7.10),

(7.14) X(, Xk) -( a Xk+ 1)} dzP dza * dz

{B,xJ a +(S Xk) - g Xka *-- P(S, Xk-1)11 ds}

rot ~~~~~~~~1/2
B{tL2N(sXk - Xk-) d5}

Let Bo be the product of n, B, L2 and the number of sequences in the set W. By
(7.11), (7.12), and (7.14),

(7.15) IIXk+l(t) Xk(t)II . BO{J N(s, Xk - Xk. 1) ds}

Since this estimate is still valid if we replace t in the left member by any smaller
member of T.

(7.16) N(t, Xk+1 - Xk)2 < B{2 N(s, Xk - Xk-1)2 ds
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We can now prove by induction (with x_ 1 0)

(7.17) N(t. Xk-Xk1)2 < {SUp lly(t)12} B2k ( - a)k k = 0. 1, 2,

For k = 0. this is simply the statement N(t, y)2 < sup |ly(t)I12. If (7.17) holds
fork, by (7.16),

(7.18) N(t, Xk+1 -Xk)2 < (sup IYII2)L 1(s - a)k ds}
Xk+1~~~~~-~ += -su

= sup y112 Lo ]( -a)k+1.
so (7.17) holds for all nonnegative integers k. It follows at once that the sums

h

(7.19) k= E (Xk -k- 1
k =O

converge uniformly in L2 norm to a limit, which we call x. This limit belongs to
H112(T, F.), and by (7.11) and (7.12) it satisfies (7.8) and (7.9).

If x' and x" both satisfy (7.8) and (7.9) and are F. measurable, just as we
proved (7.16) we can prove

art )~~~~~~1/2
(7.20) N(t, x' -x")2 B N(s. x' - x")2 ds}.

The only solution of this is N(s, x' - x") = 0. which completes the proof.

8. Cauchy-Maruyama approximations

G. Maruyama [4] has extended the well-known Cauchy (or Euler) method
of constructing polygonal approximate solutions, proceeding successively from
each vertex to the next, to the stochastic differential equations (1.3). It is easy
to extend this procedure still further to equations of the form of (7.8) and (7.9).
Given any Cauchy partition

(8.1) n1 = (ti. - t+1 t1 , tf)i
of [a, b]. we first define X(T) = y(T) for all z in T with z . a. Then x~having
been defined for all z in T with T _ tj, we define it on (tj, t +1] by setting

(8.2) xi(T) = x1(tj) + yi(t) - y'(tj)
+ Egp.....p(tj z t) - zP(t.)] .-- [Z(t) -z¢(tj)].

(Notice that the coefficients are defined, even though x has been defined only
up to tj, by the first paragraph of the proof of Theorem 7.1.)
We can prove that under the hypotheses of Theorem 7.1 these Cauchy-

Maruyama functions x converge to the solution x of (7.8) and (7.9) uniformly
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in L2 norm as mesh H -- 0. But in Sections 9 and 11, we shall need a different
approximation, in which we shall permit a small departure from equality in (8.2).
We shall suppose that bk is defined by Assumption 7.4. and we shall adopt

the abbreviations

(8.3) Ajt = tj+ - tj, Ljy = y(tj+ ) - y(tj), AzP = zP(tj+1) - Zp(tj).
Suppose now that to each Cauchy partition H (with notation (8.1)) thei

corresponds a process x with the following properties:

(f) X1(Tr) = y(z), - TE. < a:

(g) to each positive £ there corresponds a positive 6 such that, if mesh H < 3

(8.4) IIX(t) - x(ti) - y(t) + y(ti)
EY g,,e (ti, x) [z (t) - ZP(tA) . . . [z"(t) - Z'l(tj)]|
_ 8(1 + sup {IlX(z)I: rc T, ._ t})(tj _ t <tj+<),

(8.5) Xl (ti+ i )- (ti) y - E gp, . . (t. X~)j*i * * AjZzp
< E(1 + sup {IX(,r)II: c T, z _tj.+})Ajt

(h) if r c T and r _ tj, X(Tr) is F[tj] measurable.
(The Cauchy-Maruyama functions (8.3) clearly satisfy these requirements.)

We can then prove the following theorem.
THEOREM 8.1. Let the hypotheses of Theorem 7.1 hold. Assume that to each

Cauchy partition Hl of [a, b] there corresponds a process x in a0 such that (f), (g),
and (h) hold. Then as mesh [l tends to zero, x converges in L2 norm., uniformly on
T, to the solution x of (7.8) and (7.9).
PROOF. By Theorem 4.1, the solution x of (7.8) and (7.9) exists, and we can

and do choose it to be F. measurable. Let H1 be a Cauchy partition. with notation
(2.1); let t be a point of [a, b]: and define

(8.6) tk = largest number in set {t1, - tn}r (-- C. t].

(8.7) N(t) = sup {II|X(c) - x(T)||: z e T. - tk},
k-i

(8.8) xi(t) = yi(t) + E g x)/XzP ... ZXz
j=1

+ E. g,..., (t.kX) [ZP(t) - Z (tk)l . [Z"(t) - Z"(tk)1.

(For cE t, z < a we take X(T) = y(T).)
Let M - 1 be an upper bound for 11x(z)1I on T, and let £ be any number such

that 0 < 2(1 + b - a)e < 1. By Theorem 4.1. there is a positive 6, such that
if mesh H < A

(8.9) IIX(T) - X(T)I| < E(T E T).
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With 6 as in (g), we let H be any belated partition such that

(8.10) mesh H < min {6, 61},

Then, with tk defined by (8.6),

(8.11) xt(t) - xi(t)
=Xi(t) -Xi(t)

k-1

+ Z {xi(tjl)- ?(tj) _ Ajy' - Eg (t )Az'5 }

± xi(t) - ~i(tk) [yi(t) - (tk)]

B gphpti ((tk70 X) [Zp(t) ofzP(eoe 7[Z.1 itZ(

k-i

+ E' y [gip...p (t, x)gip ..... ,f(ti, X]AizP Ajz
j=1 W

+ .[gp{(N (tk)x)- gpL ...(,(tk, x] [zP(t) - Zp(t.]}

[Zieb. -1 (tk)a.

By hypothesis (7.10) of Theorem 7.1 with (5.1),

(8.12) kt) - gi .. p(t x) - gp ...... tP(tj, ]Ajzp * AjZ4f

+ [gip ......P Uk. x) - g" p..,g(tk, X1 [Zp(t) -Zp(Wk) ... [Z"Mt -Z"UJ)]
(k - 1 ) /2

_Bl fi, L2(N(tj))2Ajt + L2(N(tk))2[t td]
j = 1

rrt ) ~1/2
= + + ±BL{N(s)2 ds

Since M- 1 is an upper bound for ||x||, by (8.7), ||(t)|_1 M - 1 + N(t), and
the right members of (8.4) and (8.5) are at most e(M + N(t)), E(M + N(tj+ 1)),
respectively. So if C is the number of members of the set W, from (g), (8.9),
(8.10), (8.1 1), and (8.12), we deduce

(8.13) llx-(t) - x(t)ll

_ E + E{M + N(k}Uk - a) + e{M + N(t)} + CBLi N(8)2 ds

The right member is a nondecreasing function of t. so (8.13) remains valid if
we replace tk in the right member by t and then replace t by any larger number,
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or equivalently replace t in the left member by any smaller number. So

(8.14) N(t) _ 4[1 + M(1 + b - a)] + 8(1 + b - a)N(t)

+ CBL{J N(s)2 ds}

By the fact we have chosen c such that 0 < 2(1 + b - a)e < 1, this implies

(8.15) N(t) _ 24[1 + M(1 + b - a)] + 2CBL{{ N(s)2 ds}

To condense notation, we write

P = 2[1 + M(1 + b - a)],
(8.16) Q = 2CBL.

Then from (8.15) we can deduce that

(8.17) N(t) _ 2&P exp {(2P2Q2[t- a])(a < t _ b)},
for (8.17) holds at t = a. If it does not hold everywhere in [a, b], there is a first
point to at which it fails. Then it holds on [a, to], so by (8.15),

rt 1~~~~~~~~~~/2
(8.18) N(to) _ sP + Q[J 42P2 exp {4P2Q2[s - a]) ds}

= 8P + E[exp {4P2Q2[to- a]} - 1]1/2
< 2eP exp {2P2Q2[to-a]},

contradicting the assumption that (8.17) fails at to. Since for every positive 8,
(8.17) holds whenever (8.10) does, ||x(t) - x(t)|i converges uniformly to 0 as
mesh 1-+ 0, which completes the proof.
The only use made of the enlarged class defined by Assumption 7.4 was to

guarantee that the coefficients gp,... ,(tj, x) are defined. If the x are the Cauchy-
Maruyama functions defined by (8.2), they are in H112[T, F.], and we can use
this for our class -R, abandoning Assumption 7.4.

9. Stochastic differential equations and related ordinary equations

We shall now revert back to stochastic differential equations like those in
Sections 1 to 3, in which the coefficients gp, and so forth, are functions of t and
x(t) and independent of earlier values of x(l). We suppose that these have the
properties ascribed to the coefficients G', and so forth, as stated after Assumption
7.3; but we use g instead of G. Moreover, we take T to be the same as [a, b],
and y(t) is simply an initial value xo, which is an Fa measurable r.v. For such
equations we shall show that, with the definition in (3.5), equations of the form
(3.4) have the stability property that for a rather large class of processes ZP
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interpolated in the zl' and having piecewise smooth sample paths, the solutions
of (3.3) with Z" tend to those with z., uniformly in near L2 norm.
To avoid inordinately long formulae, we change the notation somewhat. We

define

x (t) = t. z0(t) = t, -c < t < cc

(9.1) g0(x) = 1, g,(x) = = gr(x) = 0. xe R

The variables a, Pi will always have range {O. n}, and p, a, z will have range
{O, , r}. A summation sign such as E,, or E. will denote the sum over the
whole range of that variable. Also, H will always denote a Cauchy partition
with notation (8.1), and ti will denote a division point of H. An equation such
as u = v' will always be understood to hold for all i, p in the range of those
variables, unless some other range is expressly specified.
For all xO in [a, b] and (x,, * x") in R' we define

(9.2) g"(X) ( )

provided that the indicated derivatives exist. Equations (1.3) now take the form

(9.3) xi(t) = xi + E f gp(x(s)) dza,
p

where the initial value xO is always assumed to be an Fa measurable r.v. The
analogue of (3.4), with (3.5), is

(9.4) xi(t) = 4 + fI g'(x(s)) dzP(s) + 2 E
t
gp , (x(s)) dzP(s) dzc(s).

p a p aa

This is not identical with (3.4), for the last sum contains terms with p = 0 or
u = 0, and (3.4) does not. However, by Theorem 6.2, all such integrals vanish
for all processes z" that we shall consider. Furthermore, even if p and a are
positive, the definition (9.2) contains a term (with a = 0) which is lacking in
(3.5). But by (9.1) this term is 0. So the solutions of (9.4) are the same as those of
(3.4) with (3.5) for all processes zP that we shall permit.

In Theorem 7.1, we assumed that the coefficients were Lipschitzian in x(*),
and merely almost everywhere continuous in t. To simplify proofs, we now
replace this by a somewhat unnecessarily strong substitute:

ASSUMPTION 9.1. The functions g' are continuously differentiable on the set of
x with a . xO < b; and there is a positive L such that, ifx and x" are both in that
set,

lgi(x') - gi(at")I _ Llx' - x"1.
(9.5) IgP, (x') - g<,(x")| _ Llx' - x".
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Instead of restricting ourselves to linear interpolation as mentioned in
Section 1, we shall permit certain other kinds. Let

(9.6) 4p(t): 0 < t < 1, p = O,1, r,

be Lipschitzian functions such that

(9.7) P(0) = 0, 4(1) = 1

and

(9.8) 00 (t) = t, 0 _ t_ 1.

Then for each zP and each Cauchy partition H, we define functions ZP by setting

(9.9) Zp(t, CO) = zp(tj, O)

t +t -tj) [z"(tj+1) -ZP(tj)], tj _ t < t

In particular,

(9.10) Z0(t) = t, a _ t < b.

We define

(9.11) f=J [1 - 4p(s)]4,(s) ds.

Our principal stability theorem, which we now state, overlaps considerably
with the results of Wong and Zakai ([8], [9]). Although the present methods
are different, Theorem 9.1 obviously owes its existence to those previous results.
Besides this, the present version of Theorem 9.1 replaces an earlier version with
stronger hypotheses because Professor Wong pointed out the desirability of
improvement.
THEOREM 9.1. Let Assumption 9.1 hold, and let the zP satisfy Condition 6.1.

Let 0O, ..* , 0, have the properties described above. Assume that for each p and
a in {O, 1, *.. , r}, either:

(i) to eache > Ocorrespondsa6 > Osuch thatifa _ s . t < band t - s < 6
then a.s.,

9.12) IE([zP(t) - zP(s)] [z'(t) - zU(s)] IFj)| . e(t - s)
E([zP(t) - ZP(s)]2[Za(t) - za(s)]2 F) < E(t -s),

or else
(ii) Jpa = 1/2.
Then, as mesh rI- 0, the solution X of

(9.13) Xi(t) = xi + f gp(X(s)),ZP(s) ds, a . t < b
p
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converges uniformly in near L2 norm on [a, b] to the solution x of

(9.14) x(t) = xO + E J g'(x(s)) dzP(s) + 2 E J g>a(x (s)) dze(s) dz'(s),
p apea a

a . t _ b.

PROOF. Observe that if p = C, condition (ii) is satisfied, while if p = 0 or
a = 0 condition (i) holds.
The solution x of (9.14) also satisfies

(9.15) x'(t) = xO + E J g1(x(s)) dz(s) + E Jp [ gp,,x(s()) dz"(s) dza(s),
p a Pa a

a . t . b.

since those integrals in (9.15) with coefficients JP, a 1/2 all vanish by (5.2).
We again define Ajt and AjzP by (8.3). Let £ be positive, and let 6 and A

correspond to E for all the zP as in Condition 6.1. Let 11 be a Cauchy partition
with mesh H < 6. For each k in {1, * ,}, we define Ak to be the set of co in
£. such that the inequalities

(9.16) jzpz(CO)I _ c(Ajt) 3, p =1, r

all hold forj = 1, k; then A. - A. Corresponding to HI, we now define a
process x as follows. First, x(a) = xO. Then, x(tj, co) having been defined, we
define

(9.17) 'i(tj+l, co) = Xi(tj+l, CO) if c eA .

(9.18) X(tj+1, CO) = x (tp co) + , gp (X(tj, cv))AjzP
p

+ ZJp gp,(x(tj, co ))AjZPAjza if co e L2 - Aj.
P,a

In either case we define

(9.19) xi(t, CO) = ti(tj. cO) tj . t < tj+1.
The set Ai defined by (9.16) is F[tj+1] measurable, and ZP(t) is a linear

function of zP(ti) and zP(tj+1) for t, _ t _ tj+1: so by (9.13) X(tj+1) is a con-
tinuous function of the Zp(th) for h = 1, , j + 1, and is F[tj+1] measur-
able. So by (9.17) and (9.18), i(tj+ 1) is F[tj+ i] measurable, and hypothesis (h)
is satisfied. So is (f); and (8.4) follows readily from (9.19) and Condition 4.1.

If co E Aj, from (9.17) we obtain by integration by parts in (9.13),

(9.20) xi(tj+, )- x-(tj) - g'(x-(tj))AjzP
p

- g7(a(tj)) I [ZP(tj+1 - ZP(s)]ZG(s) ds

. j+1[gpa[X(s)] - gpa.[I(tj)]][ZP(tj+1) - ZP(s)]Z'(s) ds.
P,a tj
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For the rest of this proof Cl, C2, and so forth, will denote positive numbers
whose values are determined by the numbers n, r, K, L, gp(0) and sup bkp(t)I; we
omit the easy but uninspiring computation of the expressions for the Ci.
For t in [ti, t,+ 1] and co in Aj, we define

(9.21) N(t, co) = sup {jX(r, co) - i(tj, co)I: tj < z < t}.
Then by Assumption 9.1,

(9.22) Igi(X(t, c)) - 19P(0)I + g9p( (ti, 0)) - (0)I
+ gi (X(t, co)) - gp (x(t, C))I

< Cl + Lli(tj, cv)j + LN(t, w).
Hence by (9.17) and (9.16),

(9.23) IX'(t, co) -xi(tj, co)i < EZ I gp(X(s))iiZP(s)1 ds
p

. E[C2 + C3lIx(tj, cv)I + C4N(t, cv)] (Ajt)113.
This remains valid if in the left member we replace t by any number - in [tj, t],
so

(9.24) N(t, co) _ e[C5 + C6IZ(tj, (0)I + C7N(t, cv)] (Ajt)1/3.
Since C7 does not depend on a, we may and shall restrict our attention to a

such that

(9.25) 0 << 1 (b-a)-113207
Then from (9.24), we obtain

(9.26) N(t, co) _ 24[C5 + C6lI(tj, cO)I] (Ajt)113.

From this, with (9.20) and (9.21),

(9.27) liL(tj+1) - xi(tj) - 1 g'(i(tj))Ajzp - Z Jpep (i(t|
p pe

_= (C8 + C91"i(tj)1)8"jt.
If w e Q - Aj, this is trivial; the left member of (9.27) is 0 by definition.
By (9.27),

(9.28) IIX(tj+1) - i(tj) - lg9(i(tj))ljzP - E Jpe'p e((tj))izP~jzp p

e
_ 11C8EAtlH + 1g1C9AtL(tj)ll;

so (8.5) is satisfied, and by Theorem 8.1, x converges to x uniformly in L2 norm
as mesh Hn 0.

If cv e Aj, x(tj) was defined to be X(tj), and by (9.21) and (9.26),

(9.29) IX'(t) - xi(t)l _ 2e[C5 + C6I..i(t)l] (Ajt)13.
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Since x converges uniformly in L2 norm to x, its L2 norm is bounded, and (9.29)
implies that if mesh H1 is small,

(9.30) {J XX(t, w) -x(t, w)12P(dw)} < Cloe(mesh 11)1/3.

This, with the uniform convergence of x to x in L2 norm, shows that X tends to
x uniformly in near L2 norm as mesh H tends to 0.

10. Stability, and its limitations

Theorem 9.1 can be regarded as a statement about stability of the solutions
of (9.14). Since the last set of stochastic integrals in (9.14) vanish for Lipschitzian
zP and z0, the theorem informs us that, on the family of disturbances ze con-
sisting of one process satisfying Condition 4.1 and Lemma 6.1 together with all
processes interpolated in the zP in accordance with Theorem 9.1, the solutions
of (9.14) depend, in a stable or continuous manner, on the disturbances. By
estimating the closeness of all approximations we could extend this to a larger.
collection of zP, all satisfying Condition 4.1 and Condition 6.1 with the same
constants, together with all disturbances interpolated in them as in Theorem 9.1.

It would be desirable to permit another kind of interpolation often encoun-
tered in applications, in which the zP are approximated by functions ZP that co-
incide with zP at evenly spaced tj and have derivatives whose Fourier transforms
vanish outside some finite interval. Theorem 9.1 gives us a feeble substitute for
this. Let v be infinitely differentiable and nondecreasing on (- c. cc), with
W(t) = 0 if t . 0 and '1"(t) = 1 if t _ 1. We choose

(10.1) 40(t) = t, 4)p(t) = If(t) p = 1. * ,

and for each H, we interpolate ZP in zP using the 4p and extend ZP by constancy
on (-o, a] and [b, oc). Then the ZP have Fourier transforms that tend to 0 at
+ oo faster than any negative power of the independent variable, and the ZP
satisfy the requirements of Theorem 9.1.
For the case n = r = 1, with z1 a Wiener process, Wong and Zakai [9] have

proved a theorem that shows the possibility of using ZP whose derivatives have
bounded spectra. Omitting superscripts i and p, let Z1, Z2, * * *, be a sequence
of processes on [a, b] such that with probability 1, Zn(t, co) tends pointwise to
z(t, co) and has a bounded piecewise continuous derivative, and such that there
are finite valued processes no, k such that a.s.

(10.2) IZ (t, co) _ k(wo), a < t _ b, if n > no(co).

Wong and Zakai then showed that, under essentially the same hypotheses on
g1 and g1 1 as in Theorem 9.1 the solutions X of (9.13) converge almost surely to
the solution x of (9.14) (in which we can replace dzdz by dt, by (6.3)).
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This theorem does not extend to the case n = r = 2, even when z1 and z2
are independent Brownian motions. as the following example shows. Consider
the stochastic differential equations

(10.3) xl(t) = £dz'(s), x2(t) = x'(s) dz2(s), 0 < t . 1.

in which z1 and z2 are independent standard Wiener processes. Let f1 and O2
be infinitely differentiable nondecreasing functions on (- cc, oo) such that

40 if t < 0
(10.4) 4i(t) = ji if t > 1/2.

(10.5) V() {0 if t > 1/2,
~1 if t . 1.

Then

fL1 - fr(s)]/2(s) ds = 0,

(10.6) 1
( [1 -2(s)]4(8) ds = 1.

Given a Cauchy partition H. with the usual notation (8.1), for p = 1. 2 and
for tj _ t _ t + 1, we define

Zp(t, cO) = zp(t, W) + P( t ti) A zP(CO),
(10.7) Zp(t. co) = zP(t. CO) + 3-(p i ) AjzP(C),

if

(10.8) A z1(C)Ajz2(C)) _ 0.

and we define ZP(t co) and ZP(t, c() by (10.7) with the right members inter-
changed if (10.8) is false. We extend ZP and ZP by constancy on (- CC, a] and
on [b, cc). Then ZP and ZP, p = 1, 2, are infinitely differentiable, have the same
bounds as zP, and with probability 1 converge to zP uniformly on [a, b]. By
(9.20) and (10.6), for the corresponding solutions of (10.3) we have

X1(tj+1) - X(ti) = Aiz1'
(10.9) X2(tj+1) - X2(tj) = Xl(tj)Ajz2 + (Ajz1Ajz2)+.
and

X'1(t l,) - X'(t1) = X_ A
(10.10) Xg2(tj+ 1) 'R2(tj) = Xl(tj),jz2 (Ajz1A, Z2V.



290 SIXTH BERKELEY SYMPOSIUM: MeSHANE

Define

(10.11) XP=X _XP, p =1, 2;

then from (10.9) and (10.10)

(10.12) (t+ 1) -,1(tj) = 0,

(10.13) s2(tj l) _ <2(tj) = Ql(tj) + zXjz'z1z21.
From (10.12), 4'(tj) = 0 for allj, so by (10.13)

(10.14) 42(1) = E IAjz1Ajz2I1.
i

Since the Ajz' and Ajz2 are independent normal r.v., AjzP having mean 0 and
variance Ajt, we readily compute

(~2()) 12Ajt 2
(10.15) E(4 (1)) = E-=-

j 7r

and

(10.16) Var 42(1) _ E(> [Aiz1]2[AjZ2]2)
j

- E (Ajt)2.j

which tends to 0 with mesh H. so X2(1) -X2(1) tends in L2 norm to 2/7r as
mesh H tends to 0, and it is impossible that X2(1) and X2(1) both tend to the
same limit x2(1), a.s., or even in probability.
The example shows the inherent limitations on stability of models. With such

a simple system as (10.3), when mesh H is small, the results of linear inter-
polation in zP and of the interpolation (10.9) in zP will have differences that are
uniformly arbitrarily small for almost all co. Yet the solutions X of the ordinary
equations (10.4) and (10.5) corresponding to those two practically indistinguish-
able disturbances will not be arbitrarily close to each other in L2 norm. Hence,
no "selection principle" can possibly provide a model that is consistent, in-
clusive enough to include Lipschitzian processes and Brownian motions, and
so thoroughly stable as to yield practically indistinguishable solutions corres-
ponding to practically indistinguishable disturbances. The limited stability
described in Theorem 9.1 may be about as much as we can attain.

Perhaps we are studying the problem from the wrong end. As mentioned in
Section 1, if we wish to stay in the domain of trustworthiness of classical
scientific theories, we should hold to Lipschitzian disturbances. Idealizations
to martingales are made for mathematical convenience, and they depart from
the Lipschitzian case so far that no martingale can have a.s. Lipschitzian sample
paths unless the sample paths are a.s. constant (see Fisk, [3]).

In Theorem 9.1, and in the theorems of Wong and Zakai, the idealization is
the starting point, and it is approximated by the Lipschitzian ZP. Since it is the
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Lipschitzian case that is presented to us by the outside world, it would seem
more significant to find how well we can approximate the processes of classical
theory by our idealizations, rather than the reverse. But this would appear to
be a difficult undertaking.

11. A Runge-Kutta type of approximation

The Cauchy (or Euler) polygons are useful in the theory of ordinary differential
equations, but for computation they are much inferior to the Runge-Kutta
approximations. As adapted to equations (9.3), this method can be described
thus. Given a partition H (with the usual notation (8.1)), we define y(a) = xO,
and then define Y(t2), * successively as follows. From y(tj) we first compute,
as in (8.2), the value of

(1 1.1 ) ~~~yi(i ) + E gi[y(tj)]Ajzp.
p

But instead of using the g' corresponding to these sums as coefficients for the
next step, as in the Cauchy-Maruyama process, we average them with the

g,(y(tj)) to furnish a second approximation to the values of the gp for use in
estimating y(tj+l). Thus, we have

(11.2) y(tj+l) = Y(t1) ± 2 E [gp(y(ti))AjzP]
p

± 4 E gi [y(ti) + Eg(y(ti))Ajz ]AjZ
p a

The values of y at points interior to intervals [tk, tk+ 11 are of secondary interest:
we could, for example, define them by linear interpolation.
The preservation of a formula or an algorithm is a much less basic stability

property than that discussed in the preceding section. Nevertheless, it is to some
extent significant, as well as computationally convenient, that if we try to
approximate solutions of (9.3) by the Runge-Kutta method for processes satis-
fying the hypotheses of Theorem 9.1 and one more continuity condition
Assumption 11.1, the approximations will converge, not to the solution of (9.3),
but to the solution of (9.14). This in a sense gives added recommendation to our
"selection principle." But besides this, it permits us to use a well-known com-
putation procedure to approximate the solution of (9.14), whether the z" are
Lipschitzian or are martingales or any other processes satisfying the hypotheses
of Theorem 9. 1, without having to interpolate to find the ZP and without having
to solve equations (9.13).

Equation (11.2) may be regarded as the first step in the iterative solution of

(11.3) y(tj+1) = y(ti) + 12 {gp[y(ti)] + gp[y(tj+1)]}AjzP.
p
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To guarantee the convergence of such an iterative process, it is desirable and
usual to make assumptions that guarantee that the successive corrections form
a diminishing sequence. One such assumption, for the present problem, is the
following.

AsSUMPTION 11.1. There are positive numbers 31, L1 such that if x1 and X2
are points of R` 1 with X10 in [a. b] and iX2 - X1i 1(1 + lxIi). then

(11.4) 1gp,x-(X2) - gp=(X1)l- 1 1 -l X21

This rather strong uniform continuity requirement will be further discussed
after proving the next theorem.
THEOREM 11.1. Let the zP and g' satisfy the hypotheses of Theorem 9.1, and

also satisfy Assumption 1 1.1. For each Cauchy partition H of [a, b], let y be the
process determined by the Runge-Kutta process (11.2), with linear interpolation
between the division points of H. Then as mesh H - 0, y converges on [a, b]
uniformly in near L2 norm to the solution x of (9.14).

PROOF. Let £ be positive, and let 6 and A correspond to E for all the zP as in
Condition 6.1. We define the sets A, *... , At as in the sentence containing (9.16)
and we define a process x- corresponding to H as follows. First, x(a) = xO. Next,
x(tj) having been defined, we define i(tj+i) by

(11.5) x(t + cw) = y(t+l, CO) if co E Aj,

(11.6) x((t + toC) = t(to,CO) + a gp(X(ti o0MAw)zp
p

24 , gi,~(i(ti. co))Ljz"Ajz~

if cwe Q-Ai.
Finally, we define

( 1 1.7)x(,o = x( jZ)),t j _ t < tj+ 1.

It is easy to verify that these x satisfy conditions (f). (h), and (8.4). For cl in

Aj, by applying the theorem of the mean to (11.2), we find

(11.8) yi(t +1) = yi(ti) + 2 Z gp(y(tj))A z
p

+ 1 {gi(y(tj)) + agpi,(,))Ajz}jjzp,
p

where

(1 1.9) = yi(t ) + oj(w) E gr(y(tj))Aiz
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for some OjQ(co) in (0, 1). As in Section 9, we use Cl, C2, and so forth, to denote
numbers determined by the data of the problem. Then, by Assumption 11.1,
(11.9) implies

(11.10) lgi,,(tl) - gp,(Y(tj))I _ (Cl + C2Iy(tj)l)E(Ait)"3.
From this and (11.8), since c E Aj,

(11.11) ~lx(t +1) - x (ti) - g,(Q(tj))AjzP - 7 E gp"(--(tj))AjzpAjzc|
p p, a

. (C3 + C41Z(tj)l)c3 At.
This also holds if co e - Aj, since then the left member is 0 by definition. By
taking the expectation of the square of the left member of (11. 11), we find, as in
(9.28), that (8.5) also is satisfied.
Now by Theorem 8.1, x- converges to the solution x of (9.14) uniformly in

L2 norm, as mesh H -1 0. Since x is continuous in L2 norm and the ix(tj) are
uniformly close in L2 norm to x(tj) at all division points of HI if mesh 11 is small,
it is easy to see that if we modify x by retaining its values at the tj but inter-
polating linearly between them, the modified process also converges to x uni-
formly in L2 norm. But this modified process coincides with the Runge-Kutta
process y for all co in A, and so the proof is complete.

Assumption 11.1 is strong, but from an experimental or computational point
of view it can be tolerated. Ordinarily there will be some bound B on the norms
of the x that interest us. In an experiment, points with 1xl > B will make the
points too far away to be involved in the process under investigation; in com-
putation, B could be a bound on the numbers within the machines capacity. If
we replace the g'(x) by other functions Gp(x) that satisfy Assumption 11.1 and
coincide with g'(x) whenever lxi _ B, the solution of (9.14) with coefficients

G,' will coincide with the solution of (9.13) as written unless the solution some-
where has norm greater than B: and unless the probability of this is negligibly
small, we face worse troubles than the mere nonconvergence of the Runge-Kutta
procedure.

Professor H. Rubin informs me that Dr. Donald Fisk, in his doctoral dis-
sertation at Michigan State University, has defined and studied a stochastic
integral which is the limit of "trapezoidal rule" approximations. the values of
the integrand at the beginning and end of each interval [ti. t+1+ being averaged.
(Professor Rubin also furnished reference [2].) Existence theorems are estab-
lished for integrals S fdz in which z is a quasi-martingale (see Fisk, [3]). I have
not had the opportunity of seeing this dissertation, but it is evident that the
application of Fisk's integral to differential equations (1.3) must be closely
related to the procedure described in Theorem 11.1, and even more closely
related to the process mentioned in (11.3).
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