LOGARITHMIC POTENTIALS AND
PLANAR BROWNIAN MOTION

SIDNEY C. PORT and CHARLES J. STONE
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In this paper we continue our discussion of the connection between potential
theory and Brownian motion begun in ‘‘Classical Potential Theory and
Brownian Motion”’ that also appears in this Symposium volume. Throughout
this paper, we will be dealing with a two dimensional Brownian motion process.
We will continue numbering the sections from where we left off in the previous

paper.

8. Planar Brownian motion

In Section 5, we saw that for a Brownian motion process in » = 3 dimensions,
P,(lim,., |X,| = o) =1 for all z. In sharp contrast to this situation, a planar
Brownian motion is certain to hit any nonpolar set.

THEOREM 8.1. Let B be a Borel set. Then P (Vg < ) is either identically 1
or identically 0.

Proor. A simple computation shows that for any x € R?, | p(s, x) ds T o
as t T 00. Thus, for any nonnegative function f having nonzero integral,

(8.1) lim ;Psf(x) ds = o0.

t— o
Let ¢(x) = P (V3 < ). Then for any b > 0,
t k t+h
(8.2) 0< f Pi@ — P'o)ds = f P ds — f P ds < 2h.
0 0 t
Letting ¢ T 00, we see that
(8.3) 0< f“’ P (¢ — P')ds < 2h.
(o]
But then it must be that ¢ = P*p a.e. Since P'o 1 @ as t | 0 and P'(P*¢p) 1 Php

ast | 0,it follows that ¢(x) = P"@(x)forallx. Using Proposition 2.3, we see that
¢(x) = a for some constant «. Now

B4) Pt <Vp< ) = [ a5t 0o dy = aPoVy > 1)
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178 SIXTH BERKELEY SYMPOSIUM: PORT AND STONE

Letting ¢ T oo, we see that aP, (V3 = o) = 0. Thus, either P (Vy; = ®0) =0
or a = 0. In the first case @(x) = 1, while in the second case ¢(x) = 0. This
establishes the proposition.

The difference between planar Brownian motion and Brownian motion in
n = 3 dimensions has its analytical counterpart in potential theory. We will now
show that the potentials associated with planar Brownian motion are logarithmic
potentials.

Let 1 denote the point (1, 0) and let a*(x) = g*(1) — g*(x). Using (2.30), we
see that for & # y,

85)  afy - ) = [ M@ d2)a’ly - 2) = ghla.y) + L)
where

(8.6) L) = g*()[1 — E(exp {—~AV5})].

Now

(8.7) aa) = [ 7 e pt 1) - pit. )] dr.

If |x| = 1,then p(t, 1) — p(t, ) = 0;so for |z| = 1, a*(x) is increasing. On the
other hand, for |x| < 1, p(t, 1) — p(t, ) < 0 so —a*(x) is increasing. In either
case

(8.8) lim a*(x) = J [p(t, 1) — p(t, )] dt = llog ||,
L0 0 T
and the convergence is uniform on any compact set not containing 0. For
simplicity, we set a(x) = (1/n) log |z|.
Our principle result in this section will be to establish the following theorem.
THEOREM 8.2. Let B be a nonpolar set. Then gg(x, y) < o for x + y and
lim, Li(x) = Lg(x) exists and is finite for all x. Moreover, for x # y,

(89)  aly —a) — fE Mz, dz)aly — 2) = —gg(@ y) + Ly().

Before getting on with the proof, we observe first if E,V; < oo for all « then
Lg(x) = 0. Indeed,

El

1 — E(exp {—4Vs})
.

(8.10) Lyx) = zg*(l)[

so if £, Vg < o0, then the expression in the brackets converges to £, Vp < o0,
while Ag*(1) > 0as A — 0. In particular by Proposition 2.2, Lg(x) = 0 whenever
B¢ is relatively compact.
The proof of Theorem 8.2 is long and will be divided into several lemmas.
Lemma 8.1. Suppose B is relatively compact. Then

(8.11) tim [ M. d2ya’(y — 2) = fﬁ My, dz)aly — 2).
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Proor. If B is polar, there is nothing to prove since both T4 and Il are
the zero measure, so suppose B is nonpolar. If y ¢ B, then as 1 | 0, a*(y — 2)
converges to a(y — z) uniformly in z € B, and thus (8.11) holds in this case.
Suppose y € B. Let D, be the open disk of center y and radius ¢ < 1. We can
write

(8.12) Ln,‘,(x, dz)ar(y — 2)

= f_ Mj(x, dz)a*(y — z) + f_ Mi(x, dz)a*(y — z).
BnDg B

nDg

Since

®13) | Wi, dz)a(y — 2) = Eufexp (= AVa} a*(y — Xyp)ln(Xy,)]

and a*(y — z) converges to a(y — z) uniformly for z € B D¢, we see that

(8.14) lim Nj(x, dz)a*(y — 2) = E.laly — XVB)IDS(XVB)]'
AlO0 JBADE
On the other hand,
8.15) — f i (e, dz)ar(y — 2)
BnD,

= Ex[exp {—AVB}[—a‘(y - XVB_)]ID;(XVB)'

Since

(8.16) —exp {—}»VB}M(?J - XVH)ID,:(XVB) T —a(y — XVB)IDe(XVB)a

monotone convergence shows that

(8.17)  lim | Nz, dz)a*(y — 2) = E[a(y — Xy,)1p(Xy,)] 2 —o0.
BnD¢

As

(8.18) —OO < Ex[a(y - XVB)IDS(XVB) < +OO,

we see from (8.14) and (8.17) that (8.11) holds. This establishes the lemma.
Lemma 8.2. Suppose B is a nonpolar relatively compact set. Let A be a com-
pact set of positive measure such that ANB = . Then

(8.19) lim f gix, y) dy = E, f " 1,X)dt < .
A0 JA (1]

Proor. For a given x, there is a ¢, > 1 such that

(8.20) P, (X, € B for some s € (1, t,))

= [ By = 2P,(Vs < to — 1) dy >0,
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since otherwise

(8.21) fRHp(l,y — 2o)P,(Vy < w0)dy = P, (Vg < ) = 0.

Thus, there must be a compact set F of positive measure such that P (Vg <

to — 1) > 0forally e F. As p(1, x) is a strictly positive continuous function, it
follows that

(8.22) infP (Vz<to) 2 inf| p(l,y —a)P, (Vs <to—1) =8> 0.
x€A JF

xeA

Let I; = [jto, (j + 1)to) and let C' = {t: X, € A, V > t}. Define the index set
I by jeT if and only if I;nC # (&, and enumerate I' increasing order by

Ji <ja <. Define the times 7} < 7T, < - - - as follows:
(8.23) T, = inf {¢t: t € C} (=0 if there is no such ¢)
and

(8.24) T,., =inf{t:te Cn[j,ty, 0} (=00 if there is no such ¢).

Let N £ oo denote the number of indices in I. Then

(8.25) P(N>u, NZn+2)=P(T, < ©, Ty, = 0)
2 P(T, <0, Vg =T, + 1)

= [ PuT, < 0. X7, € d2)P. (Vs < 10)
A

2 6P (T, < ) = 6P (N > n),
SO P, (N >n+2)Z (1 — 0PN > n). Thus, ELN < o, and hence

Ve
(8.26) Exj 1,X,)dt = E.|C| £ E,
0

U | = toBN < o0,
jer

as desired. This establishes Lemma 8.2.
We can now prove Theorem 8.2 when B is a relatively compact set.

LEmMA 8.3. Suppose B is a nonplanar relatively compact set. Then Theorem
8.2 holds.
Proor. Let A be as in Lemma 8.2. Since

(8.27) Lﬂw—xM%*LMy-w@

uniformly in  on compacts, we see that

(8.28) Lim | Ij(x, dz) fA al(y — z)dy = J;? Mg(x, dz) fA aly — z)dy.

AL0 JB
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By Lemma 8.2,

(8.29) [ @yt | g v dy < .
A A

By (8.5)

830)  |4|Lh@) = [ dy - @) dy - [ M d2) | oy - 2)dy

+ L gs(x, y) dy.

Since the right side has a finite limit as A | 0, we see that L}(x) must have a
finite limit as A | 0. Call this limit function Lg(x). By (8.5),

B31)  —ghwy) = a¥y — @) - [ M@, da)akly — 2) - Ly(@)
B
and thus for x # y,

8.32) lim [—gﬁ(x, v + [ My, de)ar(y - z)] = a(y ~ 2) = Ly(@)
Al0 B

is finite. Now 0 < gi(x, ¥) 1 gs(x, ¥) £ + 00 and by Lemma 8.1

(8.33) lim f Mi(x, dz)at(y — 2) = f Mz, dz)aly — 2),
AlOJB B
and
(8.34) —w < f My(x, dz)aly — 2) < + 0.
B

Thus for x # y, we see that gg(x, y) < + o0, j',—, Hg(x, dz)a(y — z) > — o0, and
that (8.9) holds.

To handle the unbounded case we need two additional lemmas.

LemMma 8.4. Suppose A = B. Then g (x, y) = gg(x, y) for all x, y.

Proor. Since A < B, V, = Vg and thus for any Borel set F,

(8.35) PW,>tX,eF)yz=P(Vyg >t X, eF).
Hence (in the notation of Section 2) for a.e. y,

(8.36) qalt, z,y) Z gp(t, 2, y).

But then

(8.37) fnz qalt — &z, 2)p(e,y — 2)dz = f zqB(t — &, x, 2)p(e, y — 2)dz,
R

and thus letting ¢ | 0 (see Section 2), it follows that (8.36) holds for all y.
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Integrating on ¢, we see that

(8.38) gulx,y) = f: qQalt, x, y)dt 2 f: qs(t, x,y) dt = gg(x, y)

as desired.
LemMma 8.5. Let B be any Borel set. Then for x + y,

(8.39) }lifrtl)fﬁ Mi(x, dz)a*(y — 2) = J‘ﬁ My(x, dz)a(y — z) > —o0.

Proor. If B is polar, there is nothing to prove so suppose B is nonpolar.
Suppose y € (B)". Let D, be a disk of center 0 and radius » > 1 + |y|. Then
| Yy — zl > 1 for z € D{. Hence, by monotone convergence

(8.40) finm Mi(x, dz)ar(y — 2) = B [exp {—AVg}a*(y — Xy,)lpe(Xy,)]

1Efaty ~ Xy loe(Xy,)] = [ Ta(e, dzialy —2) 2 0.

On the other hand, a*(y — z) = a(y — z) uniformly in z € BN D, so

(8.41) lim Mi(x, dz)a*(y — 2) = f My(x, dz)a(y — 2),
A10 JBnAD, BnD,
and
(8.42) - < | ) Mg(x, dz)a(y — z) < o0.
BnD,

Thus, (8.39) holds for y ¢ B. Suppose y € B and let 4, be the disk of center y
and radius ¢ < 1. We can write

(8.43) L i, dz)ary — 2) = fDm Mi(z, dz)a’(y — 2)

+ Mi(x, dz)a*(y — 2)
Dy A

+ f Mi(z, dz)aM(y — z).
Dg

Choose r so large that B D, is nonpolar and such that |y — z| > 1 for
z € Dt. The second term on the right of (8.43) converges to

(8.44) —w < f Mz, dz)aly — z) < O,
Dy AE



LOGARITHMIC POTENTIALS 183

as A | 0, since a*(y — 2) - a(y — z) uniformly for ze Bn D, N A¢. Let B, =
BN D,, and note that My (x, d2) 2 T(x, dz) for z€ D,. Since —a*(y — 2) 1
—a(y — z), ze 4,, it follows from the monotone convergence theorem that

(8.45) — fb . Mi(x, dz)a*(y — 2)

= Ex(exp {_}'VB} [““l(y - XVB)IA,(XVB)ID,(XVB))
TEx["a(?/ - XVB)IA,,.(XVB)ID,(XVB)]

- Mp(x, dz)a(y — z).
DrnA.

Since a(y — z) < 0 for z € A, we see that
(8.46) f Mz, d2)aly — z) = f N, (x, dz)aly — 2).
DynAg DrnAe

By Lemma 8.3,

(8.47) Mg (x, dz)a(y — z) > — o0,

B,

and it is clear that

(8.48) o > f M, (x, dz)a(y — 2) > — 0.
Brn(DrnAg)°
Hence,
(849) lim Mi(z, dz)aXy — z) = f My(z, de)aly — 2) > — 0.
Al0 JDpnA, DrnAe

Finally, as in the case when y € (B), monotone convergence shows that
(8.50)  lim f Mi(x, dz)a’(y — 2) = f My, dz)aly — 2) = 0.
410 JDf Ds

Thus, using (8.43), we see that (8.39) holds for y € B. This completes the proof.
We may now easily establish Theorem 8.2.
Proor or THEOREM 8.2. Since B is nonpolar some relatively compact subset
A < B must be nonpolar. But then, by Lemma 8.3, gg(x, ) < g4z, y) < ©
for x # y. Also
(8.51) Li@) = g"M)[1 — Exfexp {—4V3})]
S g' M1 - Byexp {-AV})] = Li@),

SO

(8.52) lin; sup Li(x) £ Ly(x) < .
10



184 SIXTH BERKELEY SYMPOSIUM: PORT AND STONE

Using (8.5), we see that for x # y,

Al0

(8.53) lim [L Mi(x, dz)a*(y — z) + L’},(m)] =a(y — x) + gglx, y)

has a finite limit.
Using (8.52) and Lemma 8.5, we see that

(8.54) lim fﬁ (. dzja’(y — 2) = | Nyl delaly — 2),

must be finite for x # y. Thus, it must be that lim, | o Li(x) = Lg(x) exists and
that (8.9) is satisfied. This establishes the theorem.

One of the main applications of Theorem 8.2 is to show that gg(x, y) < o0,
x # y, x, y € B°, when B is a compact nonpolar set. As we will see in the next
section, g restricted to B° x B° (for B a closed set) is just the Green function of
B¢. Now if one is interested only in showing that gg(x,y) < oo for = # y,
x, y € B and in showing that (8.9) is valid for such x, ¥ when B is a nonpolar
compact set then the proof of the theorem can be considerably shortened. In
fact, all one needs is Lemma 8.2 and the simple parts of Lemmas 8.1 and 8.3.

A simple consequence of Theorem 8.2 is the following result.

THEOREM 8.3. Let B be a nonpolar Borel set. Then

(8.55) lim log (¢)P,(Vg > t) = 2nLlg(x).
t—
ProoF. One easily checks that
1 1
A ~ — -
(8.56) Ag*(1) o A log (l) , A10.

The theorem follows from this and the fact that

(8.57) lim Ag*(1) [1 — Bfexp {"W”})] = Ly(x)
110 A

exists by well-known Tauberian theorems.

Of course Theorem 8.3 is uninteresting when E,Vy < o0 since then Lg(x) = 0.
When B is relatively compact, however, Lg(x) > 0 for all |x| sufficiently large.
In Section 10, we will see that Lg(x) = lim,, ., gg(x, y) whenever B is relatively
compact.

9. Green function

Now that we have Theorem 8.2 at our disposal, we can easily derive the
properties of gg(x, y) for a nonpolar set B.
THEOREM 9.1. Let B be nonpolar. Then

(i) 0 = gplx,y) < oo forx # y,
(i) gplx,y) = ggly, x),
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(ili) gp(x, y) + aly — x)is harmom’c in y on (B,
(iv) ggla, y) is harmonic in y on ( — {x},
(v) gglx, y) is subharmonic in y and upper semicontinuous in y on R* — {x},

(vi) limy_,, gp(x, y) = gp(x. yo) = 0,y € B".

Proor. Part (i) is part of Theorem 8.2. Part (ii) follows from the fact that
it is true for g} and letting 4 | 0. Parts (iii) to (v) follow from (8.9) and the fact
that a(y — «) is harmonic in y # x and that for any finite measure u,
f5log |y — x|u(dx) is an upper semicontinuous and subharmonic function that
is harmonic in (B)". Finally, (vi) follows from the upper semicontinuity and the
fact that g§(x, yo) = 0 for all 4 and x.

An open set G is called Greenian if there exists a function g(x, y) on G x @
such that g(x, ¥) + a(y — x) is harmonic in y on G. If G is Greenian the
smallest such function is called the Green function of G.

From our work in Section 5, we know that in dimensionn = 3 everyopenset is
Greenian and that gg. restricted to G x @ is its Green function. Based on this,
and Theorem 9.1, we would fully expect that the following holds in the planar
case.

THEOREM 9.2. An open set G < R? is Greenian if and only if G° is nonpolar.
In that case gg. restricted to G X G is the Green function of G.

Proor. Suppose first that G is a bounded open set such that each point of
0G is regular for G¢. Then clearly G* is nonpolar so Theorem 9.1 shows that gg.
restricted to G X @ is Greenian. To see that it is the smallest of the Greenian
functions, suppose g is another such function. Then by property (vi) of
Theorem 9.1,

(9.1) lim inf [g(x, y) — gge(x, y)] = lim infg(x, y) = 0.

y=>yo y=yo

Thus, by the minimum principle, g(x, y) — gg-(z,y) = 0 on G.

Suppose now that G is any open subset of R% By Corollary 3.1, we can find
bounded open sets G; < G, =« G, = -+, U, G, = G, such that each point of
0G, is regular for G and such that P, (Vo 1 Vo) = 1 for all x € G.

By Lemma 8.4, the sequence gg, is increasing and bounded above by gge(«, y).
Since ggg(x, y) + aly — x) is harmonic in y € G for fixed x € G,, Harnack’s
theorem tells us that the limit function g*(x, ¥} < gg.(x. y) is such that in a
given component of @ it is either identically infinite or a harmonic function on
G — {x}. Let f = 0 be arbitrary. Then for any x € @,

9.2) Ef"“" Jdi = Ef fX)dtTEf f(x nt .
But

Vag
9.3) B[Pyt = | get viw dy.
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8o monotone convergence gives that

9.4) [, 968z @ dy1 [, %@ s dy,

as n 1 0. Thus,

9:5) [..o*@ i@ dy = [ go@ i) dy.

Suppose G° is nonpolar. Then as g*(x, y) < gg(x, ¥), g*(x, y) < © forx # y,
and thus g*(z, ¥) + a(y — x) is harmonic in y on @. Since the function f in
(9.5) is any nonnegative function, (9.5) implies that g*(x, y) = g¢-(x, y) a.e. y.
Since gg-(x, ¥) + a(y — x) is harmonic in y, we see that g* = gg. on G x G.
Suppose g is any function having the required properties. Then this function
restricted to G, also has the required properties so by what has already been
proved, g(x, y) 2 gg;(x, ¥), x, y € G,. Thus,

(9.6) gge(x, y) = li”m 9es(x, ¥) = glx, y).

Hence, g¢. restricted to @ x G is the Green function of G. Finally, suppose G° is
polar. Then G cannot be Greenian. Indeed, if it were Greenian, then let g be a
function with the required properties. But then, as argued above

(9.7) g*(x,y) £ gz, y) < ©, x #y.

But (9.4) shows that g*(x, y) = oo for a.e. y, a contradiction. This completes
the proof.

10. Logarithmic potentials

Let u be a bounded measure having compact support k. The function ¢, (x) =
—_fk aly — x)u(dy) is called the potential of u. One easily verifies that ¢,(x) is
a lower semicontinuous function that is superharmonic on R? and harmonic
on k°.

Let B be a nonpolar relatively compact set. Since a(y — x) — a(y) — 0 as
ly| = o, uniformly in = on compacts, it follows at once from (8.9) that, uni-
formly in « on compacts,

(10.1) Iylli_fflm gs(@, y) = Lp().

As gp(x, y) = gg(y, x), we see that

(10.2) lim g5(z, y) = Lo(y)

Let D, be the closed disk of center 0 and radius r. The hitting measure,
M, (x, dy), is just the unit mass at « for x € D,. For x € D; and ¢ a continuous
function on 0D,, I, ¢(x) = I,p @(x) is the unique bounded solution to the
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Dirichlet problem for D¢ with boundary function ¢. As is well known from
texts on complex variables or partial differential equations, the solution to this
Dirichlet problem is provided by the Poisson integral. Thus,

_ L= =]

(10.3) Mp (x.dy) = ————5= 6,(0, dy), x e D;.
|y — =]

It follows from (10.3) that

(10.4) |l|im Mp,(x, dy) = 0,(0. dy),

in the sense of strong convergence of measures.
Let B be any nonpolar relatively compact set and let D, be a disk of center 0
and radius r that contains B in its interior. Then for any bounded function ¢

(10.5) Myp(x) = LD' My, (x, d2)T13(2), ze Dt
Hence,

(10.6) lim Typ() = [, 1s0(10,(0. d2).

Let

(10.7) patdy) = [ 1(z. dy)o (0. da).

Equation (10.6) shows that ug(dy) = lim,,_ , (., dy) in the sense of strong
convergence of measures. We have thus proved the following important result.

THEOREM 10.1. Let B be a nonpolar relatively compact set. Then gg(x, y) —
Lg(y) as |x| > o, and Mgz, dy) - pg(dy) as |x| > o in the sense of strong
convergence.

The measure uz has the obvious probabilistic significance as the hitting prob-
ability of B starting from infinity. We will show that uz should be considered
in potential theoretic terms as the equilibrium measure of B.

TrEOREM 10.2. Let B be a nonpolar relatively compact set. Then

(10.8) lim [Lg(x) — a(x)] = k(B)

|x|— o
exists and is finite. Moreover,
(10.9) @,,(x) = k(B) — Lg(x).

ProoF. Suppose y ¢ B. Then a(y — z) is bounded for z € B, and thus by
Theorem 10.2,

(10.10) lim | Mg, dz)a(y — 2) = J‘E ug(dz)a(y — z)

|x| =0 JB
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exists and is finite. Using (8.9), we see that
(10.11)  aly — =) - at@) - [ My dz)aty - 2) + ga(e. y)

= Ly(x) — a(x).

Using (10.10) and (10.2), we see that the left side converges to ¢,.(y) + L_(y)
as |z| - oc. Hence. the right side must have a finite limit. This establishes
(10.8) and (10.9) for y € (B). Suppose y € B. Then (8.9) shows

(10.12) lim | Tz d2)aly — z) = Lg(y) — k(B).

|x]|= 0 JB

The function gg(&, y) + Lg(&) — aly — &) is clearly bounded in & if |¢] > r
for some sufficiently large ». But then by (8.9),

(1013) [ Ny dzlaty = 2) = go(&.y) + Ly(&) — aly — &

is bounded in & for |{[ > r. Now for any closed disk D, of center 0 and radius »
containing B in its interior,

(10.14) J;_} Ng(x. d2)a(y — z) = Np (x. d&) fs Mg, dz)aly — z), x¢D.

(2%

Thus, by Theorem 10.1 and equation (10.7),

(10.15) lim | Mg(x, dz)a(y — 2z) = LD 0,(0,d¢&) fg [g(¢, dz)aly — 2)

|x|= o JB

= | mp(@ziaty - 2.
B

This establishes the theorem for y € B and thereby completes the proof.

DeriNrrioN 10.1.  Let B be a nonpolar relatively compact set. The measure
U in Theorem 10.1 is called the equilibrium measure of B. The constant k(B) in
Theorem 10.2 is called the Robin’s constant of B and the potential of pp is called
the equilibrium potential of B.

For a relatively compact polar set, we define k(B) = + oo. Theorem 10.3
given below will show that this is the natural definition of k(B) for a polar set.

Proposition 10.1. Lei A and B be two relatively compact sets such that
A < B.Then k(4) = k(B).

Proor. If Bis polar then 4 must also be polar. In this case k(4) = k(B) =
+ c0. Suppose B is nonpolar. If 4 is polar, then k(4) = +oc and k(B) < ©
so the proposition is valid. Suppose 4 is also nonpolar. Then L, = Ly (since
LY = L%) and (10.8) shows that k(4) = k(B).

THEOREM 10.3. Let B be a compact set. Then

(10.16) k(B) = sup {k(U): U open. U > B and U compact}.
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On the other hand, if U is an open relatively compact set, then
(10.17) k(U) = inf {k(4): A compact, A = U}.

Proor. Suppose B is compact. Let B,, n = 1 be relatively compact open
sets such that B, > B, o B, o> ---, N, B, = N, B, = B. Then as was shown
in Proposition 3.2, P, (Vy 1 V) = 1forall x € B°U B". Suppose that B is polar.
Let f = 0 be continuous with compact support and have integral 1 and set
Af(z) = {2 aly — 2)f(y) dy. Then for any z € B,

Ve,
(10.18) [ ontwnfmrdy =B " jx)de . n— .
Now Af(x) is a continuous function, and thus for all »

(10.19)

J M, (x, dz)Af(z)| < sup |Af(z)] = M < o0.
Bn

zeB

Using (8.9), we see that

= lAf(x) — J_ Mg, (x, dz)Af(z)

B

(10.20) | - L 98, (x, y)f(y) dy + Lg (x)

< |Af(x)| + M < .
Thus, using (10.18), we see that Ly ()T oo for each x € B. By (10.9),

(10.21) f P (@) f(@) d + f Ly, (2)f(@) dz = k(B,).
R R2
But
(10.22) J Oup, (@) f(x) da| = J‘ Af(x)ug, (dx)| £ M < oo,
R2 R2

and ij Ly (x)f(x) dx 1 co. Thus, k(B,) T cc. This establishes (10.16) when B is
polar.

Suppose now that B is nonpolar. Let f and Af be as before. Then for
xeBUB,

Vs, Ve
1023) [ gn e @) dy = B, [ Xy a1 B [ 7 f1X) dt
=f ge(x, ¥)f(y) dy.
R2
Also as P,(Xy, €B;) =1 foralln.

(10.24)  lim | My (2. d2)Af(z) = lim E,Af(Xy, )

n—+w JBy n— o

= B Af(Xy,) = [ Tl d2)af(z).
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Hence by (8.9), for x € B°U B,

(10.25) lim Ly (x)

n— o

= lim [Af(x) - L Mg (x, d2)Af(z) + L gs.(x, ¥)f(y) dy}

n— o

- ape) - |,

B

Mg(x, dz)Af(z) + J;: gs(x, ¥)f(y) dy = Lg(x).

Since (B")° n B has measure 0, we see that

(10.26) fRz Ly (x)f(x) dac ] fRz Ly(@)f(x) de.
Now if D is a disk of center 0 containing B in its interior,
(10.27) lim fm b (d2)Af (@) = lim [ 0(0, dOEAS Xy,

f o(0, dOEAf(X,,)
oD

= [, msdmaf@).

Hence, using this fact, (10.26), and (10.21), we see that k(B,)1 k(B). This
establishes (10.16). To prove (10.17), note that we can find compacts 4, < U
suchthat 4, <« 4, < ---,U, 4, = U.Butthen P, (V,, | Vy) = 1forallx. The
remainder of the proof of (10.17) is similar to the proof of (10.16) for B a non-

polar set. We omit these details.
Let A and B be two Borel sets. Then,

(10.28) P(VipSt) S P(Vyst,Vpst)
é Px(VA é t) + Px(VB é t) - Px(VAuB é t)

Thus, P.(V4op > t) 2 P.(V, > t) + P (Vg > t) — P.(Vyup > ). It follows

from this and (8.6) that
(10.29) Lins(@) 2 Ly@) + Ly(@) — Lip(@)-
Letting A | 0, we see that whenever A and B are nonpolar

(10.30) Ly p(x) + Ly px) 2 Ly(x) + Lg(x).

If we take L,(x) = co whenever k is polar, then (10.30) is valid for all sets.

Using (10.8), we see that for relatively compact sets

(10.31) —k(AU B) + [-k(ANB)] £ —kA) + (—k(®B)).
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Also as L(x) = Lj(x) for A = B, we see that L,(x) = Ly(x), so for 4 < B,
(10.32) —kd) £ —k(B).

Define k*(B) = —k(B)if B is compact and define k*(U) = sup {k*(B): B = U,
B compact} if U is open. Then (10.16), (10.17), (10.31), and (10.32) show that
k*(+) is a Choquet capacity on the compact sets. The extension theorem of
Choquet then implies that for any Borel set B,

(10.33) sup {k*(4): A = B, A compact} = inf {k*(U): U o B, U open},
and that the common value k*(B) is such that k*(4) < k*(B), A = B and
(10.34) k*(Au B) + k*(A nB) £ k*(4) + k*B).

Let B be any relatively compact set. Then for any compact set 4 = B and
any openset U o B, —k(4) £ —k(B) £ —k(U). Thus,

(10.35) k*(B) < —k(B) < k*(B).

Equation (10.35) tells us that whenever B is relatively compact, k(B) =
—k*(B). For a general Borel set, define k(B) to be —k*(B) and define the
capacity C(B) of B to be e *®. Our discussion above has shown the following
result.

THEOREM 10.4. Let B be any relatively compact set. Then

(10.36) inf {k(4): A = B, A compact} = k(B) = sup {k(U): U open, U > B}.

CoroLLARY 10.1. A Borel set B has capacity 0 if and only if it is polar.

Proor. The set B has capacity 0 if and only if £(B) = co. We have already
shown that for a relatively compact set B this is the case if and only if B is polar.
If B is not relatively compact and k(B) = co, then (10.36) shows that k(4) = o
for every compact subset of B, and thus (again by (10.36)) k(D) = oo for every
relatively compact subset D of B. But then every relatively compact subset of
B is polar, and as B is a countable union of relatively compact sets, B must be
polar. Conversely, if B is polar, every compact subset of B is polar, so for any
compact subset 4 = B, k(4) = co. Thus, (10.36) shows that k(B) = oo. This
establishes the corollary.

If B is a relatively compact set in dimension n = 3, then as was shown in
Section 6, B has capacity O (that is, Bis polar) if and only if the only finite measure
4 having support on B with a bounded potential is the 0 measure. For potentials
in the plane we have the following analog.

THEOREM 10.5. A relatively compact set B is polar if and only if sup, ¢, (x) =
+ o0 for every nonzero finite measure p having support on B.

Proor. Let 4 be a relatively compact open set containing B. Let ay(x) =
a(x)ifa(x) =2 —N andlet ay(x) = —Nifa(x) < —N, N > 0. Then clearly

1037 — [ wide) [ anly — omady) = = [ nady) | anty - @)
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By monotone convergence as N 1 o0, we see that

(1038) [, w1, @) = [ patdzip, @)
Since B = A equation (10.9) shows that the left side is u(B)k(4). Thus,
H(B)k(A) < sup, ¢,(x), and hence by Theorem 10.4, w(B)k(B) < sup, ¢,(x).
If B is polar then k(B) = 4 c0. On the other hand, if sup, ¢,(x) = + oo for all
nonzero y supported on B, then B must be polar. For, if B were nonpolar then
the equilibrium measure pug of B would be a probability measure on B whose
potential would be < k(B) < + oo everywhere, a contradiction. This establishes
the theorem.

REMARK. By using the maximum principle for potentials ¢, (see, for
example, Hille, Analytic Function Theory, Vol. 1I), we replace sup, by sup,.z
in Theorem 10.5.



