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1. Introduction and summary

Let w(t), 0 _ t < oo, denote a standard Wiener process. The general law
of the iterated logarithm (see [6], p. 21) says that if g is a positive function such
that g (t)/V\ is ultimately nondecreasing, then

(1.1) P{w(t) _ g(t) i.o. t T cI}
equals 0 or 1, according as

(1.2) J t3/2 exp { 2t- }dt < cc or = oo.

(The notation i.o. t T o (t1 0) means for arbitrarily large (small) t.) In particular,
for k _ 3 and

(1.3) g(t) t[210g2 t + 2 1og3 t + E logi t + (1 + 5) logk+l t)2,

the probability (1.1) is 0 or 1 according as 6 > 0 or 6 . 0. (We write
log2 = log log, e2 = ee, and so on.)
For applications in statistics it is of interest to compute as accurately as

possible

(1.4) P{w(t) _ g(t) for some t _ 4}
for functions g for which this probability is < 1; that is, functions for which
(1.2) converges (see [3], [10], [12]). In [11], we gave a method for computing
(1.4) exactly for a certain class of functions g. A sketch of this method follows.
Since exp {0w(t) - 102t}, 0 < t < I, is a martingale for each 0, Fubini's
theorem shows that lo exp {Ow(1t) - 02} dF(O), 0 _ t < oI, is also a mar-
tingale for any a-finite measure F on (0, ox). Let
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(1.5) f (X, t) = exp {x - 2 dF(O),

and for each t _ 0 and e > 0 let A(t, a) be the solution of

(1.6) f(x, t) = E.

Then

(1.7) P{w(t) _ A(t, e) for some I _ 4

= P{f(w(t), t) > a for some t > T},

and we use an elementary martingale equality to evaluate the right side of (1.7).
The relation of w(t) to the sequence of sums of i.i.d. random variables with
mean 0 and variance 1 then permits the asymptotic evaluation of boundary
crossing probabilities for partial sums.

In view of (1.3) a choice ofF of particular interest is, for 6 > 0,

0 log- .. 109 1- 109k- dO forO _(1.8) dFl(0) 0 0 0 ek

0 , otherwise,

for which it is shown in [11] that for any e > 1/6,

k

(1.9) A(t, E) = 2t 1092 t + 2 1og3 t + E logi t
i=4

1/2

+ (1 + ) logk+1 t + log + o(1))I

as t -X o and

(1.10) P{w(t) _ A(t, e) for some t > }=0

The purpose of this paper is to obtain analogous results for maxima and
minima of sequences xl, x2, * * * of i.i.d. random variables. We begin in
Section 2 by establishing an analogue of the criterion (1.2) for a law of the
iterated logarithm for sample minima. In Section 3, we give an application of
this result to a conjecture of Darling and Erdos [2]. In Sections 4 and 5, we
introduce a continuous time process vt, 0 < t < oo, related to min (xl, . .. , x")
in much the same way that w(t) is related to x1 + ... + x,, and apply the
methods of [11] to the study of this process. In spite of the dissimilarity in the
behavior of v, and w(t), the measure F defined by (1.8) plays the same role for
v, as for w(t).
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2. The law of the iterated logarithm for minima of uniform variables

THEOREM 1. Let U1, U2, . . be independent and uniform on (0, 1), and let
V. = min (u1, . , us). Let (c") be any sequence of positive numbers. Then:

(i) if c,/n Ifor all sufficiently large n, then P{nVn <.c, i.o.} = 0 or 1 according
as

00 C
(2.1) S

converges or diverges;
(ii) if cs/n l and c. Tfor all sufficiently large n, then P{nV, _ c. i.o.} = 0 or 1

according as

(2.2) E e-cn
n

converges or diverges.
COROLLARY 1. For k _ 3,

(2.3) P n~nV, 102 n + 2 10g3 n + E logi n + (1 + 6) logk+1 n i.o.}

is equal to 0 or 1 according as 6 > 0 or 6 . 0.
REMARK 2.1. The proof of (i) is an immediate consequence of the Borel-

Cantelli lemma and the fact that if cs/n is ultimately decreasing, then Vn, ce/n
i.o. if and only if u, < cs/n i.o. The proof of (ii) is much harder and will be given
below.
REMARK 2.2. If M, = max (u, u, u,), then Theorem 1 holds with V,

replaced by 1 - M,
REMALRK 2.3. Under different regularity conditions on the sequence (c"),

Ville [13] has shown that if (2.2) converges, then P{nV, _ c, i.o.} = 0. His
approach is similar to the one we take in Section 4. Pickands [8] has also
obtained some results in the direction of Theorem 1.
REMARK 2.4. The condition in (ii) that c, be ultimately increasing is bother-

some in some applications (see Remark 2.5 below), but it cannot be dropped
completely. For example, if c"= 1/n, then both (2.1) and (2.2) converge.
Hence by (i), P{nV. > c_ for all sufficiently large n} = 1, which is incompatible
with the conclusion of (ii) applied to the same sequence c,.
REMARK 2.5. Let xl, x2, ... be independent random variables with a

common continuous distribution function F. Since u, = F(xj) is uniform on
(0, 1) and

(2.4) F[min (x1, * , x")] = min [F(xl), * , F(xf)]
= min (u1, . . un) = V",

Theorem 1 implies a law of the iterated logarithm for min (x1, * , x"). In
particular, (ii) implies that if (a") is any sequence of numbers such that an is
ultimately decreasing and nF(a,) is ultimately increasing, then P {min (x1, . . .*
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xm) > an i.o.} = 0 or 1 according as
CO

(2.5) ZF(a,)exp{-nF(aJ)} < cxor = xo.

The condition that nF(aj) be ultimately increasing may be difficult to verify
for a given F, and hence, it is worth observing (as will become apparent in the
proof below) that the condition in (ii) that c,(= nF(a,,)) be ultimately increasing
may be replaced by the growth condition

(2.6) lim inf C, > 1.
n boo9log2 n

Moreover, it follows a fortiori that if c, _ ( _ ) c' and P{nV. > c' i.o.} = 1(0),
then P{nV,, _ c. i.o.} = 1(0). Hence, (ii) may be applied indirectly to some
sequences (c") which satisfy neither the monotonicity conditions of (ii) nor the
growth condition (2.6).
REMARK 2.6. Let xl, x2, * be independent N(0, 1) random variables with

distribution function (D)(x) = lJx . q(y) dy, where (p(y) = (2n)112 exp {--y2}.
For k _ 3 and 6 arbitrary, let

(2.7) a. = -[2 log 2 -lg2 n - 2 log(log2 n + 2 log3 n

k 1/2
+ E login + (1 + a)logk+ln

i=4

From the fact that

(2.8) (D(x) =I(Pi(X)[1 + ashx -cc,

it can be shown that c. = n4(a.) satisfies (2.6), and hence, by (ii) and the
preceding remark, that P{min (x1, . .. , x") _ a. i.o.} = 0 or 1 according as
( > 0 or ( _ 0. Alternatively, it is possible using (2.8) to replace the criterion
(2.5) by one involving the normal density p; the argument of Lemma 8 below
(together with (2.5), (2.8) and Remark 2.2) shows that if (a.) is any ultimately
increasing sequence of positive numbers such that n a-1 (a.) is ultimately
increasing, then P{max (xl, * *, xn) < an i.o.} = 0 or 1 according as

(2.9) E exp {-n( }
1 a a

converges or diverges.
The truth of (ii) follows from Theorem 2 and from Lemma 8 below which

shows that the conditions of (ii) imply those of Theorem 2.
THEOREM 2. Let a > 0 and nk = exp {ak/log k}, k = 2, 3, * and assume

that c,/n is ultimately decreasing.
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(i) If

(2.10) exp {C[nk],}k

converges for some a, then P{nV > c_, i.o.} = 0.
(ii) If (2.6) holds and (2.10) diverges for some a, then P{nV, > c i.o.} = 1.
As usual, [x] denotes the largest integer _ x. To avoid burdensome detail

in the proof, we have ignored the difference between nk and [nk].
PROOF. For (i), suppose that (2.10) converges for some a. By replacing c.

by min (c", 2 1og2 n), we may assume, without loss of generality, that

(2.11) c_ < 2 1og2 n.

By the Borel-Cantelli lemma, it suffices to show that

(2.12) ZP{nV,, c,,forsomenk < n < nk+1} < 00
k

and hence, by the monotonicity of V. and the ultimate monotonicity of cs/n,
to show that

(2.13) z { k 1}
k nk+l1

But

(2.14) log PS V,,k = log 1 <_ nk
~~knk+11 nk+ Q nk+lak+1

_
Cfk+l expllog (k + 1) -log (k +

1{ ck ot (k +1)

Slog (k + 1)}
- a

- Cnk+ l(ex log (k + 1))

:< -Ck+, + 2a + o(l),

where the last inequality follows from (2.11). Inequality 2.13 now follows
immediately from the convergence of (2.10).
For (ii), assume that (2.6) holds and that the series (2.10) diverges for some a.

Let c, = min (c", 2 1og2 n). Then Ek exp {-Ck} . exp{-cJ = Ad and
since by the first part of the theorem

(2.15) P{nV, > 2 log2 n i.o.} = 0,

it follows that with no loss of generality we may again assume that (2.11) holds.
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Let Ak = {nk Vnk _ c.J,. By Kolmogorov's 0-1 law, P(nl= 1 Uk̀ mAk) = 0
or 1, and hence, to show that infinitely many of the events Ak occur with
probability 1, it suffices to show that for all ko

(2.16) p(k Ak) -

Let k, > ko and for ko < k _ k1 let Bk = AknAk,1n- * *nA',. Then
00 #cl ki

(2.17) U Ak U Ak=U Bk
k=ko k=ko k=ko

and the events Bko,Bko+l, ,Bkl are disjoint. Hence, to prove (2.16), it
suffices to show that there exists a k1 > ko, k1 depending on ko, such that

ki 1

(2.18) Y P(Bk) _ .
k=ko

Butforeachk. . k . kl,

(2.19) Bk =Akn{V,,,k < r for all k < r kl}

where we have set VJ = mini<,,j u,. Hence, by the independence of the u,

(2.20) P(Bk) = P(Ak)P{Vnk < Crfor allk < r _ k}

P(Ak)(1 - 1 p{ n n})

It is easy to see from (2.6) that ask oo, P(Ak) 0, and from Lemma 1 below,
E2k P(Ak) = °O. Hence, there exists a number KO (to be further specified below)
such that for any ko _ Ko and for some k1 > ko,

(2.21 ) - < Y P(Ak) .-4k-k- 16

It follows from (2.20) and (2.21) that to prove (2.18) it suffices to show that

(2.22) sup E P{V >2%<
ko~k~ki r=k+1 nr 2

It will be shown in Lemma 8 below that if (2.6) holds, then (2.10) converges or

diverges simultaneously for all values of a, and hence, it suffices to prove (2.22)
for one value of a. This will be done in Lemmas 2 through 7 below, completing
the proof of the theorem.
LEMMA 1. EkP(Ak) = x.
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PROOF. Since log (1 - x) _ -x - x2 for all sufficiently small positive x,
we have from (2.11) ask -oo,

(2.23) log P(Ak) = nk log(1 - -k) > nk(- -n - 4) _ -Cnk + o(l)-

The lemma now follows from the divergence of (2.10).
In Lemmas 2 through 7 below, a > 1 and 0 < A < 1 will be fixed numbers

satisfying

(2.24) >(5)1/2

and

(2.25) exp {OA3} > 17.

LEMMA 2. There exists a number K1 such that for all k _ K1 and r > k,

(2.26) nk {exp-j a(r -

nr log r f

PROOF. Let v = r - k. Then since log (1 + x) < x,

(2.27) 1 nk - ack a(k + v) _ ak log (1 + v/k) av

gn, log k log (k + v) log k log (k + v) log (k + v)

< _ av /1- 1 < a(r-k)
log (k + v) K log kJ- log r

for k > K1, provided log K1 _ (1 - A) - 1.
LEMMA 3. For each k let r1 = r1 (k) be the largest integer r such that r - k <

(log r)112. There exists a number K2 such that for all k _ K2 and k < r < r1,

(2.28) P{V",k _ 'i} < exp {-CA (r -k)}.

PROOF. From the inequality 1 -x . ex and Lemma 1, for r > k _ K1,
we obtain

(2.29) P{V, _ = (1 _ ,) < exp{-(1 - kc)C}

< exp {-(1-exp {-ia(7k)})cl,}.

For all sufficiently small positive x, 1 -e-x > Ax. Hence, there exists K3 so
large that for all k _ K3 and k < r _ r1,

(2.30) 1 -lexp{ (r )} _ og( )
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Finally, by (2.6), there exists K4 so large that for r > K4

(2.31) c,, > Alog r.

With K2 = max (K1, K3, K4), the lemma follows from (2.29), (2.30), and (2.31).
LEMMA 4. For each k _ K2 and r > r1,

(2.32) P _, -.} < exp {-A.3(log r)112}.

PROOF. From (2.29) and (2.31), we have

(2.33) P >V r} _ exp { e( pexC{"ir})c }

_ exp {-(1 -exp {-i (log r)-V12}) Alog r}

_ exp {-A3 (log r) 1/2}.

LEMMA 5. For each k, let r2 = r2(k) be the least integer r > k such that
r _ k + (log r)2. Then for all k > K1 and r > r2, nk/nr _ l/r.

PROOF. By (2.27), for k > K1 and r > r2,

(2.34) log k < -A
r

_< - ca log r < -log r

LEMMA 6. There exists a number K5 such that for all k > K5 and r > r2 '

(2.35) p{V . Cn} < P(Ar).

PROOF. From (2.23), we have

(2.36) P(A,) _ A exp { -cnr}

for all r _ some K6. Hence, by Lemma 5, (2.11), (2.29), and (2.36), we have, for
all k _ K5 _ max (K1, K6) and r _ r2,

(2.37) P {V. f- ln} < exp { (1 n )cnr}

-P (Ar) exp{ r }-. P(Ar).

Note that r2(k) k ask -+ oo. Let K7 be so large that for all k > K7,
(2.38) r2(k) _ 2k

and

(2.39) 8(log k)2 exp {-23(log k)12} <1-6.
LEMMA 7. For Ko = max (K1, *. , K7) and all ko > Ko, (2.22) holds.
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PROOF. For all ko _ k _ k1,
kl (n C ) rl r~~~~2k 1

(2.40) p

P nnk >
Cn

< + +
r=k+ 1 "r r=k+1 r=ri + 1 r=r2+ 1

which by Lemmas 3, 4, and 6, equations (2.21), (2.24), (2.25), (2.38), and (2.39),
does not exceed

1 k1
(2.41) E exp{-c2A3(r - k)} + 2(logr2)2exp{-23(logk)1/2} + E P(A,)

r=k+l ir1=r2

- exp {-a3} + 2(2 log k)2 exp {-_ A3(log k)112} + 1 5
exp {_OC3} 2216)

< 1 +
1 + 6 _ 1

16 16 16 2

The following lemma shows that the conditions of Theorem 1 (ii) imply those
of Theorem 2. Note that the condition that (c,,) be ultimately increasing is used
only to show that (c,,) may without loss of generality be assumed to satisfy (2.6).
This substantiates Remark (2.5) above.
LEMMA 8. Let (c,) be any sequence of positive numbers such that cj/n is

ultimately decreasing and either (c.) is ultimately increasing or (2.6) holds. Then
(2.2) converges if and only if (2.10) converges for all a > 0.
PROOF. First observe that without loss of generality we may assume that

(2.11) holds. In fact, if c, is ultimately increasing, so is c' = min (c, 2 log2 n),
while if (2.6) holds then it also holds for c', and it is easy to see that replacing
cn by c' does not alter the convergence or divergence of either (2.2) or (2.10).
We next show that with no loss of generality it may be assumed that (2.6)

holds. Suppose that cn _ cn 1 for all n _ no. If limn ,, cn < oo, then (2.2)
and (2.10) both diverge and continue to do so if cn is replaced by c' =
max (c,, log2 n). Suppose on the other hand that c, oo. Since xe-is
decreasing for large x, we have

nr n

(2.42)
no

eCk > c ecno k > c cn log n 0(1),

which -oo along any subsequence n' for which cn, log2 n'. Hence, if (2.2)
converges, (2.6) holds. If (2.2) diverges, we see from (2.42) that we may replace
cn by c' = max (c,, log2 n) and maintain divergence, so in this case as well we
may assume that (2.6) holds.

It remains to prove the lemma under the assumption

(2.43) 12 1g2 n < Cn . 2 1og2 n.

Now

(2.44) (1 - n ) 1 - exp }a ogk (nk+ 1 )ask -c
nk+ 1 log k log k nk
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and hence, from (2.43),

(2.45) Cl+11 - lk) cflk( -(2.45)~ ~~C~ 1k, ( nk+ 1) nk (nk )

are bounded away from 0 and cc. Since cjn is decreasing for large n, if (2.2)
diverges, we have

(2.46) 00= E E exp {cnn3 .E(5k exp - nk1) (kk+1- k)
k nk<nfnk+l n n k nk nk+1

- C k i) exp Cnk+ + k+ (1 )}

< const. E exp {-Cfk+ }.
k

The case in which (2.2) converges is treated similarly.

3. A conjecture of Darling and Erdos

In [2] Darling and Erdds obtained the limiting distribution of

(3.1) Yr = max t11/2 as t cc.

(This question was suggested by an inequality in [9] concerning the statistical
consequences of "optional stopping.") They also conjectured an iterated
logarithm law for the process y,t namely:

(a) there exists a constant c1 > 0 such that

f *'~~~t)1/2 log03 t (C1 ± 6)log94 ti.o.t(3.2) P y, _ (2 10-2 + 2(2 lg02 )1/2 + (2 lo2 t) 5/2

= Oor 1 according as5 > O or3 < 0;
and

(b) there exists a constant c2 > 0 such that

t)112+ l103 t _(C2 + 5)log94 t
.o.Tc3.3) P {, _ (2 10g2 t)12 + 2(2 lg2 t)1/2 (2 1o2 t)1/2 1.0.

= or 1 according as 6 > O or6 < 0.

Since y, is increasing in t, it follows that for any ultimately increasing
function /(t), y, _ 0(t) for arbitrarily large t if and only if w(t) > (t + 1)1/2*/(t)
for arbitrarily large t (see Remark 2.1). Hence, from (1.3) we see that the proba-
bility (3.2) is 1 for all c1 and 6; that is, conjecture (a) is false. A correct version
of (a) is

(3 t~~~~~)1/2 ± 3og93 t (1 +6)log94 tio. tc

.2[) P y, _ (2 10g2 t~l/ 2 (2 lo29)1/2 + (2 10)1/2 .0.

= or 1 according as6 > O or3 < 0.
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Conjecture (b) is correct, but more difficult to prove. In this section, we shall
use Theorem 1(ii) to verify (b) and identify the constant c2 as 1. We shall only
sketch the proof, which relies greatly on the method of Motoo [6]. (Motoo's
method illuminates the entire paper [2] as well as the relation of Theorem 1 (i)
to (a) and Theorem 1(ii) to (b).)

Let

(3.5) U(t) = e-tw(e2t- 1).
It is easy to verify that

(3.6) P{U(t + s)scdx jU(s) = u} = p( (x-e-2)(1 -de2x)1!2

and hence, that U(t), 0 _ t < o, is a Markov process with stationary transition
probabilities and infinitesimal generator

(3.7) Df (x) = f" (x) -f'(x).

(This U(t) is the Ornstein-Uhlenbeck process with U(0) = 0.) To prove (b)
with c2 = 1, it suffices to show that

(3.8) P{ max U(z) . (2 log t + log2 t - (2 + 6) log3 t)1/2 i.o. t x
O<rtt

= 0 or 1 according as3 > 0 or6 < 0.

Define To = 0 and for each n = 1, 2, ,

-, = inf {t: t > T2n-2, U(t) = 1},
T2(9 = inf {t: t > T2 -1, U(t) = 0}.

It may be shown that y = ET2 < x, and since T2 - TO, T4 - T2, are
independent and identically distributed, it follows from the strong law of large
numbers that

(3.10) p{2n2 = 1.
n

Let x, = maXT2- 2<t<T2n U(t), n = 1, 2, *.- Then X1, x2, are i.i.d., and
for a > 1, P{x, > a} is the probability that the process U(t) starting from 1
reaches the level a before it reaches 0. From (3.7) and standard diffusion theory
it follows that P{X, > a} = g(I), where g(x) satisfies g"(x) -xg(x) = 0,
0 < x < a, subject to the boundary conditions g(O) = 0, g(a) = 1. Hence,

{ exp {_M2} dy 1
(3.11) P{x,, > a} = aiiexp{-4a}1+

( exp {4y2} dy { ( a2

as a -x o, where we have put tj = 0exp {4y2} dy. Let 6 > 0 and
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(3.12) *(t) = [2 log t + log2 t - (2 + 6) log3 t]1/2.
Since f is ultimately increasing, we have by (3.10) for any e > 0,

(3.13) P{ max U(t) _ #(t) i.o. t T co} < P{ max U(t) . O(T2n+2) i.O.}

_< P{ max Xk . /(n(y + 8))i-o.}.

It follows from Remarks 2.2 and 2.5 and some straightforward calculation using
(3.11) that

(3.14) P{ max U(t) < * (t) iLo. tto},
O<ztt

that is, the probability (3.8), is 0 for 6 > 0. A similar argument shows that
(3.8) is 1 for 6 > 0.
Motoo's method of proof of the criterion (1.2) for the Wiener process [6] is

essentially a combination of the preceding argument with Theorem 1 (i) instead
ofTheorem 1 (ii). It is interesting to note that neither Motoo's nor our argument
requires knowledge of the exact value of y = ET2 or of the constant P appearing
in (3.11). A more careful analysis shows that under certain regularity conditions
on the function v,

(3.15) P{max U(r) . i/(t) i.o. tToo},

-0 or 1, according as { f(i/(t)) exp {- /2f(V,(t))} dt

is convergent or divergent, where we have set f(x) = x exp { -_ -x2 }. However,
establishing this deeper criterion requires knowledge of the constants y and t1
and in particular that y/j7 = (2X)12. (It is interesting to observe that if we had
defined the stopping times Tn in our proof in terms of 0 and an arbitrary number
b > 0, then y and 71 would depend on b, but the ratio y/?7 would not.) It is also
necessary to sharpen (3.10) to, say,

(3.16) P{ 2- n
- } = 1,

which is a consequence of the fact that ET2 < so and the usual proof of the
strong law of large numbers using Kolmogorov's inequality and Kronecker's
lemma (see [7]). We omit the details.

4. A continuous time extremal process

In this section, we introduce a continuous time process v, which bears more
or less the same relation to the process V,, as the Wiener process does to the
sequence of partial sums of i.i.d. mean 0, variance 1, random variables, and
give boundary crossing probabilities for this process analogous to those of [11]
for the Wiener process.
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Consider the sequence of processes n V[,t], 0 t < co. For any 0 =
to < tl < t2 < ...<tr anda,i %_* *a,>O.wehaveas n cc

(4.1) P{nV,,,,,, > a,, * ** nV[".] _ a,}
r a [nti]-[nti_] t n

i-1 _- an' exp - Ea,(ti ti-1)
This suggests defining vt, 0 < t < cx, by the following consistent family of
joint distributions: for 0 = to < t, < ... < t, and -mo < a1 < o, i=
1 , 2, ***,r

(4.2) P{v _ al, , Vt, . ar} = exp max (ai, * ar)+ (ti - ti1)1

By Kolmogorov's consistency theorem, there exists a process, say t, having
the finite dimensional joint distributions given by (4.2). Defining v, = lim.4, vi,
where s runs through rationals greater than t, we obtain a process having the
same finite dimensional joint distributions as v, and in addition right continuous,
decreasing sample paths. We shall call any such process a standard extremal
process.

It is easy to see from (4.2) that the process vt, 0 < t < A, is Markovian with
stationary transition probability

(4.3) P{% V= ae}= exp {-a2(t - r)} fora1
,

a2
> 0,~yt=-"21"t= *l0 forO .

a, < a2.

For each z > 0, let h = h(,) = inf {t: t > z, v, < vT}. Then {h > t} = {v, =
v }, and hence, by (4.3),

(4.4) P{h > t v. = a} = exp {-a(t - z)}.

Also for a2 < a1,

(4.5) P{vh _ a2, t < h < t + 6Ivr = a,}
= P{v,+a < a2, t < h < t + 61v, = a,} + o(b)
= P{v,+& < a2, V, _ a,1v = a,} + o(b)
= (1 - exp {-a2}) exp {-(t - r)al} + o (6),

so

(4.6) P{v < Va2,vT = a} P{vh a2,hedt1v, a,}

It follows that the sample paths of the process Vt, 0 < t < so, may be
described as follows: for any z > 0, if the process is in the state a at time T, it
remains there for a random length of time having a negative exponential distri-
bution with parameter a and then jumps to a point uniformly distributed on
(0, a). By (4.2), P{vO, = + oo} = 1, and with probability 1 there are infinitely
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many jumps in each neighborhood of t = 0. Except for the behavior of vt near
t = 0. this description is analogous to that of the discrete time process V,
which holds in each state a a random length of time which is geometrically
distributed with parameter a and then moves to a point uniformly distributed
on (0, a). If xl, x2, are i.i.d. with P{xi _ x} = eX, and v* = min (x1,
X*, ),then the process v, interpolates the process v* in the sense that the two

sequences v,, and v*, n = 1, 2, have the same joint distributions.
Trivial modifications of the proof of Theorem 1 (ii) prove:
THEOREM 3. If c(t) _ 0 is ultimately increasing and c(t)/t is ultimately

decreasing. then P{v, . c(t)/t, i.o. t T co} = 0 or 1, according as lo (c(t)/t)e-c(t) dt
converges or diverges.

Since P{vO, = + x } = 1, it is of interest to obtain a description of the rate
of growth of v, as t 1 0. A law of the iterated logarithm for v, as t 1 0 follows from
Theorem 3 and the following inversion theorem.
THEOREM 4. For each v > 0, let T(v) = sup {t: v, . v}. The process T(v),

o < v < oo, is a standard extremal process.
PROOF. The fact that the sample paths of T(v), 0 < v < cc are decreasing,

right continuous step functions follows at once from the corresponding
properties of vt, 0 < t < cx. Hence, it suffices to show that T(v) and v, have
the same finite dimensional joint distributions. For 0 < u < v and c > t > 0,
except for a set of probability 0,

(4.7) {T(u) > T, T(v) _ t} = {v, > v, v, _ u},
and hence, by (4.2),

(4.8) P{T(u) > T, T(v) > t}
= exp {-tv - - t)u} = exp {-uT- (v - u)t}.

The general case of an arbitrary finite number of time points u, v, , z follows
by the same argument.

For any strictly decreasing function f defined on (0, cc), v, . 0 (t) i.o. t 1 0
if and only if T(v) > V - 1(v) i.o. v T cc. Hence, by Theorem 4,

(4.9) P{v, . f(t) i.o. t 10} = P{vt > i -1(t) i.o. t t c}.

For example, by Theorem 3 and (4.9), we have

(4.10) P lim sup -1} =1.
t-0 1092log2t

We now show that the method of [11] yields boundary crossing probabilities
for the process vt, 0 < t < cc, analogous to those obtained there for the Wiener
process.

Let F denote a measure on (0, cc) assigning finite measure to bounded
intervals, and define for x > 0 t > 0, c > 0,
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f (x, t) = fO<y<x} eyt dF(y),

(4.11)
A(t, £) = inf {x: f(x, t) _ E(=} iff(x, t) < e for all x).

It is easily seen that for all t > 0 x > A(t, c) if and only if f(x, t) _ E, and
that if lo = inf {z: A(z, e) < 0}, then A(-, E) is continuous and decreasing on
(lo, cx) and A(zo, E) = limtl,0 A(t, 8). Moreover, if F{A(t, E)} = 0, then
f(A(t, E), t) = E.

Let Et = 2(v, I < t). Since {I[v, > y]ey', Et,, 0 . t < xo} is a martingale
for each y > 0, as may be verified by direct computation using (4.3), it follows
from Fubini's theorem that {f (v,, t), Et, 0 < t < co} is also a martingale.
THEOREM 5. For any E > F{(0, cD)}

(4.12) P{v, _ A(t, e)for some t > 0} = {(0

For each z > 0,

(4.13) P{v, _ A(t, c)for some t _ z} = exp { -zA(z, E)}

+ E'L {(0, A(T, E))} - exp {-rA(T, 8)} i e Y dF(y)]
0 cy < A(r, E)}

( = E-'1F{(0, A(T, E))} if F{A(T, 8)} = 0).

PROOF. The parenthetical part of (4.13) follows at once from the preceding
line and the observation that if F{A(T, 8)} = 0, then

(4.14)
yA

eTY dF(y) = f(A (, E), I) = E;

equation (4.12) follows from the parenthetical part of (4.13), by letting z1 =
inf {t: A(t, E) < 0c} through any sequence of values such that F{A(,, E)} = 0.
The proof of (4.13) follows from Lemma 1 of [11], Remark (d) at the end of
Section 3 of [11], and Lemma 9 below (see the proof of Theorem 1 of [1I]).
LEMMA 9. The function f (v,, t) tends to 0 in probability.
PROOF. Let c > 0. By the weak convergence of the family F,{.} =

F{(. ) n (0, c]/t} to the 0 measure,

(4.15) ey' dF(y) = ey dF (-) - 0
{O<y<clt} {O<yams} t

as t -- cx. Hence, for any E > 0, for all t sufficiently large,

(4.16) P{f(vt, ) E} PVt> -}-ec,

which can be made arbitrarily small by taking c sufficiently large.
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5. Asymptotic expansions for A (t, a)

If the measure F of the preceding section is taken to be Lebesgue measure on
(0, ox), it is easily seen from (4.11) that

(5.1) A(t, a) = t log (1 + tlog e + O

as t -+ oo. By Theorem 3 there exist functions g(t) 1og2 t/t as t -.ao such
that P{v% _ g(t) for some t > 0} < 1, and it is natural to ask whether we can
find boundaries with this rate of growth to which Theorem 5 applies.
THEOREM 6. If F is defined by (1.8), then for k = 2

(5.2) A(t, a) = - [lg2 t + (2 + 5) log3 t + log1e + o()]

as t - oo, while fork . 3,

(5.3) A(t, £) = [10g2 t + 2 1og3 t + E logi t

+ (1 + c) logk+1 t + loge + o(1)]

as t- oo.
(See equation (10) of [11] which describes the corresponding result for the

Wiener process.)
To prove (5.2), let F be given by (1.8) with k = 2 and let F'(y) = dF/dy.

(The proof of (5.3) when F is given by (1.8) with k _ 3 is similar and will be
omitted.) It follows easily from (4.11) that

(5.4) A = A(t, e) -- 0

as t -- oo. Similarly,
(5.5) tA -- oo.

In fact, if there exists a number C such that tA < C along a sequence of t values,
then

(5.6) e . feZdFP(D.

But F(z/t) -- 0 as t -- cc for all z > 0, and hence, lo ez dF(z/It) - 0 as t -. oo,
contradicting our supposition. Since F' is decreasing in a neighborhood of the
origin, we have by (5.4) for all t sufficiently large,

(5.7) £ = f(A, t) = I etF'(y) dy > P t(A)(e -1)

and hence, by (1.8) and (5.5),
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et A
(5.8) lrnmsup Kt A~a

Rewriting (5.8) as

(5.9) A _ t ioget + logA + logA-+ (1 + 6) log3 ++(l)

we see by (5.4) and (5.5) that A _ (log t/t)[1 + o(1)], and hence logAA
log2 t - log t + o(1). Since (5.5) implies afortiori that for all sufficiently large
t we have 1/A _ t, and hence

(5.10) logk 1/A < logk t.

we have from (5.9),

(5.11) A . - [log £ + 2 log2 t + (1 + 3) log3 t + o(1)].

Thus log A _ -log t + log3 t + 0(1), which by substituting once more in
(5.9) yields A _ log2 t/t (1 + o(1)) and hence

(5.12) logA . -log t + log3 t + o(1).

Finally, substituting (5.12) and (5.10) in (5.9), yields one half of (5.2), to wit

(5.13) A _ 1 [log2 t + (2 + 6) log3 t + log10 o(1)].
-t

In particular,

(5.14) lim sup tA < 1.
ta-o 10g2 t

To prove (5.13) with the inequality reversed let 0 < b < c < 1. From (4.11),
we have for all t sufficiently large

bA "cA rA\

(5.15) = + J + J e~tP'(y) dy

OAF~bA b ectA etA
< e(F(bA) + e '(bA) + tF(cA)

ebtA ectA etA± 1~~~~+
6(log2) btA log-(0og2) cIA log A- log 2A)

Let b = 1/log2 t. Then from (5.4), (5.5), (5.14), and (5.15), we obtain for large t

e(A etA
(5.16) B . o(1) ± . o(1) + -lglog 1/A 219t
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and hence,

log2t(5.17) g2 = (A).
t

From (5.14) and (5.17), it follows that for all q sufficiently small,

tA
(5.18) o< <t

log2 t :

for all sufficiently large t. Using (5.18), we see that the second term on the right side
of (5.15) is majorized by exp {c(1 + a7) log2 t}/(ti/2 log t) for large t, which con-
vergesto0as t -. for q sosmallthatc(1 + ?q) < 1.Hence, letting t - cc, then
c -- 1 in (5.15), we have

(5.19) lim inf e 1 1 E.

tA 'log-1 log2-
A( A)

The reverse of inequality (5.13) now follows from (5.19) by an argument similar
to that which led from (5.8) to (5.13). This completes the proof of (5.2).

6. Remarks

REMARK 6.1. Extremal processes in continuous time have been studied by
Dwass [4] and Lamperti [5]. Lamperti proved an invariance theorem which is
helpful in the proof of (6.2) below.
REMARK 6.2. Theorem 2(i) of [11] states that if g is a positive continuous

function such that g(t)/t112 is ultimately increasing and (1.2) converges, then
for eachz > 0,

(6.1) P{w(t) _ g(t) for some t > c}
- lim P{Sn _ m'12g(n/m) for some n _ rm},

where S,, = x1 + + x, and x1, x2, is any sequence of i.i.d. random
variables having Ex1 = 0, Ex41 = 1. An analogous limit theorem for minima
of uniform random variables is that if g is continuous and decreasing on some
interval (o0, cc)([To, xc)) and _ c on [0, 0]([0, lo)), and if (2. 10) converges
with c, = ng(n), then for each z > 0,

(6.2) P{v, > g(t) for some t > c}

lim P V,, > -g (m for some n > m}.
M-.cx m m

(As in Theorem 2(ii) of [11] a similar result holds if in (6.2) we replace t > T

by t > 0 and n _ rm by n > 1.) The proof is similar in spirit to the proof of
Theorem 2 of [11], but the details are much simpler.
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REMARK 6.3. Using the probability integral transform, one can immediately
obtain analogous results for random variables having arbitrary continuous
distributions. (See Remark 2.5.) For example, if xl, x2, ... are i.i.d. with
P{xi _ x} = e-X(x > 0) and if g = e' satisfies the conditions of Remark 6.2
above, then the left side of (6.2) equals

(6.3) lim { nmax xk . log m + h
n

for some n _ rm}.
m-Moo 1<kn m

If the x are standard normal random variables, the left side of (6.2) equals

(6.4) lim P max xk < 21/2 logm + h( - log logm+h11(1_ _ [log _ /2g )

- log 2v for some n _ zm}.

REMARK 6.4. It is possible to give a proof of Theorem 3 which is in the
spirit of Motoo's proof [6] of the law of the iterated logarithm for the Wiener
process. In fact, it may be shown that {X, etVet, 0 _ t < co} is a positive
recurrent Markov process, and since the sample paths of this process are
continuous and increasing except for jumps in the negative direction, Motoo's
method (as sketched in Section 3) applies with minor changes. To complete
the argument it is necessary to compute (at least asymptotically as a -- co)
(6.5) P{x(T) > alx(O) = 1},
where T = inf {t: x(t) 0 [1, a)}. Since the generator A of the process x(t) is
given by

(6.6) Af(x) = xf'(x) + f (f(u) - f(x)) du

and since pa(x) P{x(T) > a x(O) = x} satisfies Apa(x) = 0,1 < x < a,
subject to pa(a) = 1 and pa(x) = 0, 0 < x <: 1, it may be shown that

e
+ F du

(6.7) Pa(X)= a U1 x< a,
e+ du

and hence pa(1) - ae -a as a --- cc.
Extensions of this approach are being investigated by Mr. J. Frankel.
REMARK 6.5. Minor changes in the method ofproof ofTheorem 1 applied to

maxo<55tiw(s)i yield Chung's law of the iterated logarithm [1]; to wit: if
ultimately c(t) T and c(t)/t I, then

(6.8) P{ max Iw(s)I < (ft)) for arbitrarily large t} = 0 or 1,
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according as

(6.9) | texp - 8-c(t)} dt < oo or = cc.

The required computations are virtually identical with those of Lemmas 2
through 7 in light of the observation that for 0 < X < t, 0 < y < x,

(6. 10) P{ max lw(s)l _ xc max Iw(s)I _ y} < P{ max_ lw(s)l _ x}.
O<s~t _ _ O s t
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