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1. Introduction

Doob remarked in his 1953 book that, "very few facts specifically true of
Gaussian processes are known." This statement is no longer true; the field is
very active, and Gaussian processes now form a very special class. The various
zero-one laws discovered for Gaussian processes show that their sample func-
tions behave almost deterministically. Indeed, the deterministic-like properties
of Gaussian models even appear nonphysical. (A well-known example is the
property of the Wiener and other Gaussian processes that the sample quadratic
variation on an interval is constant.) However, we will not pursue this point.

This work surveys some recent results on sample behavior of Gaussian pro-
cesses and continues the study of the supremum |X || of a bounded Gaussian
process X(t). It is proved in particular that

(1.1) lim -I log P(|XI| > t) = -(2a2) -1,
t-00j

where a2 is the supremum ofthe variances ofthe individualX (t). This extends work
of Fernique [10] and Landau and Shepp [17].

2. A survey of sample behavior

The question due to Kolmogorov (see [7], which stimulated much of the
interest in this area, asks which stationary Gaussian processes have continuous
sample paths. A stationary process X has covariance R(s, t) = R(s- t) =
EX(s)X(t). The question is then for which nonnegative definite functions R is
X a.s. continuous. It is, of course, necessary that R be continuous, and at first
it is surprising that this is not also sufficient. Kolmogorov must have had
examples of stationary processes with discontinuous paths, probably based on
random Fourier series.
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When R is continuous, we can choose a measurable version of the process and
then

(2.1) E ' X2(t) dt = b R(s, s) ds < oo,

and so X E L2 [a, b] a.s. A more interesting question is whether X E C[a, b] a.s.
It may be made precise by requiring, equivalently, any one of the following:

(a) Po (continuous functions) = 1, P0 = outer measure;
(b) there exists a continuous version of the process;
(c) P is a-additive on the continuous functions.

However, the simplest way of making the problem precise is the way one
actually uses the notion of continuity:

(d) X(t) is uniformly continuous for t restricted to the rational points in
[a, b], or any countable dense subset of [a, b].
Belyayev [1] proved that if X is stationary and not a.s. continuous then X is

unbounded on every interval; this was an earlier conjecture of Kolmogorov,
and typical of the zero-one laws for Gaussian processes [15]. Eaves [8] has
given a simple proof.

Fernique [9] made much progress by determining the form of sufficient con-
ditions on R for X to be continuous. Apparently, he was stimulated by work of
Delporte [5].

Fernique's sufficient condition is given in terms of the incremental variance
a22(S, t) = E(X(s) - X(t))2 of X, which is not necessarily stationary.
THEOREM 2.1 (Fernique). Iffor 0 . s . t < s there is afunction TPfor which

E(X(s) - X(t)2 < T2(t - s), where T is nondecreasing on [0, E] and

(2.2) I(T) ( (u)_ du < oo

then X is continuous a.s.
This result was announced by Fernique [9] without a proof. The first pub-

lished proof belongs to Dudley [6] and is based on carefully chosen partitions
of the time set, suggested in [9]. There are now several proofs [21] of Fernique's
theorem; perhaps the most elegant one is due to Garsia, Rodemich, and Rumsey
[11].

Fernique also made a valuable contribution toward a converse of Theorem 2.1
by giving a method of constructing examples of discontinuous stationary pro-
cesses using random lacunary Fourier series,

(2.3) X(t) = ~E an(71 cos 0t + ,n sin Oat),

where q and il' are independent sequences of independent standard normal
variables; it is a theorem of Sidon (see [21]) that bounded lacunary Fourier
series converge absolutely, and so if On = 2" and E an = °°, then X is a.s.
discontinuous.
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The following result from [21] is dual to Theorem 2.1 and a partial converse.
Again X need not be stationary.
THEOREM 2.2. Iffor 0 _ s . t . s there is a function T for which E(X (s) -

X(t))2 > TP2(t - s), where P is nondecreasing on [0, E] and Fernique's integral,
I(T) = oo then X is discontinuous a.s.

In particular, in the stationary case, if the incremental variance a2(h) =
E(X(t + h) - X(t))2 is nondecreasing in some interval 0 < h < s, then
I(a) < oo is necessary and sufficient for sample continuity.
Theorems (2.1) and (2.2) essentially settle Kolmogorov's original question.

Simple examples show that I(a) may be infinite and X continuous [21], but no
example is known to us of a discontinuous stationary process with I(a) < oo.
What is clear is that no integral condition of the form of Theorem 2.1 with P
replaced by a can be exactly equivalent to sample continuity because such a
condition would have to reduce to I(a) < oo which, as we have stated above, is
not necessary for sample continuity. It seems that the situation is somewhat
similar to that in determining the upper class for the general law of the iterated
logarithm; one must impose monotonicity conditions in order to give simple
general statements.

Actually, Theorem 2.2 is proved in [21] only under the additional assumption
that X is stationary. However, in Section 3 of [21], it is shown .that if T satisfies
the hypothesis of Theorem 2.2 there is a process Y (a random lacunary Fourier
series) which is discontinuous and has incremental variance

(2.4) E(Y(s) - y(t))2 < T2(t-s)

for 0 _ s . t _ s. Theorem 2.2, as stated, then follows from the following
lemma, which also answers a question raised in [11].
LEMMA 2.1. Let X and Y be Gaussian processes for which E(Y(s)-Y(t))2

E(X(s) - X(t))2 for 0 _ s < t _ 1. Then if X is continuous, so is Y.
Lemma 2.1 is proved in Section 5 as a corollary of the next lemma, due to

Slepian [33] (see also [21]) which is playing an increasing role in sample
behavior [2], [25], [26].
LEMMA 2.2 (Slepian). Let X1 and X2 be separable zero mean Gaussian pro-

cesses such that for all s and t,

EX,(s)X1(t) _ EX2(s)X2(t),
(2.5) EX 2 (t) = EX 2 (t).

Then for any M, - oo < M < oo,

(2.6) P(X1(t) > Mfor some t) _ P(X2(t) > Mfor some t).

Next, let us reconsider Kolmogorov's problem from the spectral point of
view, perhaps the more natural for stationary processes. First for the random
Fourier series (2.3) with -= n, Kahane [14] (see also [6]) in 1960 found a
condition equivalent to sample continuity under monotonicity restrictions.
Earlier work had been done by Hunt [12].
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THEOREM 2.3 (Kahane). In Equation (2.3) set 0,, = n, and set

22+ 1

(2.7) sn = E (ak).
k=2n+ 1

(i) If X is continuous a.s., then , sn < °°.
(ii) If sn < Tn where %' is nonincreasing and E Tn < °O, then X is continuous

a.s. In particular, if sn is eventually nonincreasing, then a necessary and sufficient
condition for continuity is that X Sn < °O.

For a general stationary Gaussian process X, we ask for conditions for
sample continuity in terms of the spectral distribution function F determined by

(2.8) EX(t + s)X(s) = {cos tx dF(x).

Nisio [24] (see also [17]) proved that Theorem 2.3 remains valid with sn =
F(2n+1) - F(2n), which agrees with the former definition of s,, when X is a
Fourier series. Actually, Nisio proved only that Theorem 2.3 holds with the
phrase "X is continuous a.s." replaced by

(2.9) E sup X(t)I < cc

in both (i) and (ii). It is clear that (2.9) implies that X is bounded, and hence
continuous by the Belyayev theorem. In the opposite direction, ifX is continuous
then it is bounded on finite intervals and (2.9) is then a corollary of the following
theorem of Fernique [10] and Landau and Shepp [17].
THEOREM 2.4. Let XI, X2, * * * be a sequence of Gaussian variables with

arbitrary covariance and means. If P(sup lXnl < 00) > 0, then P(sup lXnl <
cc) = 1, and there is an s > 0 for which for all sufficiently large t,

(2.10) P(sup jXnl > t) < exp (-et2).

Roughly, the theorem asserts that the supremum of a bounded Gaussian
process has Gaussian like tails. In Section 5, we give a very neat proof of the
theorem due to Fernique [10].
The conclusion of Theorem 2.4 can be strengthened still further. Let a,2 be

the variance of Xn and set a2 = SUPn an2-
THEOREM 2.5. Under the hypothesis of Theorem 2.4, a2 < cc and equation

(2.10) holds for any C < (2a2)-1.
This result is sharp in the sense that for any e > (202 )-1, equation (2.10)

becomes false for large t simply because for every n,

(2.11) P(sup IX,,I > t) _ sup P(IX.I > t) > exp (-_t2)

for every C > (2a2 )-1 and t sufficiently large. On the other hand, with further
knowledge of the covariance of X, one may obtain more precise bounds on the
tail of the supremum (see Lemma 3.1 and Proposition 1 in [9]).
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Let us emphasize that even though the hypothesis that the paths are bounded
is often difficult to verify (for example, in the stationary case the verification is
precisely Kolmogorov's problem), nevertheless, Theorems 2.4 and 2.5 can be
useful. We have already seen Theorem 2.4 applied to Nisio's theorem. Similarly,
Theorem 2.4 applies immediately to remove the conditions of some interesting
work of M. Pincus on the asymptotics offunction space integrals (see Theorem 1,
page 202 of [28]). As an example of an application of Theorem 2.5, we obtain
the following very special result from the work of Marlow (see (8), page 7 of
[22]).
THEOREM 2.6 (Marlow). Let Y = W(t)I dt, where W is the Wiener

process. Then

(2.12) lim 1 log P{Y > t} = -
t-* t0

Noting that

(2.13) Y = sup W(t)(p(t) dt,o
where the supremum is taken over step functions p with values + 1 based on
intervals with rational endpoints, Theorem 2.6 follows easily from Theorem 2.5.

Sato [30] has extended Theorem 2.4 to Banach valued X by writing, similar
to (2.13), an arbitrary Banach norm in terms of the supremum of a family of
linear functionals.
THEOREM 2.7 (Sato). Let , be a Gaussian measure on a Banach space B and

assume that B* is separable. Then there exists E > 0 such that

(2.14) fB exp {EIIXI2}p(dX) < x.

The proofofTheorem 2.5, given in Section 5, uses the following simple lemma,
attributed in [11] to Rodemich.
LEMMA 2.3 (Rodemich). If X1, , and YI, * are any random variables

for which
(i) Yi is independent of (X1, Xi) for i = 1,
(ii) Yi is symmetric for i = 1, 2, **,

then for any 0 > 0

(2.15) P{sup iXil 0.} _ 2P{sup lXi + Yil _ 0}.

Lemma 2.3 is used in [11] to prove that the Karhunen-Loeve expansion of
a sample continuous process converges uniformly. This result follows also from
theorems of 1t6 and Nisio [13], who generalize, in an elegant way, the three
series theorem to abstract valued random variables. Symmetry plays a key role
in [13] as well as in Lemma 2.3. It6 and Nisio were more concerned with proving
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that

(2.16) E113j 'q §j W(t)

uniformly on 0 _ t < 1, where {q(P, 92, * } is a complete orthonormal system,
{Pl, q2, * * } is a standard normal sequence, and W a standard Wiener process.
The first proofof (2.16) using abstract valued processes is due to J. B. Walsh [35].
The assertion (2.16), itself, apparently first appeared in [31].

Dudley [6], and also Posner, Rodemich, and Rumsey, Jr. [29] have used
notions of s-entropy, or efficient coverings by small sets of the part of function
space on which the process is carried, in order to prove sample continuity.
Neither [6] nor [29] is principally concerned with sample behavior, although
the ideas involved are useful for gaining insight and essentially best known
results can be obtained by this method. However, Sudakov [34] has shown that
s-entropy alone is not sufficient to decide continuity.

Dudley [6] poses an elegant problem. Its solution would probably shed
light on the structure of compact subsets of Hilbert space as well as on Gaussian
processes. Given any compact subset T of Hilbert space, define X (t), t E T, to
be the real valued Gaussian process with mean zero and covariance EX(s)X(t) =
<s, t> tor s E T, t E T. Dudley asks to determine the classes

GB = {T:sup IX(t)l < o a.s.}
(2.17)T

GC = {T: X(t) is continuous on T a.s.}.

Slepian's inequality and Lemma 2.1 can clearly be used to prove either con-
tinuity or discontinuity once one constructs an appropriate comparison process.
The first person to use Slepian's inequality after Slepian himself was apparently
Berman [2]. He showed that if

(2.18) rn= EXn+mXm = °(-O~)(2.18) 0 ~~~~~~~log n
for a stationary Gaussian sequence X, or if I r 2 < oo, then

(2.19) {(2 log n)112[max (X, * , X) -(2 log n)12]-2 log log n - constant}

converges to exp {-exp (-x)} in law. Since then much work has been done on
such problems for Gaussian processes [25], [36]. They are called growth rate
problems and are closely related to sample behavior problems [23]. In par-
ticular, Pickands extended many of Berman's results to continuous time [27],
and also showed [26] that rn -. 0 is not enough in (2.18). It is because we do
not want to go too far afield that we limit our discussion of growth rates to this
paragraph. We also completely omit a discussion of the extensive work con-
nected with level crossings of Gaussian processes, much of which is closely
related to sample behavior.
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3. Modulus of continuity of sample functions

Let X(t), t E [0, 1] be a sample continuous Gaussian process with mean zero
and set

(3.1) p2(h) = p2 (h) = sup E(X(s) - X(t))2.

A function f(I/h) T o as h I 0 is called a uniform modulus of continuity for X if
there exist constants 0 < Co and Ci < oo so that, with probability one,

(3.2) Co . lim sunX(s) - X(t)I l(3.2)~ ~~~~~~°- _t1=hTPO ((h)f(11h))l _ -

The function f(I/h) is called a local modulus of continuity for X at t if (3.2) holds
with t fixed. In each case, the problem is to find anf that works. Given anf that
works, the lim sup in (3.2) is, by a zero-one law, a constant and so we may
take C0 = C = C. However, in general, C may be difficult to determine.

TABLE I

MODULI OF CONTINUITY

Case a2_(h) Uniformf Local f

1 h'I log hI| 2 log l/h 2 log log l/h
0 < a < 1, -o < , < 00

C=1 C = 1

2 exp [-log hl'(log log 1/h)0] 2 log I/h |log hl1
0 < a < 1, -oo <I < oo (log log l/h)0

C = 1

3 log hI-a(log log I/h)O log l/h log l/h
1 < a < 00, -o < , < 00

Table I gives a sample of the results known [18], [19]. Here X is stationary and
E(X(t + h) - X(t))2 = a2(h). Where C is not indicated, it is unknown. Finally,
in case a2(h) = |log hl-'(log log I/h) -b (where b > 2 for sample continuity),
even f is unknown. It is remarkable that in Case 1, f does not depend on a or ,
and that in Case 3 the uniform f is the same as the local f.
To obtain the results in Table I, the required upper bounds in (3.2) were

gotten by estimating the supremum of the increments of the process and using
the Cantelli lemma [18]. Here, the basic idea is to study the increments based
on a sequence of partitions refining at a certain rate depending on p, and then
to use Fernique's lemma [9]. The following lemma due to Fernique [9] is
proved in [20].
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LEMMA 3.1 (Fernique). If I(p) < oo in Theorem 2.1, set F(b) = sup [EX2(t):
t E O, 6]]. Let c(p) = n2', n = a fixed integer > 1, and a > (4 log n)112. Then
for any 6 > 0,

(3.3) P s~tuo.pa IX(t)I _ a[ r() + 2/ p p(6/c(p))2P12])

_ Cn2 exp{-u2} du,

where C is a constant independent of 6.
Lemma 3.1 implies Theorem 2.5 for the special case when I(p) < ot. Applying

Lemma 3.1 to intervals [0, bk] for a sequence bk -+ 0 fast enough and for
values of n dependent upon P(Ak) enables one to obtain the best known upper
bounds for the local modulus of continuity.

It seems to be more difficult to get good lower bounds. When a2 (h) is concave
for small h, the increments are negatively correlated and even though they are
not independent, the Chung-Erd6s lemma [4] allows Borel-Cantelli arguments
to be used. The following lemma based on Slepian's inequality (Lemma 2.2)
and proved in Section 5, relaxes the concavity assumption on a2, for the local
modulus of continuity.
LEMMA 3.2. Let X and Y be Gaussian and suppose that for It -sI 6,

(3.4) E(Y(s) _ y(t))2 < E(X(s) -X(t))2.

Suppose further that qp is a function such that

IX(h) - X(0)I <1(3.5) lim sup ( ( < 1, a.s.,
IhllO pO(h)

where p(h) = px(h) = o(cp(k)) as h - 0 with p defined as in (3.1). Then (3.5)
holds with Y replacing X.
An immediate corollary of Lemma 3.2 is that if X and Y have stationary

increments and their incremental variances are asymptotic at zero.

(3.6) a2(h) a2(h) as h - 0,

then X and Y have the same local modulus of continuity. In particular, the
results in Table I remain valid if a2 (h) is merely asymptotic to any of the a2 (h)
given there. Thus, Lemma 3.2 enables us to remove the restriction to concave a2.
Oddly enough, no analogue to Lemma 3.2 for the uniform modulus of con-

tinuity is known. It is also unknown whether or not (3.6) implies that X and Y
have the same uniform modulus of continuity for processes with stationary
increments. Besides the methods already discussed for obtaining lower bounds
in the uniform case, there is an approach due to Berman [3], especially note-
worthy because concavity of a2 is not required. Even though Berman's results
are so far not as sharp as those obtained by the other methods in the case of
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concave a2, his method is interesting and perhaps can be sharpened. The basic
idea is that a smooth local time means rough sample paths, as seen below.
For any function X, not necessarily random, and any interval I define, with

A Lebesgue measure,

(3.7) F1(x) = A(t II|X(t) _ x),
the occupation time distribution function of X on I. When FP is absolutely
continuous, its density ,(p(x) is called the local time of X at x, since (P (x) dx is
the amount of time t E I that X (t) E dx. Finally, define the Fourier transform f,
of local time of X,

(3.8) fi(u) = exp {iuX(t)} dt = X exp {iux}T,(x) dx.

If X(t) = X(t, co), thenF1(x) = FP(x, co) and 91(x) = 'p1(x, co). If X is Gaussian
and

(3.9) E(X(s)-X(t))2 > C(t-_s)f, 0 < s _ t < 1, 0 <,B

then for p = 2/B- 1, it follows that

(3.10) EfX uIuPIfo, 1] (u) 12 du < oc,
which in turn implies that T,(-, co) EL2(-oo, oo) a.s. (if p . 0) and has p/2
derivatives. For p an even integer, we have

(3.11) I[I = total time in I = f p(x,co)dx = p,(x) dx

(1)p/2J X(x b)pl2[qp1(x, co)](p/2) dx,

where (b, c) = (b(co), c(co)) is the range of X(t, co), t E I, because q, (x, co) = 0
outside the range of X. Using Schwarz's inequality, the fact that qpI(x) <
qp[O, 1](x) if I c [0, 1], and the Parseval identity, we obtain

(3.12) 1112 < (c - b)P+1 Jf_ luiP Ifto 1](u)12 du.

The range of X(t), t E I has length c -b and so if the length of I is h, taking
(p + I)th roots in (3.12), we have

(3.13) sup X(t) - X(s)|I h2/(1 l[f) ulp If[o, 11(u)I2 du]
Thus, for p = 2/B- 1 an even integer, (3.13) provides a lower bound on the
modulus of continuity of X, since the denominator of the right side of (3.13)
is a.s. finite by (3.10).
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Upper bounds on the uniform modulus of continuity have recently been
obtained by Garsia, Rodemich, and Rumsey, Jr. [11] by a neat method which
gives the best known results. We omit the details of this method which are given
elsewhere in this volume. It is shown in [11] that every sample continuous
Gaussian process on a compact interval does indeed have a uniform modulus
of continuity satisfying (3.2). Under the further restriction that Fernique's con-
dition (in Theorem 2.1) I(p) < x holds, they show [11] that for 0 . s < t . 1,

(3.14) JX(s) - X(t)| . 16D(co)p(t - s) + 162/2 f (log - dp(u),

where

(3.15) E exp D2 < 4-/2.

Dividing (3.14) by the integral on the right and letting t - s -+ 0, for 8 and
t E [0, 1], we obtain

(3.16) lim sup Ih - (8)1 . 162.
It-sij=hlO (log!

It is easy to check that (3.16) gives the upper bounds needed in Table I except
for the value of the constant.

At first glance (3.14) appears stronger than (3.16) because (3.14) holds
uniformly in s and t. However, it is easy to see that (3.16) implies (3.14) for some
finite D(wo). On the other hand, (3.15) does not seem to follow from (3.16) even
using Theorem 2.4. Thus, it seems that (3.14) is a new and interesting global
formulation of the uniform modulus of continuity deserving further study.
The problem of the uniform and local modulus of continuity can be posed

in a sharper way. Call a monotone nondecreasing function p a member of the
upper class with respect to uniform continuity of X(t, co) if there is a b(w)) > 0
so that for almost all co, 0 _ - sI . 6(co) implies

(3.17) IX(t, co) - X(s, co)l _ u(t - Sl)T(Ft -sI)

that is, almost all sample functions have a(h)((1/h) as a modulus of continuity.
The upper class with respect to local continuity is defined similarly.

Following the work of Chung, Erd6s, and Sirao [4] on Brownian motion,
Sirao and Watanabe [32] have given an integral test for the upper class. They
consider stationary processes for which a2 (h) is concave and

(3.18) CohsIlog hj < C2(h) . C1hsIlog h|
for h E [0, 6], where 0 < 6 < 1, 0 < a < 1, -X < # < X, and 0 < CO <
C1 < oc. They obtain the following theorem, among others.
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THEOREM 3.1 (Sirao and Watanabe). A nondecreasing continuous function (p
belongs to the upper class with respect to uniform continuity if and only if

(3.19) i (t)41a1 exp { .... 2(t) dt <} o,

where a is given by (3.18).
A similar test is given for local continuity [32]. It seems likely that if

a2(h) C2(h), where a2 is concave and satisfies (3.18), then (3.19) also holds
for cr2. However, Lemma 3.2 is not strong enough to prove this even in the local
case. Finally, it would be very interesting to find the upper class for some a 2
with oc = 0, which would be closer to the borderline with discontinuous processes.
K6no [16] has recently improved and extended parts of [18] and [32] to
multidimensional time. Nisio [23] has obtained lower bounds for the modulus
of uniform continuity under conditions somewhat weaker than concavity of a2,
but only for a > 0 (Case 1 of Table I).

4. Inequalities for Gaussian measure of convex sets

Let Q be a Gaussian measure on E" with mean zero and let C be a convex set
in En. Suppose that

(4.1) ¢(s)D = exp{-2u2} du - oo < s <

and note that (D(s) > 2 for s > 0.
LEMMA 4.1 (Landau and Shepp [17]). If Q(C) = (D(s) for s > 0, then

Q(aC) _ (D(as) for a > 1, where aC = {ax: x E C}.
REMARK. Note that aC is increasing in a because the origin 0 belongs to

C (if 0 0 C, C would be contained in a half space not containing 0 and
Q(C) < 2).
Lemma 4.1 is the basis of the proof of Theorem 2.4 given in [17] and is sharp

in the sense that equality holds whenever C is a half space.
When C is known to be symmetric (x e C implies -x E C) in addition, one

would expect that the conclusion of Lemma 4.1 could be strengthened. The
following unproved statement is likely to be true.
CONJECTURE 4.1. If C is convex, symmetric, and if Q(C) = 2b(s) - 1, then

Q(aC) 2 20(as) - lfora > 1.
Conjecture 4.1 is sharp in the sense that equality holds when C is a symmetric

slab. A weaker version of Conjecture 4.1 has been proved by Fernique [10].
LEMMA 4.2 (Fernique). If C is convex, symmetric, and q = Q(C) > 2, then

fora > 1,
a2 q

(4.2) Q(aC).I- qexp - -log }24 1- q
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Fernique [10] states his lemma in terms of seminorms rather than in the form
of Lemma 4.2.
LEMMA 4.3 (Fernique). Let Q be a Gaussian measure on En with mean zero,

and let N be a seminorm on En. Suppose that q = Q(x: N(x) _ s) > I. Then for
a > 1, the inequality (4.2) holds with the left side replaced by Q(x: N(x) < as).
Of course, Lemmas 4.2 and 4.3 are seen to be equivalent under the one to one

correspondence,

(4.3 C = (x:N(x) < s)
N(x) = inf(A:sxe)LC),

between a closed, convex, symmetric set C and a seminorm N. If Conjecture 4.1
is true, the restriction q > I could be removed in Lemmas 4.2 and 4.3 and the
conclusion strengthened. On the other hand, as we shall see, Lemma 4.3 is good
enough to prove Theorem 2.4 and so from the point of view of Theorem 2.4
there is no need to get a sharp form of the inequality (4.2)-except for the sake
of elegance. This discussion is included only to clarify the relationship between
[10] and [17]. We give Fernique's short proof of Lemma 4.3 below. It is com-
pletely elementary compared to the proofin [17] ofLemma 4.1 which depends on
the difficult Brunn-Minkowski-Schmidt inequality in spherical geometry.

It is of course simpler to work with Gaussian vectors rather than Gaussian
measures, so let X1 and X2 be independent n vectors with distribution Q. Then
(X1 + X2)/ 2 and (X1 - X2)/ /2 are also independent with distribution Q.
For any s and t,
(4.4) P(N(X) _ s)P(N(X) > t)

- ( +x) _ s, N( >/x) > t)

< P(IN(XI) - N(X2)1 < so/i, N(X1) + N(X2) > tJ/)
- P(N(X ) > ,N(X2) >2)

=P(N(X)>>) -

Define to= s > 0, t +1 = s + 2/2tn In = 1, 2X q = P(N(X) _ s), and
for n > 0, xn = P(N(X) > t.)/q. It follows from (4.4) that x.+1 _ xn and so

Xn _ (xo)2'. Thus, expressing tn in terms of s,

(4.5) P(N(X) > (2(n+1)/2 _ 1)( 2 + 1)s) _ q exp - 2' log 1 }

Now if a > 1, then for some n = O, 1, 2,

(4.6) (2(n+1)/2 - 1)( 2 + 1) < a < (2(n+2)/2 - 1)( 2 + 1)
and (4.2) follows from (4.5) after a short calculation.



BEHAVIOR OF GAUSSIAN PROCESSES 435

In particular, taking N(x) = max (lxii, * Ix.l), we obtain from (4.2) that if
qn = P(max (lXii, X.*X"l) < s) > 2, where X1, * , X, are Gaussian random
variables, then

(4.7) P(max IXil > t) _ exp {- 2482 log 1 _'lq}.

If X is infinite dimensional, X = (X1, X2, * * ), and s is such that q =
P(sup lXil < 8) > 2, then q. > 2and passing to the limit n oo in (4.7), we
obtain

(4.8) P(sup IXi| > t) _ exp {- 22 og 1-

Relation (4.8) gives information about the distribution F of the supremum of
an arbitrary bounded Gaussian process; it states that the tail of F is at most
Gaussian. However, the central part of the distribution F need not be Gaussian-
like at all, as the following example shows. Let X1, X2, * be independent with
means zero and variances A2,, A2, . Then for each u,

(4.9) P(sup IXiX < u) = (1 - 20(- u-))-

Choosing /I2I = 2 log i + a log log i with a > 1, we find easily that

(4.10) P(sup IXii < 1) = 0, P(sup IXil < 1) > 0,

so that F has an atom at unity. On the other hand, it seems unlikely that F can
have more than one atom.

5. Proofs

PROOF OF LEMMA 2.1. We prove first that Y is continuous at each point t,
say t = 0. It is no loss of generality to assume X(0) = Y(0) = 0 because
X(t) -X(0) and Y(t) - Y(0) also satisfy the hypothesis of Lemma 2.1. Then
X(t) 0 in law, and so
(5.1) p22(b) = p2(b) = supEX2(t) __. 0.

ItI<6
Let c be fixed and set

f2 (t) = p2(a) - EX2(t) + Ey2(t), |It | ,

(5.2) Y(t) = Y(t) + '1P(6), Itl =

X(t) = X (t) + ?17(t), Itl _ 6,
where i7 and t1' are standard normal and independent of each other as well as

of X and Y. Note that f2(t) _ 0. We then have
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(5.3) E(Y(s) _ y(t))2 = E(Y(s) - y(t))2
< E(X(s) - X(t))2 < E(X(s) -X(t))2

and

(5.4) EY(t)2 = EX(t)2.
Thus, EY(8)Y(t) _ EX(s)X(t) for all s and t and the hypothesis of Lemma 2.2
is satisfied. Therefore, for any 4 > 0, by Lemma 2.2,

(5.5) P(sup Y(t) > () _ 2P(sup Y(t) > 4) _ 2P(sup X-(t) > )

where in each case the sup is taken over It| < 6. Since EY2(t) . EX2(t) _
p2(-) 0, we have

(5.6) sup f(t) - 0, sup IX(t)I -+ 0,
ItIv~

a.s. as O0.
By (5.5) and (5.6), P(sup [IY(t)|:It| . 6] > -. 0 for each 4> 0 as 6 0
and so

(5.7) sup IY(t)l -. 0

a.s. as O0.
Hence, Y(t) - 0 as t -O 0 a.s. and Y is continuous at each point.
The following argument supplied by Dudley, shows that ifa Gaussian process

Y is a.s. continuous at each point it is sample continuous. For each e > 0 and
each subinterval I of [0, 1], let Ae(I) be the event that at some to E I,

(5.8) lim sup Y(t) > lim inf Y(t) + s,
t-to t- to

where t runs through the rational points of [0, 1]. It is a simple zero-one law
([32], Theorem 1) based on the Karhunen-Loeve expansion that P(Ae(I))
equals zero or one for each fixed e and I. IfY is not sample continuous, then there
is an e > 0 for which P(A.([O, 1])) = 1. Since

(5.9) Ae[O 2] UAj[, 1] = Ae[0, 1],

one of the events on the left has probability one also. Continuing in this way,
we find a sequence of closed intervals In nesting to some point t.> E [0, 1] with
P(Ae (In)) = 1. Since (5.8) holds for some point to = to (co, n) E In, it follows
that (5.8) must also hold with probability one at to = to. But Y is continuous
at to a.s. The contradiction proves Lemma 2.1.
PROOF OF THEOREM 2.4. First observe that if P(sup IX,l < oo) > 0, then

the sequence EX3 of variances must be bounded because otherwise for each M,

(5.10) P(sup IX.I _ M) _ infP(IX.I _ M) = 0.
nI
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Using the Gram-Schmidt procedure, for example, we can find numbers ci,j and
a sequence ?11, 12, * of independent standard normal variables so that

00

(5.11) Xi= E Ci,j?1X
j=1

If now P(sup IX-l < oX) > 0, then, as seen above, there is a number M < o
for which EX2 < M2 for all i and so Ici j _ M for all i andj. Thus, for any n,

(5.12) |jE ci,jj _< M E ItZjl-
j=1 ~~~~i=1

Therefore, the event that {IX,,I} is bounded is measurable on {q, 1 +2,*
for any n and so has measure zero or one. Since zero is excluded the first assertion
of Theorem 2.4 is proved.
To prove the second assertion of Theorem 2.4, note that we have just proved

the existence of an s for which

(5.13) q = P(sup IXil <_ 8) > 2-

An application of (4.8) now proves (2.10), since q > I and Theorem 2.4 is
proved. For an alternate proof of Theorem 2.4 based on Lemma 4.1 see [17].
PROOF OF THEOREM 2.5. There is clearly no loss of generality in assuming

a = 1, so that in (5.11) we have
00

(5.14) E j _ 1, i =1,2,--.
Define for all i and n,

xi,n = E Ci,i11i
(5.15) j=1

Yi,n = EZ cii,j
j=n+ 1

so that Xi = Xi,n + yi,,n. Applying Lemma 2.3 to xi," and Yi,n using the ordering
XI, , X2., 1 Xk, 1; ...; XI,k, X2,k, ***,Xk,k, and letting k -+ oo, we obtain
that for each s > 0,

(5.16) P(Sup Ixi.,:l > 8) _ 2P(sup lXii > s).i,n

By Theorem 2.4, P(sup lXii < oo) = 1, so we can choose s so large that
P(sup lXil > 1S) < I. Since

(5.17) sup lYi"| < sup lxii + sup |xi,"|

we have from (5.16) that

(5.18) P(sup IYi'.J > s) _ P(sup IXi| > 25) + P(Sup 1xi,n| > 2s)
i, n i, n

< 3P(sup iXil > 48) < 1.
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It follows that

(5.19) P(lim sup sup Iyj,,,I > S) = 0
n oo i

because the event on the left of (5.19) is a tail event contained in the event on
the left of (5.18). Thus, for any q, 2 < q < 1, there is some value of n for which

(5.20) P(sup lyiy*l < s) _ q.

Again appealing to (4.8), using Yi, n in place of Xi, we obtain, for this same value
of n,

(5.21) P(sup yji.,j > t) _ exp 2482 log 1 _q

Now fix a number 3 > 0, define s as above (below (5.16)), and choose q so close
to one that 0 > 2, where

(5.22) 0 = 62 log q

Choosing the same n which makes (5.21) valid, we have

(5.23) P(sup IXii > (1 + 6)t) . P(sup |Yi,nl > 6t) + P(sup lxi.,l > t)
i i

< exp {- t20} + P(sup lXi,nl > t)

Since n is fixed in the last term, and from (5.14)
n 1/2

(5.24)
<
(Z(5.24) lx~~~~iXinl - E 12 i = 1, 2, ***
j=1

we have

(5.25) P(sup 4nl > t) _ p(( E l2 > t

The right side of (5.25) is the tail ofthe x2 distribution and as is easily seen, satisfies

(5.26) p((, 2) > 1 exp {- 2t2}

for sufficiently large t. Using (5.25) and (5.26) to bound the last term in (5.23),
we see that for any 6 > 0 and any e < 2 for t sufficiently large,

(5.27) P(sup lXii > (1 + 6)t) < exp {- t2E}.
Finally, replacing t by tl(l + 3) in (5.27), yields Theorem 2.5.
PROOF OF LEMMA 3.2. As in the proof of Lemma 2.1, we may assume

X(0) = Y(0) = 0. Fix 3 > 0 and define p2(3), f2(t), Y(t), and X(t) as in (5.1)
and (5.2). Noting that
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(5.28) EY(s)Y(t) _ EX(s)X(t),
(5.28) EY(t)2 = EX(t)2,
for - s8_ t <_ , we may apply Slepian's lemma (Lemma 2.2) to Y(t)/q(t)
and X(t)/?p(t) with M = 1. We obtain

(5.29) P(Y(t) > q.(t), for some Itl _ 6)
< P(X(t) > p(t), for some |tl < 6).

Because 11 is symmetric,

(5.30) P(IY(t) I > T (t), for some I t 6)
. 2P(|Y(t)| > p(t), for some It| 6)
< 4P(Y(t) > p(t), for some It| < 6).

where the second inequality follows from the symmetry of Y. By hypothesis (3.4)
and the fact that f(t) . 2px(t) = o((p(t)).

(5.31) lim sup (t) lim sup (t)
qi(t)~~~~~0(t)

By (5.31) and (3.5), we see that the right and hence the left side of (5.29) tends to
zero with 6. Thus,

(5.32) lim sup _ 1 a.s.

Finally, by the zero-one law, (3.5) also holds with the right side replaced by a
number less than unity and so equality in (5.32) is impossible. Thus Lemma 3.2
is proved.
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