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In this paper we shall present a strengthening and generalization to higher
dimensions of the real variable lemma presented in [4].
As a consequence we shall obtain a criterion for the continuity of sample

functions of Gaussian processes with a multidimensional time parameter.
Remarkably enough, the difficulty ofthe arguments here is almost independent

of dimensions, indeed the proofs in this paper are considerably simpler and
yield stronger results than those in [4].
As in [4] our point of departure is a real variable lemma giving an a priori

modulus of continuity for functions satisfying certain integral inequalities.
As in [4], the basic ingredients are two functions p(u), defined in [-1, 1] and

T(u), defined in (- o, + oo). However here, in addition to the conditions

(1) p(u) = p(-u) 1° as Jul IO,

(2) T(u) = T(-u) T oo as Jul T oo,

we shall assume that T(u) is convex.
Let then Io denote the unit hypercube in d dimensional cartesian space. In

this paper, by "hypercube" we mean a hypercube with edges parallel to the
coordinate axes.
For every hypercube I we denote by III its volume and by e (I) the common

length of its edges.
This given, we can state our basic lemma in the following form.
LEMMA 1. Let f(x) be measurable in Io and such that

(3) jT (fx) f y) dxdy <Bp for all I c Io
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Then, if f is continuous in Io, for all x, y E IO we have

(4) If(x) - f(y)I < 8 T1l(-d)p(u),
otherwise, (4) holds at least for almost all x, y E Io.

PROOF. Given x, y E Io we let QO be the smallest hypercube containing both
of them. Further, let {Q,,} be a sequence of hypercubes such that

(a) Qn CQn- 1, n =1 ,***
(5) (b) p(e(Q.)) = (e(Qn-1))-
From (3) and the convexity of T, we deduce

(p(e(Q,,_;)j) - QnQn-l |nQ-(p(e(Qn )))
< B
= QnllQn-11'

where, for any hypercube Q, we set fQ = (1/IQ|) IQ f(X) dx. Inverting T in
the inequality (6) we get

(7) |fQn _4-dQl - T` (I IQ p(e(Qn-1))-
For convenience set x. = e (Qn).

This given, from (5b) it is easily seen that

(8) p(e(Qn-1)) = P(Xn-1) = 4[p(Xn) -P(Xn+A]
So therefore, from (7) we easily deduce

(9)~~ ~~~~XIJQ f(u )

T' p(

On summing this inequality for n = 1, 2, * * *, we derive

(10) lim sup IfQ-fQO = | T (u- dp(u)

If the sequence {Qn} is in addition chosen to decrease to x and f is con-

tinuous at x, from (10) we obtain

(ll) ~If(x) -fQol _ 4 T-1 (-ddp(u).
The same inequality of course must hold with x replaced by y iff is continuous
at y.
We can thus derive (4) for all x, y E Io when f is continuous in I.
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However, in the general case, we know from classical real variable theory,
that for almost all x E IO we can still choose the hypercubes Qn so that in addition
we have

(12) lim fQ= f (x).

Thus the lemma is established in full.
We are now in a position to derive our application to Gaussian processes.

Our arguments here do not differ in a substantial way from those presented in
[4] or [5], however, since they are quite short, for the sake of completeness we
shall present them in full detail.

Let again IO denote the unit hypercube in d dimensions. Let R(s, t) be con-
tinuous and positive definite in S = IO x IO and let

(13) R(s, t) = E A,59V(s)(t)
V=1

be its Mercer's expansion in S.
Set

(14) AR(s, t) = Av[(pv8(s) -pv(t)]2
V = 1

and

(15) p(u) = max [AR(s, t)]1/2.
Is- tl :5Iul d

Finally, let {An (co)} be a sequence of independent standard Gaussian variables
and set

(16) Xv(co) = E a p(t)Ov(co).
v=1

The following result holds.
THEOREM 1. Suppose

(17) 11 (~~~~~~1)/2(17) J"log!)11dp(u) <cco.

Then, with probability one the partial sums Xt )(CO) converge uniformly in Io,
indeed they are almost surely equicontinuous in IO. More precisely for all n we

have

(18) IX(n)(wO) - Xt")(co)I _ 16[log B(co)]112 p(s - t)
rls-tl l1/2

+ 16 (2d)"2 | log) dp(u),
where J

I (X(n)(CO) X~~(n)(C)l(19) B(co) = sup exp l(a)) ( ds dt
n 0o 0 4 p((s -t)lld)
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and

(20) E[B(wo)] _ 48/E
PROOF. For fixed s and t in Io we introduce the random variables

IfX(,)(CO) - X'~(co)C)2
(21) P.(co) = exp8 Lp( -

(21) ~~~~8{P((8S- t)lld ) }

We note that

(a) {P,} is a submartingale,
(b) E(P.2) . .

Indeed, (a) follows from the convexity of exp {u2} and the definition of
{Xt()(co)}, while (b) holds because for each n the random variable

(22) ~~~~~~~X(n)(at)) -X(n)((D))(22) X (co) -
p((s - 01/1d2)

is Gaussian, has mean zero and variance less than or equal to one.
This given, from the classical martingale inequalities we deduce that for each

s and t in IO

(23) E(max Pm) < 4E(P,2) < 4 /2.msn
Integrating over S = Io x Io and using Fubini's theorem, we then obtain

(4(ICI 1X(X()(Co)) - Xt)(C) ))) 2

(24) E m0J0ax exp - d8 dt) <.-2w51Omn 4 P((8 - t)lld-)
Upon letting n T10 in this inequality and using the monotone convergence
theorem, we can easily deduce the assertion in (20). Thus we almost surely
have for n = 1, 2, * * ,

CC 1 (X~~(no) -_X~(no)() 2
(25) JJ exp 1(

-
dadt < B(co) < (x.I10 4 P((8S-t)ll))

Lemma 1 then gives

(26) IX"n)(0)) - X(n)(CO)| _ 16 JI (log B(cC)/u2d)l1/2 dp(u).

This inequality implies (18).
Finally, note that since

00 X o
(27) E ( A02 (co)) = E 2V = | R(s, s) ds < oo,

V=1 J V=1 JI
with probability one we have

00

(28) E~~~~~Av0V2(CV) < CK°-(28)~~~~~~~~~~~ =
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This implies the almost sure uniform convergence of {Xt")(co)} in IO. For, at
each co where (25) and (28) hold simultaneously, the functions X )(ca)) are both
equicontinuous and convergent in square mean in Io.
Thus the proof of the theorem is complete.
REMARK 1. It is worthwhile observing that in the proofofTheorem 1 we have

only made use of the following weaker form of Lemma 1.
LEMMA 2. Let f(x) be continuous in Io and such that

(29) T f() (y )dxdy . B < °.
0o 0o ((x -y)/ d)

Then for all x, y E IO we have

(30) lf(x) -f(y)|I_ 81 - -( 2dP(U)-

Now, for d = 1 this is precisely the real variable lemma established in [4]. We
have thus obtained here a new (and somewhat simpler) proof of that result.
REMARK 2. From Theorem 1 we can immediately deduce the following.
THEOREM 2. A sufficient condition for a Gaussian process X, (co) on IO to admit

a separable and measurable model whose sample functions are continuous with
probability one is that if we set

(31) p(u) = max [E(jX8 - )]Is- tI<IuI1d

we have

(32) log)1I2dp(u) < cxc.

Furthermore, if this holds, then with probability one the modulus of continuity
A(b) of the sample functions can be majorized by an expression of the form

Cp(b) + D : (log )1 dp(u),

where in general C is random and D is a universal constant.
In the case d = 1 this theorem reduces to Theorem 2.1 of [4]. It can also be

shown that in this case our condition (32) is equivalent to the conditions con-

sidered by Delporte [1] and Fernique [2]. It thus follows, from some of the
considerations in [3], that our condition (32) cannot in general be replaced by
any weaker condition concerning p(u) itself.

Finally, we observe that Lemma 1 implies also the Holder continuity lemma
of N. G. Meyers [6]. We thus obtain here also a new proof and extension of
that result.

It is to be noted that Meyers' result has interesting applications in the theory
of partial differential equations.
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