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1. Introduction

This work is motivated by the following problem: which Banach spaces
are isomorphic (linearly homeomorphic) to a complemented subspace of
LP(= LP[O, 1]) for 1 < p < oo, p 7E 2, and what are their linear topological
properties? (A linear subspaceA ofa Banach spaceB is said to be complemented
if there exists a bounded linear operator P on B with range A such that P2 =p;
such a P is called a projection onto A.) It is well known that (2, ep, (2 e(p,
(12 e(3 2 e ...*)p and of course LP itself, are examples of such Banach spaces.
As usual, (P denotes the Banach space of sequences of scalars (x") such that
(7|x.JP)'1P- II(x.)IJ < 00; given Banach spaces B1,B2, --- ; we denote by
(B1 e B2 $ ... )p the Banach space of all sequences (ba) such that bn E Bn for
all n and 11(b.)II = (FIIbnIIP)11P < oo. Given a sequence (ba) of elements of a
Banach space B, we denote by [bJ] the closed linear span of its terms; ifB = LP
of some probability space, then [bJ] is denoted also by [b]p.
To see that Hilbert space, that is, (2 is an example, one may consider a sequence

(fn) of two valued, symmetric, independent random variables; it follows from
Khintchine's inequalities that [fn]p is isomorphic to Hilbert space. Moreover,
the 2 and p norms are equivalent on [fU]p, and orthogonal projection onto
[fU]2 = [fn]p shows that [fUJp is complemented.
Now let 2 < p < oo, and let (fn) be a sequence of independent, nonzero

random variables belonging to LP, each of mean zero. We proved in [11] that
[fnJp is isomorphic to a complemented subspace of LP, and that [fJ]p is isomor-
phic to exactly one of four Banach spaces: (2, (p, (2 E (P or a new space which
we denote as Xp. We showed moreover that if thef are three valued, symmetric,
then [fnJp is complemented in LP by means of orthogonal projection, with [fn]q
thus complemented and isomorphic to ([fn]p)*, the dual of [fnJp (throughout, p
and q used together, denote reals satisfying I/p + l/q = 1). We thus obtained
that Xq (defined as the dual of Xp) is isomorphic to the span of a sequence of
independent random variables in L7, providing the starting point for the present
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paper. Since the isomorphism structure of the spans of sequences of independent
random variables in LP is completely determined for p > 2, by the results of
[11], we investigate here the span ofa sequence of independent random variables
(ga) in LP for 1 < p < 2.
The main result of the present paper, from the standpoint of Banach space

theory, is that [gJP is isomorphic to a subspace of Xp. (See Corollary 4.3.) Thus,
in particular, &r is isomorphic to a subspace ofXp for allp < r _ 2. (The number
of possible isomorphism types of [g[JP is uncountable, since ?' is such a type for
all p < r < 2; the classification of these spaces up to isomorphism appears
difficult.) From the standpoint of probability theory, our main result is that for
0 < p _ 2, every infinitely divisible, symmetric random variable with a finite
absolute pth moment may be approximated in p mean by sums of independent
three valued, symmetric random variables (Theorem 4.1). It is easily seen that the
span in LP of a sequence of independent random variables, each of mean zero,
is isomorphic to the span of a sequence of symmetric, independent random
variables (if p _ 1). We prove in Theorem 4.2 that given any sequence (X.) of
symmetric, independent random variables and 0 < p < 2, there exists a sequence
(YJ) of infinitely divisible, symmetric, independent random variables and a
sequence (fe) (respectively, (fpp)) of functions valued in the nonnegative reals,
such that for any sequence (cj) of scalars, ZcjXj converges a.e. (respectively, in
LP) if and only if ZcjYj converges a.e. (respectively, in LP) if and only if
1f,(Itc,,) < oo (respectively, 1fg,p(Itc.J) < oo) for some t > 0.
Our main results are contained in Section 4; Section 3 is devoted to pre-

liminaries concerned with distributional equivalents to convergence in LP of
sequences of random variables, and Section 2 to definitions and some standard
facts. The remainder of the introduction is devoted to a summary, in greater
detail, of some of the results of [11]; we shall also use the notation given below
in the sequel.
The result of most interest to probability theory is probably the following.
THEOREM 1.1. Let 2 < p < oo. Then there is a constant Kp so that for any

sequence (X.) of independent random variables belonging to LP, each of mean zero,
and for any integer n,

n I /P n I/P n 1/2,
(1.1) (E jE1 xiX _ Kp max E EIXjkP) ( E EIXj)2}

and
n I /v 1 ' /P n

JX
1/2)

(1.2) E )iP - max { EIXjIP) ( EIXjI2)}.

If moreover the variables are three valued and symmetric, then there is a linear
projection P from LP onto [XnIp such that P* is a projection from Lq onto [Xn]q,
with IIPII K,.

This has, incidentally, an immediate corollary.
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COROLLARY 1.1. Let 2 < p < oo and let (X") be a sequence of independent
random variables, each of mean zero. Then IXn converges in IP if and only if
ZElX.12 < 00 and ZElX"|P < o.
The proof of Theorem 1.1 uses standard inequalities as well as the following

possibly new lemma.
LEMMA 1.1. Let 1 < p < oc and let X1,l , X,, be nonnegative, independent

random variables. Then

(1.3) (E(XX)P)"1P < 2P max {(1EXP)l1P, ZEXil}.
For the proofs of these results, see Lemmas 1 and 2 and Theorems 3 and 4

of [11].
Now, given a sequence w = (we) of positive scalars, 2 < p < oc, let Xp,w

denote the Banach space of all sequences of scalars (a,,) such that

(1.4) ||(a.) = max {(yI|.12w"2)12, (yI|"jp)11p} < oo.

By the natural basis of Xp, W, we refer to the sequence of elements (e") of Xp, W,
where el = an, for all j, n. It follows easily from Theorem 1.1 that if (fn) is a
sequence of independent random variables with E If I"P = 1 and Efn = 0 for all
n, then [f,jp is isomorphic to Xp,W, where

(1.5) = (Ifl 2)1/2

for all n. (In fact, there is an invertible bounded linear map T from [fj], onto
Xp,w such that Tf. = e" for all n.)

Let a sequence w = (wa) of positive reals be given and fix 2 < p < 00. If (w,)
satisfies

(1.6) infwn = 0, E w2p(p-2) = oo for all - > 0,
n W <E

then we proved that Xp, w is isomorphic to Xp. Precisely, we showed in Theorem
13 of [11] that if w and w' satisfy (1.6), then Xp,w is isomorphic to Xp,w,. The
symbol Xp denotes the one Banach space (up to isomorphism) thus represented;
X. or any of its representatives X,,w are defined by duality; X. = Xp, Xqiw =
Xp,w. If (we) fails (1.6), there are exactly three possibilities; either infw" > 0,
or E "2pl(p- 2) < 00, or the positive integers N split into two infinite sets N1 and
N2 with 2neN, W""2/ < oo and infnc-N2 wn > 0. In these three cases, we have
that Xp,W is isomorphic either to 12, ?P, or 12 E eP respectively.

It is easily seen that Xp is isomorphic to a subspace of eP E e2; we proved in
[11] that Xp is not a continuous linear image of 1p @ 12. This enabled us to
show that there is a subspace A of 1P isomorphic to 1P, but uncomplemented in
1P for all 2 < p < 00 (see Theorem 6 of [II]). The existence of such an A is
known for 1 <p < 4 and is open for p = l and for 4 < p < 2. Actually, the
fact that Xp is not a continuous linear image of e P 1? 2 follows from the results
of the present paper. For it is known that e' is not isomorphic to a subspace of
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eq E)e for any q < r < 2, yet by Corollary 4.2, ?' is isomorphic to a subspace
of Xq for all q < r < 2. It seems surprising that Xq should be so rich in sub-
spaces, when it is isomorphic to a quotient space of "q e 1 2, a space seemingly
poor in its variety of subspaces. It also follows from our results and the results of
[2] that a great many of the Orlicz sequence spaces are isomorphic to subspaces
of Xq and that every subspace of Lq with a symmetric basis is isomorphic to a
subspace of Xq, 1 < q < 2 (see the first remark following Corollary 4.2).
For other applications of probability theory to the theory ofthe Banach spaces

associated with LP spaces, we refer the reader to [2] and [3]; for the theory of
these spaces themselves, see [1] and [8]. We wish to thank S. Bochner and
L. Le Cam for stimulating conversations connected with this paper.

2. Definitions, notation, and standard facts

Since this paper may be of interest to readers not completely familiar with
the standard terminology in Banach space theory or in probability theory, we
give here a rather thorough exposition of that terminology. For standard facts in
Banach space theory, see [4] and [5]; for standard facts in probability theory,
see [9].

Only real Banach spaces shall be considered (9 denotes the set of real
numbers). The assertions we make concerning isomorphic properties of Banach
spaces carry over to complex Banach spaces as well (for example, that 6r is
isomorphic to a subspace ofXp for all 1 < p < r < 2). Given a Banach space B,
we denote byB* its dual, the space of all bounded linear functionals on B. Let B
be a Banach space and (ba) a sequence ofelements ofB. We say that (b") is normal-
ized if 11 bn || = 1 for all n. It is said to be a basic sequence if for each x E [bJ,
there exists a unique sequence of scalars (xn) such that x = Exnb", the series
converging in norm. The sequence (ba) is called a basis for B if it is a basic
sequence with [bJ] = B. It is called an unconditional basic sequence if it is a
basic sequence such that arbitrary subseries of 1x,bn converge whenever Exnbn
converges. (For various facts concerning unconditional bases and convergence,
the reader may consult [4].) Two basic sequences (a") and (ba) in Banach spaces
A and B, respectively, are said to be equivalent if for all sequences of scalars (xe),
Xxnan converges if and only if Exnbn converges. It is well known and easily seen
that (aj) is equivalent to (ba) if and only if there is a bounded bijective linear
operator T: [aJ --+ [bJ] with Tan = bn for all n.

Given a basic sequence (b), a sequence (yj) is said to be a block basis of (b")
if there exists a sequence (Bj) of disjoint finite subsets of the positive integers,
with a < b if a E Bi and b E Bj and i < j, and if there exist scalars in for n E Bj,
such that yj = XneBjiBAbn for all j. Every block basis is a basic sequence in its
own right.

It is a theorem ofBanach that, if (ba ) is a basic sequence, then there is a constant
K such that ||aixi1i < KII||, 1 xjxj for all i and for all convergent series ajxx;
let us callK the biorthogonal constant of (bj). Suppose that (b.) is a normalized
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basic sequence with biorthogonal constant equal to 1, and suppose that (a") is a
sequence in B such that Zo= 1 Ila, - bII < 1. Then it is known (see [1]) that (an)
is a basic sequence equivalent to (b). In fact, we have the following lemma.
LEMMA 2.1 (perturbation lemma). The operator T defined on the linear span

of the bn and satisfying Tbn = an for all n extends (uniquely) to an invertible
operator T: [b.] - [aj] satisfying 11|T| 1 + 6 and hIT-Il < (1-)-, where
6 = Illan - b,,Il.

PROOF. All the assertions follow from the fact that if x is in the linear span
of the bn, then Tx - x|| 61x|. (For details and related results, see [1].)
By a probability space (Q, P) we mean a set Q and a probability measure P

defined on some a-algebra 9' of subsets of Q; (Q, P) may also be denoted
(Q, 9', P). When Q = [0, 1], we take P to be Lebesgue measure with respect to
the Lebesgue measurable subsets of [0,1]. For the sake of definiteness, we
usually state results on [0, 1]; all results stated as holding on the probability
space [0, 1] also hold on any atomless probability space (Q, P). By a random
variable, we mean a real valued function X defined on some probability space
such that X - 1 (E) is measurable for all Borel sets E. By a distribution, we mean a
probability measure on the Borel subsets of M. Given n random variables
X1, * * *, X"; by dist (X1, . .. , X.), we mean the measure i defined on the Borel
subsets of R' by 1(E) = P[(X1, * , X.) E E]. Given a random variable X de-
fined on a probability space (Q, P) and 0 < r < a:, E(X) = |X(w) dP(w) and
IiXiII = (ElX|r)ll. If X has , as its distribution, we denote the characteristic
function (ch. f.) of X (also called the ch. f. of u) by a; thus, P(t) = E(eitX) =

S-. eitX dju(x). The variable X is said to be symmetric if X and -X have the
same distribution. Given distributions yu and v, we denote by ,u*v the unique
distribution with (p * v)^ = PO.
By 1l(Q), we mean the space of equivalence classes (under equality a.e.) of

random variables X on Q such that |IX hr is finite; EI denotes Lr[0, 1]. We follow
the usual notation for the most part. For example, if X,, X are random variables
and 0 < r < oo, we write X,, A X if X,, converges to X in probability, X,, ae X

if X, converges to X with probability one, and X" r÷ X if X,, -+ X in r mean,
that is, if |IX. - XlIr - 0.
One final observation: as noted in [11] (p. 278, Lemma 2 and the remarks

following it), it follows from [9], p. 263, that if (X.) is a sequence of nonzero
independent random variables, each of mean zero, all belonging to If for some
fixed 1 < p < oo, then (X.) is an unconditional basic sequence in IP. It also
follows that the biorthogonal constant for (X") is one. (Thus, the perturbation
lemma applies.)

3. Preliminaries

Our main general interest is convergence in EI ofsequences ofrandom variables
(for 1 < r _ 2). In this section, we first state some known results concerning this.
We then give a proposition which shows, among other things, that a random
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variable X defined on [0, 1] which may be approximated in distribution by
simple random variables of a certain form, may be approximated a.e. by a
sequence of such variables of the same form. (The point is that it is not necessary
to consider another random variable Y with dist Y = dist X.)

Let A, 2A, 22, be finite positive Borel measures on M. We say that in2'-A
if I 4dAn -| J 4)dA for all bounded continuous 4) on #. It is well known that if
2A, in are distributions (that is, probability measures), then inic- 2 is equivalent
to 2,n -i 2 uniformly on compact sets, which is equivalent to f OdAn -- f )dA for
all continuous functions 4 on R vanishing at infinity, and is also equivalent to
the existence of random variables X, Xn on [0, 1] with 2 = dist X, An = dist Xn
for all n withX" a-,-X. GivenO < r < oo, we say that ini ifini .

(3.1) f xI'dAn(x) < oo for all n,

and

(3.2) f lxlIrdAn(x) - fJIXlrd(x) < oo.

It is easily seen that 2+-4A if and only if An -42 and IxI>K (X'din(Z)- 0
uniformly in n as K -+ oo. We have that if 2, in are distributions, then 2An - 2 if
and only if there exist random variables X, Xn in L'[O, 1] with A = dist X, and
Sin = dist Xn for all n, such that Xn -4 X. For, we may choose random variables
with these distributions such that Xn -+ X a.e. Since 2" -42,

(3.3)
"i~r

IX"lr dt , lXlr dt,
whence, by a well-known consequence of Egorov's theorem, flo I|X - X r dt O 0.

In the sequel, we shall have need of the following proposition.
PROPOSITION 3.1. Let X. Xl, * , Xn be simple (that is,finite ranged) random

variables defined on some probability space, and let Y be a random variable on
[0, 1] such that dist Y = dist X. Then there exist simple random variables
YI, - - Yn on [0, 1] such that dist(X, X1, * Xn) = dist(Y. Y1, ... Yn).

This proposition is, in turn, a simple consequence of the following lemma.
LEMMA 3.1. Let v be a probability measure on a finite set F, with v{f} 0

all f E F. Let a?be a Boolean subalgebra of the subsets of F, and let T: / -Y
be a measure preserving Boolean transformation, where Y equals the Lebesgue
measurable subsets of [0, 1]. Then there exists i: 2F -+t such that Tis a measure

preserving Boolean transformation with T 1 4 = T.
Here, 2F denotes the set of all subsets ofF. Our hypotheses on T mean simply

that T(54) is a subalgebra of Y, and T is a measure isomorphism between the
measure algebras (d,4 v) and (T(Ad), m) as defined in [6]. page 67 (where m de-
notes Lebesgue measure).
PROOF. Since F is finite it suffices to prove that if E is a subset of F, then T

can be extended to a measure preserving transformation defined on the algebra
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of sets generated by a? and E, which we shall denote by a?'. Let E1, Ek be
the atoms of a?. Since a is finite, q/ is generated by E1, *, Ek; but then a'4
is evidently generated by El r) E. E, r' E' * E, r) E, Ek r E' (where E' denotes
the complement of E). Now by standard results (see [6]), we may choose for
each i, a set Gi c z(Ej) such that Gi is Lebesgue measurable and m(Gi) =

m(T(Ej)nE). (If Eir'E is empty, let Gi be the empty set.) Then, defining
i (Ei nE) = Gi, T(Ei r E') = r (Ei) - Gi, we have that i extends uniquely to a
well defined measure preserving Boolean transformation on a'.

PROOF OF PROPOSITIoN 3.1. We may of course assume that the variables
X, X1, *- , X, are defined on a probability space (F, v) such that F is a finite set,
with v {f} =k 0 for all fE F. Let

(3.4) s = {X-l{r}: r is in the range of X}.

Since Y and X have the same distribution, it follows that there is a measure
preserving Boolean transformation T: SY 5° such that T#X = Y a.e., where T'
is defined by

k \ k

(3.5) T#(E rilEj) = ErkI(E,
i=l i=l

where E1, , Ek are the distinct atoms of a? and rl, rk are arbitrary real
numbers. By Lemma 3. 1, z extends to a measure preserving Boolean transforma-
tion i: 2F ° ; since Textends T, we have thatT# X = Y a.e. also. We now merely
define Yi = #Xi for all 1 . i . n: it is immediate that

(3.6) dist (X. Xl, X,) = dist (T X, TX1, ,*X,,) = dist (Y. Y.... Y.)
Q.E.D.
COROLLARY 3.1. Let X and Y be random variables with dist X = dist Y with

X defined on some probability space (Q, P) and Y defined on [0, 1]. Assume that
(Xn) is a sequence of simple random variables defined on Q such that Xn A X for
some 0 < r < oo (respectively, X,, P X). Then there exists a sequence of simple
random variables defined on [0, 1], such that dist Y, = dist Xn for all n, and

Yn Y (respectively, Yn -P Y).
PROOF. Throughout. let us use the notation "'Zn Z". to stand for''Znr Z''

for some fixed 0 < r < cx, or to stand for "Zn P Z ". We may choose a sequence
(9k) of simple, real valued, Borel measurable functions, defined on the real
numbers, such that gk(Y) -* Y. Then since dist Y = dist X, we have gk(X) -+ X.
Now by Proposition 3.1, for each k we may choose Yk on [0, 1] such that
dist (Yk, gk(Y)) = dist (Xk, gk(X)). Then of course dist Yk = dist Xk for all k.
Since gk(X) -_ X and Xk -_ X, we have gk(X) - Xk O* 0; whence, gk(Y) -
Y- 0, whence Yk Y. Q.E.D.
REMARK 3.1. Proposition 3.1, Lemma 3.1, and Corollary 3.1 all hold for

countably valued random variables rather than merely simple random variables.
In fact, one obtains that if (Q, S, P) is an atomless probability space and if X1.

nU1, , U. are countably valued random variables defined on some
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probability space, and W1I,* * , Wm are variables defined on Q with dist (U,*
Urn) = dist (WW M * , Win), then there exist variables Y1, * * *, Yn defined on Q2 with

(3.7) dist(Yl, * - *, Y., W1, * * *, W.) = dist(XI, - - *, X., U1, * * *, Um).
Moreover, it follows from results of Maharam (Lemmas 1 and 2 of [10]) that

this holds with no restriction at all on the cardinality of the range of the random
variables X,, * * *, X., U1, * * *, Um, provided that (Q, 9', P) is a homogeneous
nonseparable probability space (for example, the one obtained by taking the
product measure on uncountably many copies of [0, 1]). For it can be deduced
from her results that if (S, -, v) is a separable probability space (that is, L1(S)
is separable), if .d is a a-subalgebra of -, and if T: v-+ 9 is a measure pre-
serving Boolean transformation, then there exists a measure preserving Boolean
transformation ?: X 9' extending t. (For an application of this, see Remark
4.2.)

4. The main results

DEFINITION 4.1. Let 9' denote the set of all distributions it, such that there
exist k and k-independent three valued, symmetric random variables X,, ** Xk
such that At = dist(XI + * * * + Xk).
We note that p E Y' if and only if there is a k and positive real numbers

rl, rk, f1, *k with f3i < 1 for all i such that
k

(4.1) a,(X) = H [1 - pi(l - cosrix)].
i= 1

Let 0 < r < 2 and let F, (respectively, F) denote the set of all distributions p such
that there exists a sequence p,, E 9Y with ju. -4 p (respectively, with pi, 4 p)
The next proposition follows from the results of Section 3.

PROPOSITION 4.1. If it E F, (respectively, F), then for any random variable X
defined on [0, 1] with dist X = p, there exist three valued, symmetric random
variables Xfl,k for 1 _ k < k_ n = 1, 2, such that for each n, Xn,1, Xn,2,

*Xn,knare independent with k = 1 Xn,k X (respectively, k1Xk ,,k X).
To see this, we have by Corollary 3.1 that if X is on [0, 1] and dist X = u, then
there exist random variables X. on [0, 1] such that dist X. E S for all n and
X. A X (respectively, X,, L-4 X). But by Proposition 3.1, it follows that for each
n, we may choose X., 1, * * *. Xn, kn independent, three valued, symmetric random
variables such that Xn, = 11 Xni k. (Of course it is trivial that if X satisfies the
conclusion of Proposition 4.1, then dist X E F, (respectively, dist X E F).)
W come now to our main result from the standpoint of probability theory.
THEOREM 4.1. Let i be a symmetric, infinitely divisible distribution. Then

p E F. If, moreover, IlXIr dp(x) < o for some 0 < r . 2, then p E F,.
We are indebted to S. Bochner for showing us that every symmetric, infinitely

divisible distribution belongs to F.
To prove Theorem 4.1, we first require two lemmas, whose proofs use known

techniques. (For the definition and standard facts concerning the infinitely divi-
sible laws, see [9]; the main result we use here is the explicit representation of
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their characteristic functions given on p. 309 of [9].) The first lemma shows that
the classes F, and F are closed under the obvious operations.
LEMMA 4.1. Let 0 < r . 2. Then if tl .F (respectively, EF) and A > 0,

H, e F,. (respectively, e F), where HA(E) = p(BE) for all Borel E. If It, v e F,.
(respectively F), then It * v e F, (respectively, F). Finally, if /4n e F, (respectively, F'
and P,, it (respectively, sin A it), then It E Fr (respectively, p E F).

PROOF. The first assertion is evident; for if we choose 4l,n E 9' such that
rPEtn I (respectively, sinU,4 ), then ( z _). pA (respectively, (p, -c (y)j), and

of course v E 9' => vA E 9'. To see the second assertion, we may choose indepen-
dent random variables X and Y on [0, 1] such that p = dist X, v = dist Y, and
sequences of random variables (X"), (Yj) such that for all n, Xn and Y. are
independent, and dist X", dist Yn E 9', with X, A X and YnA Y (respectively,

Xn X and Yn Y). But then X +Yn A X + Y (respectively, Xn +
Yn aX + Y). Ofcourse, dist (X + Y) = p*v and dist (Xn + YJ)ES for all n.
The final assertion follows from our initial remarks. For we may choose random
variables Xn and X on [0, 1] such that un = dist Xn for all n, p = dist X, and
Xn,)I X (respectively, X. P X). By Proposition 4.1, we may choose for each n,
a random variable Yn with dist Ync, S, such that 11Yn- XnI, < I/n (respectively,
such that d(Yn, Xn) < I/n, where d denotes the usual convergence in probability
metric, d(Y, Z) = E(IY - Z|/(1 + IY - Zi)) for any random variables Y and
Z). Then Yn A X (respectively, Yn P X), so of course p E Fr (respectively,
p, E F). Q.E.D.

Parts of the next lemma are certainly known, but we are unaware of suitable
references for all of its assertions.
LEMMA 4.2. Let i, p,n be symmetric, infinitely divisible distributions, and let

A, An be the unique finite symmetric measures on the reals such that

1 + Y2
f(x) = exp{-| (1-cosyx) 2 dA(y)},

(4.2) Qn,,(x) = exp {-| (1 -cos yx) 2Y dAn (Y)}

Then p-n4 ,if (and only if) An - A.Furthermore, ifO < r < 2, then |Ix|'dy(x) <
oo if and only if x I' dA(x) < cx, and ,nfit if (and only if) An .A.
PROOF. We delete the proofs of the two parenthetical "only if's", since we

have no need of these assertions in the sequel. If An 4 A, then trivially ,na-+ A
pointwise; whence, ptn -4 At, since the Ptm and p are distributions.

IffX2 dlp(x) < oo, then

(4.3) X2 dy (x) = - (0) = lim 2- /2(y) 2
\dx2J - y

=lim 2 1 COS YX + X2 d(x)f0 f Y2 dX(2

f (1 + X2) dA(x)
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by Fatou's lemma; whence Jx2 dA(x) < co. If conversely Jx2 d)(x) < c, then
a is twice continuously differentiable and so i has a finite second moment (see
page 199 of [9]). We thus have that

(4.4) fx2 d,(x) = f (1 + X2) d)(x),
which shows immediately that if iln A. then +2.
Now fix 0 < r < 2. We have that

(4.5) |xlr = C, f 1 - cos xy dy where C` =Cs y d

Now assume that I lxI' dl(x) < o. Since y is symmetric, A (y) = J-0 cos xy dy;
thus, substituting for lxi' by using (4.5) and changing the order of integration,
we have that

(4.6) C-J1f |xlr d(x) = (Y) dy < oo.

Now choose 6 such that 1 -Q(y) _ -2 log A (y) for all IYI . 6. Then

(4.7) oo > 2 dy

1a-I cosyx 1 + X2dA( d
IJ( Clyx dy)

2
2 dy(){xj>i (f 1-cosyr ) 1+2d,

1 + x2> K l lr l 2 dA(x),
where dt>x),
(4.8) K ic osYdy >O.
Thus, I 4lx dA(x) < x. If conversely I Ilxr dA(x) < oo, then since

1 - (y) <
-log /(y) for all y,

(4.9) {1jt- ')dy < 1.+,Y 12 dA(x) dy
lyll ~ J Jr 1-COS yx2 2di

+J'p(J' 1 -cosyx 1 +X2 d.( ) d

+ r1 2|X|' + d (x))II< dy

1 Jx>l li?1 x
whence 6 x

whence by (4.6),JixIrdy(x) < oo.
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Now suppose i,, A 0 < r < 2. Then yi, y, since i,, Ac2; hence for all y,
"(y) fi(y). To show that M. A I, we need only show (by (4.6)) that

(4.10) 1 Ai(Y)dy Av (Y)dy .

This in turn will follow if we show that the sequence of functions
[1 - fi(y)]/Iyl1+' is uniformly integrable near 0. Let e > 0. We shall prove
that there is a 6 > 0 such that

(4.11) |Y1 (Y) dy < e for all n,

and thus, be done with this lemma.
Fix 6, n, and N with N > 1. Then

(4.12) : . (Y) dy
a, 1 -cosyx 1 +2x d()dy

: (P 1 COSYX (1 +X2) dAn(x))d y11rdy

~sUP4(~) COSfyxIrdY )A(x yl-d
1+2x2

+ I kCOS? 2ydy i) 2d.(x)
_< SUPAk(f)N2 y|l-rdy

kJ-

+ SUP c-; XIr|| dAk(x).

Now choose N so that

(4.13) sup Ce,71lxl1 +2 dAk(x) <je;
k xII>N X

then choose 6 so that

(4.14) sUpAk(M)N2 j Iyll-r dy <j.

Q.E.D.
PROOF OF THEOREM 4.1. We first show that the "symmetric Poisson" distri-

butions belong to F2; that is, if there is a real xo and a real A with A > 0 such
that A (t) = exp {-(1 - cos xot)A}, then p EPF2. ByLemma 4.1, we may assume
xo = 1. Let u,, be the distribution such that a,,(t) = [1 - A(1 - cos t)/n]'. If n
is such that n > 2, then gun e 9", and of course ytnjAu. Moreover,I x2d,u
I x2d,; in fact

(4.15) f x2dp,n = -(d /jI")(o) = 2 = {x2 d, for all n.
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Next we have that the Gaussian distributions belong to F2. Of course by
Lemma 4.1, it suffices to prove that p E F2 if a(t) = exp {I-t2}. But if p, is the
distribution

(4.16) Q (t) = exp { I[1 -cos (t)] n2}

then pM.-÷ i, and again, I x2 dp.(t) = 1 =I x2 dp(t) for all n, so p,3 2 , and
thus, p E F2 by Lemma 4.1.
Now let p be a symmetric, infinitely divisible distribution, and let A be the

unique symmetric measure on the reals related to p as in Lemma 4.2. We may
assume, without loss of generality, that u has no GCaussian part, that is, that
A{0} = 0. For if p had a Gaussian part, we could write p = p1*p2 with y, a
Gaussian distribution and p2 Gaussian free. Then of course, we would have
automatically that P2 is symmetric and infinitely divisible with I lx|' dY2 < °°
if I IXlr d/l < oo, by Lemma 4.2. Thus, since Pi E F2, we would have that pE F
if JU2 E F andp Ec F, if e2E F,, by Lemma 4.1.
Now it is easily seen (for example, by passing to Riemann sums) that there

exists a sequence of symmetric measures (A.n) on S such that for all n, the support
of n,, is a finite set not containing 0 with A. -4 A, with the additional property that
I lXl dA, - IlX4 dA if I IxI' dA < oo. Fix n, and let p,Ube the distribution related
to A,, as in Lemma 4.2. Then for each n, u,, is a convolution of a finite number of
symmetric Poisson distributions; hence, p, E F2 by Lemma 4.1. Thus, p,, 4 pt
by Lemma 4.2, so, E Fby Lemma 4.1. If I IXlr dy < oo, then si,, - pby Lemma
4.2, so again p E F, by Lemma 4.1. Q.E.D.
Our next result shows that for 1 _ r < 2, the span of a sequence of indepen-

dent, infinitely divisible, symmetric random variables in L, is arbitrarily close
to a subspace ofthe span ofa certain sequence ofthree valued, symmetric random
variables. (The result as stated is trivial for r = 2.)

COROLLARY 4.1. Let 1 _ r < 2 and let X1, X2, * be a sequence of nonzero,
independent, symmetric, infinitely divisible random variables such thatE|Xir < oo
for all i. Then given E > 0, there exists a sequence Z1, Z2, * ** of independent,
symmetric, three valued random variables, and a block basis (Yn) of (Zn) such that
there is a unique invertible linear operator T: [Zn]r- [Xn]r with ||TI| IIT- 1|
1 + a and T(Y") = X,for all n.
PROOF. We may assume, without loss of generality, that EIX,,' = 1 for all

n. We may also assume that X1, X2, * * * are defined on [0, 1]', the countable
infinite product of the unit interval with itself (endowed with the product
measure), so that X, depends only on the nth factor, for all n. That is, there exist
random variables X1, X2, * - - defined on [0, 1] so that X"(t) = X"(t.) for all n
and t = (t.) e [0, 1]'. Now choose e' < 1 such that (1 + s')/(1- s') < 1 + s.
By Theorem 4.1 and Proposition 4.1, we may choose for each n, three valued,
symmetric, independent random variables Xn l, X.,X k defined on [0, 1]
such that (4.17)k||nSX"j - Xn|| < 2n-
(4.17)Z - X <

j=1 2n~~~~
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Then for each n and j with 1 < j _ kn, define X.,, by X., j(t) = Xn,j(tj) for all
t E [0, 1]Q; let T be the unique one to one correspondence between {(n, j): 1 <

j _ k., n = 1, 2, * } and the positive integers such that T(n,j) < T (n',j') if
n < n' or if n = n' andj < j', and define Z, and Y,, for all n by Z,, = X,-(n) and
Y. = V, I Z~(nj) Then the variables ZI, Z2, are independent, (Yn) is a block
basis of (Zn), and |Zn- Xn, 1r < s'/2" for all n. The final assertion follows from
the perturbation lemma, Lemma 2.1., Q.E.D.
COROLLARY 4.2. The space &' is isomorphic to a subspace of Xq for all

1 <q < r . 2.
PROOF. Let q < r < 2, and let X1, X2, be independent, identically distri-

buted, stable, symmetric random variables of exponent r, such that E IXIIq = 1.
Thus, letting u be the distribution of X1, a(x) = exp {-c|xIr}, where c is the
fixed constant (depending on q and r) determined by | Ix|4 dji(x) = 1. (As is
well known and also a consequence of Lemma 4.2, such random variables have
a finite absolute qth moment.) Then [Xn]q is isometric to I". Indeed, given n
real numbers c1, * * *, c. not all zero, we have that

(4.18) [ch.f. (c1X, + * * * + c,,X,,)](x) = exp {-c-(CI(ciIr)IIrxJr},
whence the distribution of Zc1Xi equals ItA where )J` = (c,I|r)lI/; whence,

(4.19) EIciXil" = fIAxIqd,i(x) = Aq;

and thus, Il|ciXilIq = A = (YIciIJ')1'. Therefore the linear span of the X,, is
linearly isometric to a dense linear subspace of er; this isometry uniquely extends
to an isometry of all of [X,]q with er.
By Corollary 4.2, [Xn]q is isomorphic to a subspace Of [Zn]q for a certain

sequence (Z.) of symmetric, three valued, independent random variables, but by
the results of [11], [Zn]q iS isomorphic to a complemented subspace of Xq.
(Actually, [Zn]q will be isomorphic to Xq in this case, since the other possible
isomorphism types of [Z.], cannot contain an isomorph of er.) Finally, eq q3 e2
is isomorphic to a subspace of Xq, so the cases r = q, r = 2 are taken care of
also. QE.D.
REMARK 4.1. A basis (b,) in a Banach space is said to be symmetric if for all

permutations a of the positive integers and sequences (x,,) of scalars, Ex,(n)b,,
converges whenever I:x,,bn converges. Let 1 < q < 2 and let B be a closed linear
subspace of Lq with a symmetric basis. Then by our results and the theorems of
[2],B is isomorphic to a subspace of Xq. Indeed, it follows from the results in [2]
that eitherB is isomorphic to 1" or there exists a sequence (Xn) of i.i.d., infinitely
divisible, symmetric random variables belonging to Lq such that B is isomorphic
to [Xn]q. In either case B is thus isomorphic to a subspace of Xq by Corollary
4.1 and the results of [11]. It is also proved in [2] that there exists a convex
functionf with domain and range the nonnegative reals with f(x)/x2 equivalent
(near zero) to a decreasing function and f(x)/xq equivalent to an increasing
function, such that B is isomorphic to the Orlicz sequence space {f; and con-
versely given any function f satisfying these conditions, ef is isomorphic to a
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subspace of Lq (and consequently to a subspace of Xq by our results). Finally,
it is also proved in [2] that the above spaces include (isomorphically) all reflexive
subspaces of L1 with a symmetric basis.
The definitions of the terms used above are as follows. If g and h are two

functions with domain and range the nonnegative reals, g and h are said to be
equivalent near zero if there exist positive constants a, b, c, d and 6 such that
h(ax) _ b g(x) and g(cx) < d h(x) for all 0 _ x _ 6. If g is convex, vanishing
at zero, 4 refers to the space of all sequences (x") of scalars such that
1g (I tx, I) < 0o for some t > 0, under any norm equivalent to the norm

(4.20) Ij(x.)IIg = inf {t: t > 0 and 9g(ItXnl) _ I}.
REMARK 4.2. The first part of our argument for Corollary 4.2 (valid for

r = 2 also) shows that eXr is isometric to a subspace of LP for all 1 < p < r _ 2.
Actually, by the results of [3], L' is isometric to a subspace of LP for all
1 _ p < r _ 2. An explicit proof of this may be obtained by applying the last
remark of Section 3 as follows. Let (Ql, P) be the probability space obtained by
letting P be the product measure on Q, an uncountable product of unit intervals.
Let XO, 1 be a stable, symmetric random variable of exponent r, defined on Q,
with EIX0 11P = 1. Let n > O, and assume that 2" independent, identically distri-
buted random variables Xn 1, * * *, Xn 2. have been defined, such that XO I =
21 X, ,. By the last remark of Section 3 since Xn 1 is thus symmetric and

stable ofexponent r, we may choose i.i.d. random variables Xn + 1, 1, **, Xn,+ l

such that for each j with 1 j _ 2n, Xn,j = Xn+ 1,2j- 1 + Xn+ 1, 2j-
We now define a linear operator T from the linear combinations of the indi-

cators of the dyadic intervals on [0, 1] into LP(O) as follows: given n _ 0 and
scalars cl, * , c2n, put

/2- 2n

(4.21) T E CjI[(j-l)/2-fj/2n] =E cjxn j
j=l j=l

Then the definition of the Xn j shows that T is a well defined map; the argument
of Corollary 4.2 shows that T is an isometry (since EIXn iq = 2-nq/r); whence,
T extends uniquely to an isometry from L'[0, 1] onto B, the closed linear span
of {Xn,j: 1 . i _ 2n; n = 0, 1, 2, * *} in Lq(Q). Finally, since B is a separable
subspace of LI(Q), it follows easily that B is isometric to a subspace of Lq[O, 1].
Our final theorem reduces the study of the span of sequences of independent

random variables to the span of sequences of symmetric, infinitely divisible
random variables.
THEOREM 4.2. Let (X") be a sequence of independent random variables, each

possessing a nonnegative characteristic function. Let (Yn) be a sequence of inde-
pendent random variables such that for all n the ch. f. of Yn equals
exp {-f- (1 - cos yx) dtnW()}, where it, is the distribution of X", and let
0 < r < 2. Then EXn converges a.e. if and only if EYn converges a.e., and lXn
converges in r mean if and only if XYn converges in r mean. Moreover, there exists
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a sequence of functions (f,) (respectively, (fn,r)) with domain and range the non-
negative real numbers such that for all n, fn respectively, fn,r) depends only on
the distribution of X,, (respectively, on the distributions of Xn and on r), and such
that for any sequence of scalars (cj), 2c:jXj converges a.e. (respectively, in r mean)
if and only if there is a t > 0 such that f2j( tcjl) < oo (respectively, such that
Y-fj,,(1tcj1) < °°)-
PROOF. Given a symmetric random variable X with characteristic function

h, define

91 t =log I/h(t) if h(t) > 0 and log I/h(t) < 2,
2 otherwise,

(4.22) g2(t) = 1-h(t)

Now define

(4.23) fx(y) = fg' (yt) dt, fx ,(y) = |gx(yt) dt

for y > 0, i = 1, 2. (The definition of these functions was suggested by Lemma
4.1 of [12], where the integral definingfx is given for X symmetric and infinitely
divisible.) We shall prove that for i = 1 or i = 2, EX. converges a.e. (respec-
tively, in r mean) if and only if there is a 6 > 0 such that Ifxn(6) < °°
(respectively, E fXn,r( ) < oo). This suffices to prove all the assertions ofTheorem
4.2; in view of the obverations that g = gx (and thus f Yn = fx and fLr =
fX2,r) for all n, and f,x(y) = fx(IcIy) and fx, ,(y) = f ,r(|c|y) for any random
variable X, scalar c, i = 1, 2.
To simplify the notation, let us put g = gn, fX = fi, fx,i = fA, r, and let

hn = ch. f. Xn for all n. In what follows, we make constant use of the elementary
identities

I - t _ log - for all t _ O,
(4.24) t

log .2(1 - t) for all t, - t < 1,

as well as the result that a series of independent random variables converges
a.e., if it converges in probability (see p. 249 of [9]).
Now assume that 1Xj converges a.e. Then 113'=1 hj(t) converges uniformly

on compact subsets of the real line. In particular, we may choose a 6 such that
1-t 1 hj(x) < 2 for all 0 _ x _ 6. Then E log l/hj(t) converges uniformly
for 0 _ t _ 6. Since then gn2(t) _ gl (t) = log 1/hn(t) for all n sufficiently large
and all such t, it follows that JT= 1 la g'(x) dx < a:, and, after changing vari-
ables, we have that Efni(6) < oo for i = 1, 2.

Conversely, fix i = 1 or 2, and assume that :' 1 f,(6) < oo for some 6 > 0.
Again, after changing variables, we have that 1,'= 1 la g9(t) dt < oo; whence by
the Beppo-Levi theorem, Eg'(t) < oo a.e., 0 < t _ 6. But then by Egorov's
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theorem, there exists a closed subset E of [0, 6] of positive measure such that
Egn converges uniformly on E; the continuity of the g9 implies then that there
exists an N such that gn(x) _ 2 for all n _ N. Thus by (4.24),

0 1 .(4.25) E logh <-2 E g'(x) < oo forallxeE,
n=N hn(X) n=N

and so rl' 1 hn(x) converges to a nonzero limit on a set of positive measure.
Then (by 40, pp. 197-198 and also B, p. 251 of [9]) 1 TJ= Xj, and hence, I J= 1 Xj
converges in probability, and thus a.e.
Now suppose that EX1 converges in E. Then applying (4.6) of Lemma 4.2,

n r 1- H hj(t)
(4.26) limE = lim C, 1 dt < oo.

n- a Ij n-o 0J-0 |t|'
Now since :Xj converges in probability, rIhj converges uniformly on compacta;
whence, we may choose a 6 > 0 so that 1 - =1j hj(x) - 4 for all lxi < 6,
all n. Now we have by (4.26) that

n
1 f-H hj(t)

(4.27) lim J dt < OO;

whence by (4.25), n

,6 Z log l/hj(t)
(4.28) lim j= dt < o;

n-0co tl+

so by the monotone convergence theorem,

(4.29) j: f l rt dt < OO,
j=1

and hence FI0= I fi, r(b) < 00 for i = 1, 2.
Suppose, conversely, that fixing i = 1 or 2, IfT=,ni,r(b) < oo . Then

(4.30) 3 gin (X) dx < oo;
J=1 o

whence, Ign(x) < oo a.e., 0 < x < 6. As we proved above, this implies that
EX, converges a.e.; consequently, Hhn converges uniformly on compacta and
we can choose 6', 0 < 6' < 6 so that hn_> on [0, 6'] for all n. Thus by (4.24)

(4.31) J' n log 1/dn(x < oo

and hence
n

1 - H hj(x)
(4.32) lim

= dx < oo.
n-O x1
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Then, taking into account the symmetry of the hj and the monotone convergence
theorem,

n 0

fl1 hj(x) I - rl hj(x)
(4.33) lim | dx | dx.

But
n 00

r 1 n hj(x) I hjh(x)(4.34) lim j=1 dx = dx,
n x>a'X x>l+rJIXI >3' jX11+r

by the dominated convergence theorem. Thus letting X = EXj and observing
that the ch. f. of X equals FIhj, we have by (4.6) that

n
n r I1 - H hj(x)

(4.35) E E Xj Cr+ dx
00

cjI j1 dx

=EIXI' asn-+coo;

whence, 1n=I Xj X. Q.E.D.
Let 2 < p < oo, I/p + l/q = 1. Let us call a basis in Xp a standard basis,

provided it is equivalent to the natural basis of Xp w for some w satisfying (1.6).
(By the results of [11], given any w satisfying (1.6), then the natural basis of
Xp w is equivalent to some basis of Xp.) Then let us call a basis (bJ) in Xq a
standard basis, provided its dual (b:) is a standard basis in Xp (where b (bj) = 6n,
for all j). Again, it follows from the results of [11] that a basis (b.) in Xq is a
standard basis if and only if there exists a sequence (X,,) of three valued, sym-
metric random variables (seminormalized in L) such that (b1) is equivalent to

(X,,) (in Lq). Actually, any standard basis (of either Xp or Xq), is equivalent to a
block basis of any other standard basis. For ifw and w' are given satisfying (1.6),
then by Lemma 7, p. 288 of [11], the natural basis of Xp,w is equivalent to a
block basis (yj) of the natural basis of Xp w, and there is an "orthogonal" pro-
jection P from XpI w onto [yj]. The range of P* is then the closed linear span of
a block basis of the natural basis of Xq, w, and this block basis is also equivalent
to the natural basis of Xq, w.
Our final result shows that all the spaces considered here are isomorphic to

the spaces spanned by block bases of any standard basis of Xq, and also reveals
the lack of gain in generality (for our purposes) in considering nonsymmetric
random variables.
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COROLLARY 4.3. Let 1 . r < 2, and let (Xn) be a sequence of independent,
nonzero random variables belonging to I!, each of mean zero. Then there exists a
sequence (Zn) of independent, three valued, symmetric random variables such that
(Xc) is equivalent to a block basis Of (Zn) (in L'). If 1 < r, then (X") is equivalent
to a block basis of any standard basis of X,.
PROOF. Let (Xn) be a sequence of independent random variables sym-

metrizing the Xn. Precisely, let X' , X", X, X", - * - be a sequence of independent
random variables such that for all n, dist X. = dist X' = dist X"', and put
Xn = X - X"'for all n. Then fixing I _ r < 2, (Xn ) is equivalent to (X.) (inL).
Indeed, when scalars (ci) are given, if lciXi converges in 11, then 2ciXX and
1cjX!' converge, hence, Eci(X - X ') converges. Conversely, if Xci(X - X7)
converges, then since (X', X"', X', X", ***) is an unconditional basic sequence
(see Section 2), lciX, converges; whence, lciXi converges.
Now, of course, if hn = ch.f. X, then Ih.I2 = ch.f. X9 for all n. Hence, by

Theorem 4.2, there exists a sequence (Yj) of independent, symmetric, infinitely
divisible random variables such that (X") is equivalent to (Yj). (The association
X-+ Y,, of Theorem 4.2 is homogeneous; that is, if Xn -* Yn, then tXn -. tYn).
By Corollary 4.1, (Yj) (and consequently (X")) is equivalent to a block basis of
some sequence (Zn) of symmetric, three valued independent random variables,
and thence, if r > 1, to a block basis ofany standard basis of Xr, by our remarks
above. Q.E.D.
REMARK 4.3. It is well known (and a consequence of Lemma 4.2) that ran-

dom variables which are stable of exponent r, 0 < r < 2, fail to have absolute
rth moments. The preceding results show that if (Xn) is a sequence ofi.i.d. random
variables possessing absolute rth moments, then the closed linear span of the
X, in L' cannot be isomorphic to er for 1 _ r < 2. Let Xn be the "symmetrization"
of the random variable X,, - EXn for all n (as defined in the preceding proof).
Then [!J, is isomorphic to [X.]r (provided the latter is of infinite dimension).
Now iff is the characteristic function of X1, then letting fn, r = f2,r as defined
in the proof of Theorem 4.2, we have that

(4.36) f,(y) = yr
I f(t) dt = o(yr) asy-0

and XcjXj converges in r mean if and only if Yfj,r(ItcjI) < °° for some t > 0.
This shows that the basic sequence (Xn) is not equivalent to the usual basis of
er, while every subsequence of (X") is equivalent to the whole sequence. Hence,
[XJ]r is not isomorphic to ter, since er has only one "subsequence equivalent"
basis (up to equivalence).

In a sense we have studied here the richness ofthe spaces spanned by sequences
of independent, three valued, symmetric random variables by working with
infinitely divisible distributions. In light of our final corollary, it is now possible
(in theory, at any rate) to turn this around and study the spaces spanned by
arbitrary sequences of independent random variables, by studying block bases
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of sequences of independent, three valued, symmetric random variables, that is,
of any standard basis of Xq.

Fix 1 < q < 2, and let (X") be any sequence of three valued, symmetric, inde-
pendent random variables such that w satisfies (1.6), where w. = JIXf11Iq/|X.112
for all n. (Since Xn is three valued, w. = ||Xn j2/||Xn i.) Also, assume that (X,,)
is normalized in L. Thus, (X.) is equivalent to an arbitrary standard basis of
Xq. As we mentioned in [11], it can be shown that for any sequence of scalars
(cj), lcjXj converges in Lq if and only if

(4.37) E min {cn n IC"lI} < °°.

It follows that given any sequence (Yn) of independent random variables in Lq,
each of mean zero, and given any sequence w = (wn) satisfying (1.6), there exists
a sequence B1, B2, * - - of disjoint finite subsets ofthe integers, and there exist, for
each j, scalars Ain for n E Bj, such that for any sequence of scalars (cj), the series
XcjYj converges in Lq if and only if

00 f 22
iX

mi C42W-2 lCq Iq<
.(4.38) E E min JCJiWn - lnc < °°.

j=I neBj q

REFERENCES

[1] C. BESSAGA and A. PELCZYNSKI, "On bases and unconditional convergence of series in
Banach spaces," Studia Math., Vol. 17 (1958), pp. 151-164.

[2] J. BRETAGNOLLE and D. DACUNHA-CASTELLE, "Application de 1'etude de certaines formes
lineaires aleatoires au plongement d'espaces de Banach dans des espaces 1P," Ann. Sci. Ecole
Norm. Sup., Vol. 2 (1969), pp. 437-480.

[3] J. BRETAGNOLLE, D. DAcUNHA-CASTELLE, and J. L. KRIVINE, "Lois Stables et espaces LP,"
Ann. Inst. H. Poincare, Sect. B, Vol. 2 (1966), pp. 231-259.

[4] M. M. DAY, Normed Linear Spaces, Berlin, Springer-Verlag, 1958.
[5] N. DUNFORD and J. T. SCHWARTZ, Linear Operators I, New York, Interscience, 1958.
[6] P. R. HALMOS, Measure Theory, Princeton, Van Nostrand, 1950.
[7] J. LINDENSTRAUSS and A. PELCZY*SKI, "Absolutely summing operators in ?, spaces and

their applications," Studia Math., Vol. 29 (1968), pp. 275-326.
[8] J. LINDENSTRAUSS and H. P. ROSENTHAL, "The £, spaces," Israel J. Math., Vol. 7 (1969),

pp. 325-349.
[9] M. LOEVE, Probability Theory, Princeton, Van Nostrand, 1962.

[10] D. MAHARAM, "On homogeneous measure algebras," Proc. Nat. Acad. Sci. U.S.A., Vol. 28
(1942), pp. 108-111.

[11] H. P. ROSENTHAL, "On the subspaces of LP (p > 2) spanned by sequences of independent
random variables," Israel J. Math., Vol. 8 (1970), pp. 273-303.

[12] K. URBANIK and W. A. WOYCZYNSKI, "A random integral and Orlicz spaces," Bull. Acad.
Polon. Sci. Ser. Math., Astronom. Phys., Vol. 15 (1967), pp. 161-169.


