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In 1947, Doob [7] posed the following question. Suppose x = {xt, 0 _ t < 1 }
is a (jointly) measurable stochastic process with values in a compact space K,
for example, the one point compactification R of the real line R. Let P. be the
distribution of x in the compact function space of all functions from [0, 1] into
K, where P.. is a regular Borel measure [15]. Then is the evaluation map
E: (t, f ) - f(t) necessarily measurable for the product measure A x P,x where
A is Lebesgue measure? I shall give a counterexample, assuming the continuum
hypothesis. The counterexample is a Gaussian process. Replacing ([0, 1], A) by
an equivalent measure space (H, it), where H is a Hilbert space and M a suitable
Gaussian probability measure, we can take the process x to be the standard
Gaussian linear process L on H. Although we shall carry through the details
only for this particular process, the method is applicable to various other pro-
cesses represented by convergent series Iy.(t)z (co) with independent terms such
that I y, (t) and 7z. (co) are not convergent in general. The possibility of weaken-
ing the continuum hypothesis assumption will be discussed in an Appendix.

Earlier, M. Mahowald [14] proposed a positive solution to the Kakutani-
Doob problem. But the last step in his argument applies the Fubini theorem to
sets in a product space which have not been shown to be measurable.

After the counterexample (Proposition 1), we give a few easier facts which
also contribute to a broader conclusion that uncountable Cartesian products of
compact metric spaces (for example, intervals) are relatively "bad" spaces as
regards measurability.

DEFINITION. Let (X, A) be a measurable space. AnX valued stochasticprocess
with parameter set T and probability space (Q), 9, P) is a function x from T x Q
into X such that for each t in T, x(t, * ) is measurable from (Q, M") into (X, AR).

Let XT denote the set of all functions from T into X. Suppose X is a Polish
space (complete separable metric space) or a compact Hausdorff space and S
its class of Borel sets. Then for any stochastic process x as in Definition 1, there
is a probability measure P. on X' such that for any tl, t*, e T and
B1,, Bn -'

(1) P{CO: X(tj, c)) eBj, j = 1, n}
= P{f: f(tj) E Bj, j = 1,* , n},

according to a well-known theorem of Kolmogorov.
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Now ifX is a compact Hausdorff space K, then KT is also a compact Hausdorff
space with product topology (Tychonov's theorem). If the original process has
values in R we can take K to be the one point compactification R (or, if desired,
a two point or other compactification). The following result is due to Kakutani
([12] and unpublished; see Doob [7] and Nelson [14]).
THEOREM. Let x be a K valued stochastic process where K is a compact

Hausdorff space. Then P. on KT has a unique extension to a regular Borel prob-
ability measure -P.
Now suppose tile parameter set T of a stochastic process x is a measure space

(T, .f, v). Then x may or may not be jointly measurable for various a-algebras
in T x Q2. If we say simply that x is measurable, we mean it is measurable for
the completion of v x P.

If (X, d) is a metric space and (T, .-, v) a finite measure space T (T, X) denotes
the class of all Borel measurable functions from T into X. Lo (T, X) denotes the
set of equivalence classes of functions in Y0 for equality v almost everywhere.

Let I be the unit interval [0, 1]. Let x be a measurable process on I with
values in a compact metric space K. Since we will show that evaluation E need
not be A x P,, measurable, it is natural to consider the extended product measure
of Bledsoe and A. P. Morse [5]. Given a-finite measure spaces (X, 9', p) and
(Y, .9, v), Bledsoe and Morse extend the usual product measure ji x v to a
measuie ! xM v) by setting (i xM v) (A) = 0 ifand only ifboth iterated integrals
of its indicator function are 0:

(2) ff XA(X, y) dM(x) dv(y) = || XA(X, y) dv(y) d4u(x) = 0.

If a real valued function f is i x M v measurable, then it equals a j x v measur-
able function almost everywhere for j xM v. Hence f(x, * ) is v measurable for
p almost all x, and likewise forf( *, y). It will turn out that for suitable measurable
processes x, E is not even A xM P. measurable.

Let H be the Hilbert space e2 of square summable sequences y = {Yn}nr-
Then the standard Gaussian linear process L on H can be represented by

(3) L(y)(co) = E y.G.(co),
n= 1

where the Gn are independent normalized Gaussian random variables on a prob-
ability space (Q, P). We shall assume QZ is a countable Cartesian product of real
lines and P a product of standard Gaussian measures. For co E Q we then have
co = {conl}'I and Gn(cO) _ .n-

Let s be the Borel probability measure onH for which the coordinate functions

Yn are independent Gaussian with

(4) Ey. = 0, Ey =n-

(Since In -3/2 converges, ZY2y < oo with probability 1 and p is indeed a countably
additive probability measure on H.) By Lindel6f's and Ulam's theorems, ju is a
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regular Borel measure on H. For every proper closed linear subspace J of H,
u(J) = 0. There is a one to one measurable function g from I onto H with
iwog-l = Y .

Added in proof. See P. Halmos and J. von Neumann, "Operator methods
in classical mechanics, II," Ann. of Math., Vol. 43 (1942), pp. 332-350,
Theorem 2; or, more explicitly, V. A. Rokhlin, "On the fundamental ideas of
measure theory," Mat. Sbornik, Vol. 25 (1949), pp. 107-150; Amer. Math. Soc.
Translations, Vol. 71 (1952), pp. 1-54, especially Section 2, No. 7.

Since the problem at hand involves only the measurable structure of the para-
meter set T of processes (rather than, for example, the topology ofT) we can use
(I, A) or (H, pL) interchangeably.
The series (3) defining L converges (,u x P) almost surely, and P almost surely

for every y E H. Thus L is a measurable process on H. Here is the main result.
PROPOSITION 1. Assuming the continuum hypothesis, the FL inner measure of

Y0(H, R) is 0, so E is not measurable for t x PL nor even u xM PL.
Most of the proof is in the following lemma.
LEMMA. Assuming the continuum hypothesis, for every measurable set A c Q

with P(A) > 0 there exists a set S c( H with outer measure p*(S) = 1 such that
for every finite set F c S and any nonempty open sets Uf c- R,

(5) P{o9 A: L(f)(co) E Uf for allfeF} > 0.

PROOF. (Note that S will necessarily be linearly independent for finite linear
combinations and in general will be independent of the standard orthonormal
basis of 42.) By the continuum hypothesis, we take the cardinal c as the set of
all countable ordinals. Let {Ca: cx E c} be the class of all closed sets C in H with
M(C) > 0 (there are exactly c such sets). We will define S = {s: aC E c} recursively.
Let oa be a countable ordinal and suppose given S. = {sp: ,B < a}, such that

all finite sets F c Se have the property stated in the lemma (the empty set does
have that property, in case cx = 0).

There exists an increasing sequence l,, of a-algebras of subsets of Q such that
the union of the .4n generates the a-algebra of Borel sets in Q, and such that each
Ja,? is generated by a finite class JZn of disjoint sets such that whenever a) and
C E A E #n and

(6) max {|cojl, lCjl: 1 < j. n} < n,
then I6)jj<o l/n for j = 1, * * * n.
For any measurable set B c Q, the conditional expectation E(XB | J1a?) is just

P(B n A )/P(A) on each set A E g-, . (For our P we may and do choose #Z so that
P(A) > 0 for all A E E By the martingale convergence theorem, E(XBI|J?)
converges to 1 as n -+ oo for P almost all points ofB. These points will be called
density points of B (for {ti.}). For any 4 E Q, let E"(C) be the unique set in Y,,
to which 4 belongs. Then 4 is a density point of B iff C E B and

(7) lim P{E"Q() r B}
n-oo{E =1.)
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For any measurable set A C Q, finite set F c H, and collection {Uf: f E F}
of nonempty open subsets of R, let

(8) AF,U = {coeA: L(f)(o)) E Uf forallfEF}.
Now a sequence {r, }"1 1 of real numbers will be called recurrent iff for every

nonempty open U c R, rn E U for some (and hence infinitely many) n. Note
that this property depends only on the tail of the sequence, not on rl, * ,rN
for any fixed finite N.

If yn = (_IkC0w/n3I4 for n = 2k, 2k+1 -1; k =0, 1, , then for P
almost all co, the partial sums 1" = 1 yjcoj form a recurrent sequence. To prove
this let

(9) Zk=- (3E4J4
2k j<2k+ll

Then

(10) EZk = (-1)k j-3/4

2k=j<2k+ 1

which is asymptotic to (- )k2(k+ 8)/4(2 1/4 -1);

(11) 2(a Zk) = j
2k_j<2k+ I

which goes to 0 like 2-k/2 as k -. Co. Thus with probability 1, Z,t - EZkI < 1
for all large enough k. Hence En yjcoj walks back and forth with the length of
individual steps converging to 0 with probability 1, while oscillating through
larger and larger total distances between n = 2k and n = 2kt+1 as k - oo.

Let ! be the set of all co such that the sums just discussed are recurrent, so that
p(9!) = 1. Let

(12) TF, u = {y E H: for some density point Cl) of AF u ( Ml
Y. = (_1 )kCown - 3I4 for 2k < n < 2k+1

for all large enough k and n}.

Then iM(TF U) = 1 whenever P(AF, u) > 0 because

(13) co {(I)ko n-3/4 2k < n < 2k+1, k = 0, 1,

isa measure preserving map of (Q, P) onto (H, /), sokt(TF u) > P(AFu,r)R) > 0.
But M(TF,u) = 0 or 1, so i(TF u) = 1.
Now given Sa = {sp: ,B < a} such that P(AF, U) > 0 whenever F is a finite

subset of S, let Ta = nF,u TF,U where F runs over all finite subsets of S. and U
over all collections {Uf, f e F} of nonempty intervals in R with rational end-
points. Then 4(T,) = 1 since S. is countable. Thus we can and do choose Sa E
(Ta n Ce). This completes the recursive definition of S. Since S intersects each
Ca and 4 is regular, u*(S) = 1.
Now we prove that S has the other property stated in the lemma. It suffices

to prove inductively that S. has that property for each countable ordinal a,



MEASURABLE PROCESSES 61

assuming that Sp does for all ,B < a. As noted, there is no problem if a = 0.
Also if a is a limit ordinal, the result is immediate. So we need only prove it for
Sa+ 1X assuming it for S,.

Let abe a finite subset ofSa,1 = {sp: 13. oe}. We mayassumeG = Fu {sX},
F c S., and for each U, P(AF,U) > 0. We must prove P(AG,U) > 0 for any
nonempty open set U, c- R.

Let C be a density point of AF, U such that for some MO, we have (S5)j =
(_)kfj-3J4 whenever 2k < j < 2k+1 and j _ Mo. Given any s > 0, there is
an M > Mo such that

(14) P{cO: E (s8)j(jI < E} > 2
j2M

since lj_M (s)jcoj is a Gaussian random variable with variance 1j.M (S0)j0
as M -oo.
Thus by independence, for all N _ M,

(15) ~P(EN(g) n {Co:1 (8)jj(0I < S)) > I2P(EN(C)).
j>N

On the other hand, since C is a density point of AF,U,
(16) P(AunEQ)) > 2P(Er)E

for all large enough N, and then

(17) P(AF,UnE(rNg)rv{co: (8s,)jwcjI < s}) > 0.
j>N

For co in the set just shown to have positive probability,
N

(18) IL(s8)(O) - E (s8)jCjI < E.
j=l

But since Lj5N (S)jjj is a recurrent sequence of real numbers and N can be
chosen arbitrarily large, this implies P(AG, u) > 0, proving the lemma.
Now suppose C is a compact subset of -H, FL(C) > 0, and C C S°(H, R).

Let £9 = {en} be the standard orthonormal basis in H (y =--y,e); C is included
in a compact Baire set C, with PL(C) = PL(C1) = PL(C1) (this follows easily
from the theory in [11], Chapter 10). Whetherf E CI depends only onf(y) for
y in a countable set Y c H. Let 11 be the map from R' into Ry defined by

(19) 21(c()(y) = YYn0,
This map is defined for P almost all co E R9 and is P measurable. We have
C1 = Ir'(C2) where C2 is a Borel set in Ry and Xt is the natural projection of
R' onto RY. By definition of L we have:

(20) P(qF'(C2)) = PL(Cl)-
Thus we can apply the lemma to 7- 1(C2) and get S C H with M*(S) = 1 such
that P(11 - 1(C2)F U) > 0 for every finite F c S and collection {Uf: f E F} of
nonempty open sets in R. Equivalently,
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(21) PL{( ECl: ?(f) EUffor all fE F} > 0.

Since C c C1 and PL(C) = PL(C1) = PL(C1), we then have:

(22) PL{? E C: 9(f)e Uf forall fE F} > 0.

Since C is compact for pointwise convergence, this implies that all functions
from S into R are restrictions of functions in C.
For any u measurable set D c H let v(D n S) = yW* (D r) S)' Then v is a count-

ably additive probability measure ([11], p. 75). For each single point p E S.
v({p}) = 0. Hence, again applying the continuum hypothesis, v is not defined
on all subsets of S ([14], Theoreme 1). Thus not every function from S into R
extends to a y measurable function from H into R. This contradicts C c
Y°(H, R). Thus the FL inner measure of Y0(H, R) is 0.

IfE were (y xM FL) measurable, then by a Fubini theorem ([5], Theorem 5.3),
PL almost all functions would be y measurable. This contradiction shows that
E is not measurable for 4u xM FL, nor a fortiori for i x FL, Q.E.D.

It is notable that ifS(n) = n = I yjcoj in the above proof,E isM x PS(n) measur-
able for every n but not ju x PL measurable, although S(n) -* L almost surely.
The following discussion of related, simpler phenomena may help the reader's
intuition (as it did the author's) as to what can go wrong. Let Z2 denote the
group with two elements {0, 1}.

Given finite measures Pn on a topological space S, we say that Pn -* PO (weak
star) as n - oo iff for every bounded continuous real valued function f on S,
ffdP. -. SfdPo. (We assume the integrals are defined; if S is metrizable, this
means the P,, must be defined on all Borel sets.)

If xn are processes with the same probability space such that xn xo almost
surely, then by the bounded convergence theorem, P. -FPO0 (weak star).

Conversely, Skorokhod [17] proved that if S is a complete separable metric
space and Pn are probabilities on S with Pn -. PO (weak star), then there exist S
valued random variables xn over some probability space (Qi, P) with distributions
Pn (that is, Po x -1 = Pn for all n) such that xn -+ xo P almost surely. We shall
see that this theorem does not hold for the compact Hausdorff space Z2 in place
of S. Thus the hypothesis of metrizability cannot simply be removed.
As a compact Abelian group, Z2 has a Haar measure Q which equals PF, where

v is a Z2 valued process on I with independent values at different points and for
each t, P{v(t) = O} = 2-

PROPOSITION 2. There exist processes Xn such that Pln - Q (weak star) with
each P.X concentrated in a finite set offunctions. Hence E is (A x P,,) measurable
for all n, but it is not (A x Q) measurable.

PROOF. Let Xn(t, CO) = v(j/n, co), j/n _ t < (j + 1)/n, j = 0, n + 1,
and x,,(1, co) -v(l, co). By the Stone-Weierstrass theorem, any continuous real
function on ZI can be uniformly approximated by one which depends on only
finitely many coordinates. If F is a finite subset of I, then for n large enough,
{xn(t, co): t eF} have the same joint distribution as {v(t, co): t eF}, namely
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Haar measure on Z2. Hence Pin - Q (weak star). Clearly there are only finitely
many functions x.( *, co), so E is (2 x -P,) measurable. It is not (A x Q) measur-
able, and in fact there is no measurable process y with P, = Q (see Doob [6],
Theorems 2.3 and 2.4 or Ambrose [1], Theorem 3 in the light of [2], Theorem 6),
Q.E.D.
We conclude also that there cannot be measurable processes yn with Py =P

.

and Yn -+ yo almost surely, for then FYO = Q and yo is measurable. Hence
Skorohod's theorem does not extend to Z2-
The completion of P, is defined on all Borel sets, as Kakutani showed ([13],

Theorem 3). In other words, the Haar measure Q is "completion regular" ([11],
p. 230 and p. 288, Theorem I). But P, is defined only on Baire sets in ZI, that is,
measurable sets depending on only countably many coordinates. Now the only
Baire set included in £'(I, Z2) is the empty set. Also the only Baire set disjoint
from Y-'(I, Z2) is empty. Hence

(23) Q*( 9) = Q*(Z2.2 ) = I.
where .- = Y (I, Z2). Likewise (23) remains true when .- is taken to be the
set of all Borel measurable functions from I into Z2. Or, Y- may be the still
smaller set of all functionsf from I into Z2 such that {t: f(t) = 1 } is a countable
intersection of open sets. Thus these sets

- of measurable functions are non-
measurable subsets of ZI; they are not Borel sets and are not measurable for the
completion of Q, in particular. The best positive result known in this direction
seems to be that the set of functions with only jump discontinuities is a Borel set
in Z2 (Nelson [15]).

If L is the Gaussian process in the proof of Proposition 1 above, I do not
know AL(S) for any of the three classes of 9 of measurable functions mentioned
above. Thus it seems conceivable that we could have P;(YO (I, R)) = 0 even
though the process L is measurable.
Here is another simple example affecting uncountable product spaces. Let

I' be the space of all functions from I into itself with the product topology.
PROPOSITION 3. There exist continuousfunctionsf, from I into I' with f.(x)-+

f(x) in PI as n - oo for all x E I, yet f is not Borel measurable.
PROOF. Let f,(x)(y) = max {1 - nIx - y|, 0}. Then f,(x) -.f(x), where

f(x) (y) = 1 if x = y and 0 if x 7 y. Then f is one to one and its range has
discrete relative topology. So for every subset A of I there is an open set U cI
with f1(U) = A, sof is not measurable. Q.E.D.

Note that I' is homeomorphic to a subset of a compact, Hausdorff, Abelian
topological group K, or ofa topological vector space S with various good proper-
ties. So I' could be replaced by such a K or S in the statement of Proposition 3.

But as our first three propositions show, apparently "good" topological
algebraic structures may have pathological measure theoretic properties. The
following classes of topological spaces are more pleasant for measure theory.

DEFINITIONS. A Polish space is a separable, metrizable topological space
which is complete for some metrization.
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A Hausdorff topological space (X, , ) is called a Souslin space if there is a con-
tinuous map ffrom a Polish space onto X. Iff can be chosen one to one, then X is
called a Lusin space.
A topological space (X, Y) is regular ifffor every p E X and closed set F c X

with p 0 F, there exist disjoint open U, V with p E U and F c V.
The space (X, ,-) is normal iff whenever E and F are disjoint and closed, there

are disjoint open U and V with E c U and F c( V.
A normal space is called perfectly normal iff every open set is a countable union

of closed sets.
Fernique ([9], Proposition I.6.1, p. 19) shows that every regular Lusin space

is paracompact and perfectly normal. His proofshows also that a regular Souslin
space is paracompact and hence normal. An open subset of a Souslin space is
Souslin because an open subset of a Polish space is Polish. Hence Fernique's
proof shows that every regular Souslin space is perfectly normal.

Fernique and L. Schwartz [16], [17] have observed that regular Souslin and
Lusin spaces have other properties convenient for measure theory. The classes of
such spaces are stable for a great many operations and are broad enough to
include the separable spaces of the theory of distributions.
Thus the following proposition has reasonable applications to nonmetrizable

spaces. (Note, in correction to [9], Theoreme 1.4.2(a), that the hypothesis
"perfectly normal" cannot be weakened to "normal", in view of Proposition 3
above.)

PROPOSITION 4. Let fn be measurable functions from a measurable space
(X, Y') into a perfectly normal space (S, .-) such that fg(x) f(x) for all x E X.
Then f is also measurable.
PROOF. It suffices to show that for every open U c S, f 1(U) E SD. We have

U = U 1 F,, where the F,, are closed. Since (X, .q) is normal we can assume

F. is included in the interior of Fn+1 for all n. Then

(24) f1(U) = U U n f,-1(F,)
Q.E.D. n=1 k=1 m=k

Yet, unfortunately, regular Lusin spaces do not have all possible good proper-
ties for measures. In particular, we shall see that Skorohod's theorem does not
extend to Lusin spaces although it holds for all separable metric spaces, complete
or not ([8] Theorem 3, p. 1569).

Let H be a separable, infinite dimensional Hilbert space with orthogonal basis

{(Pm}m= . Let w be the weak topology on H. Then (H, w) is clearly a Lusin space.
As a Hausdorff topological group, it is (completely) regular ([12], Theorem 8.4,
p. 70). Thus (H, w) is perfectly normal. The following example is suggested by
an example of Fernique (see Badrikian [3], expose 8, No. 6).

PROPOSITION 5. Let 1tn be the probability measure on H which gives mass (1)'
to nqpm for m = 1, * , 2n. Then JUn converges (weak star) on (H, w) to the unit
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mass at 0. But there are no random variables Xnwith distributions s,, which converge
to 0 with positive probability.

PROOF. Let f be a bounded continuous real function on (H, w). Given e > 0
there exist , - *, i, in H such that if I(q,, tj))I < 1 for j = 1, * , r, then
If(?p) - f(°)| < a. Thus it suffices to show that

(25) 1|(p, 0)12 dI. (P) 0

for each f E H. Now f = lam.pm where IIam.2 < oo, and

(26) I(q, 0/12 dy. (qp) = nE 2la 12

which goes to 0 as n -X oo by the dominated convergence theorem.
Now ifXn areH valued random variables with distributions tnXthen |Xn|-°°

with probability 1, and then by the Banach-Steinhaus theorem, Xn cannot con-
verge to 0 in (H, w). Q.E.D.

APPENDIX

Here is some discussion on weakening the continuum hypothesis assumption
in the proof of Proposition 1. The continuum hypothesis was used via the fol-
lowing two assertions, which we may and do state in terms of Lebesgue measure
A rather than p.

ASSERTION A. 1. For any collection offewer than c sets of A measure 0, their
union also has A measure. 0.
ASSERTION A.2. If A* (S) > 0, then not every subset of S is of theform A r) S

where A is A measurable.
Now A.1 implies A.2 according to K. Kunen (Doctoral dissertation, Stanford

University, 1968, "Inaccessibility properties of cardinals," Theorem 14.7 ii).
Also it appears that A.1 may be strictly weaker than the continuum hypothesis,
although at this writing I can only refer the interested reader to R. Solovay and
J. Silver, to whom I am grateful for several conversations on these matters.

Note added in proof. Assertion A.2 has been proved, assuming only the usual
set theory with the axiom of choice, in a letter to me from David Fremlin of
Cambridge, England.

I am indebted to C. L. Reedy for contributing Proposition 4 and an earlier
result in the direction of Proposition 3.
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