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1. Introduction

The theory of clinical trials has been studied from many different points of
view in recent years. Perhaps the feature of principal interest that distinguishes
the clinical trial from analogous problems that arise in industrial statistics, is the
ethical factor. The doctor treating a patient in a clinical trial is not only obliged
to derive information relevant for the treatment ofa larger statistical population,
but is also obliged to treat each patient in the best way that he is able. These
two requirements are contradictory to a certain extent, and lend urgency to the
design of clinical trials that goes at least part of the way towards incorporating
both requirements in some rational fashion. Armitage's monograph [2] and a
subsequent review by Anscombe [1] did much to frame the general problem and
bring it to the attention of statisticians. Although Armitage's original thinking
had envisaged a fairly straightforward application of sequential analysis to the
choice of the better of two treatments, Colton, working at his suggestion [4]
developed a different formulation that has attracted some interest.

In brief, Colton's model assumes that the total patient horizon N is known.
Of these, a total of 2n patients are to be used to derive information about the
relative worth of the two treatments, and the remaining N - 2n patients are
given the treatment designated as better in the testing phase. Under various
assumptions about the underlying distributions, Colton has derived optimal
fixed and sequential rules for calculating the optimal value of n. Zelen [16] con-
sidered a more specialized version ofthe Colton model, in which the response was
assumed to be dichotomous rather than continuous. The new and interesting
feature of Zelen's work was the suggestion that the sampling technique could be
adapted to reduce the number of patients on the poorer treatment. Zelen applied
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the "Play the Winner" rule (to be abbreviated PW rule) to the clinical trial prob-
lem; it prescribes that a success with a given treatment generates a further trial
on the same treatment while a failure generates a trial on the alternative treat-
ment. This particular assignment procedure was first suggested by Robbins [10]
in a discussion of the two-arm bandit problem and was subsequently elaborated
by Isbell [7] and by Pyke and Smith [9]. Although the PW rule is not optimal in
the context of either the two-arm bandit problem or the clinical trial problem,
it is a simple and easily implemented sampling rule that does introduce a bias in
favor of testing the better treatment. Zelen analyzed the PW rule both with res-
pect to indefinitely extended trials and with respect to the finite patient horizon
model of Colton. More recently, Cornfield, Halperin, and Greenhouse [5] have
analyzed a Bayesian generalization ofthe Colton model. The model is generalized
in three ways: the first being in the assumption of a prior distribution, the second
being in the distribution of patients in the data gathering phase to the two treat-
ments in the ratio 0: (1 - 0) rather than 1: 2, and the third being in the repeated
application of the procedure for k > 2 stages. Their results still depend on some
estimate of the patient horizon, but the dependence is much less sensitive to
variations in N than the original Colton model. The possible improvement that
might be afforded through application of the PW rule to this formulation has
not been discussed to date.

In the present paper we will summarize some of our own recent research on
the formulation of clinical trial problems. So far we have considered only the
case of dichotomous response, where the effect of treatment is immediately
available. These are considerable restrictions and leave open many interesting
and useful problems for further investigation, but the general problem area even
in its simplest formulation leads to difficult mathematical problems. Since we
restrict ourselves to a version ofthe two-arm bandit problem, it is well to motivate
later mathematical developments. A rigorous solution to the two-arm bandit
problem would lead to an indefinitely extended series of trials in which the
probability of choosing the better treatment at trial N trends to 1 as N -oox.
Economic factors at the very least would imply a desire to terminate testing in
some finite number of trials either with a decision that one or the other treatment
is better or, in some applications, with a third decision that the two treatments
are equally good. Furthermore, the Colton model seems somewhat artificial
because some knowledge, Bayesian or otherwise, is implied about the patient
horizon N, which is usually not available. If these premises are granted, it would
seem desirable to develop a test method that allows one to reach a decision with a
finite number of tests without any suppositions about the patient horizon.
We have recently discussed various aspects of the problem of choosing the

best ofk _ 2 binomial populations [13], [14], [15] using a formulation explored
in some detail in a monograph by Bechhofer, Kiefer, and Sobel [3]. Let us con-
sider two treatments A and B with success probabilities p and p' respectively,
where p > p'. A correct selection corresponds to identifying A as the better
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treatment after a series of tests. In the formulation of [13], one assumes that
two constants P* and A* are given with 2 < P* < 1 and A* > 0 and the termi-
nation rule is set up so that the probability of a correct selection, or P{CS}. > P*
whenever p -p' > A*. Most of the work to be described below requires that
one of the drugs be declared the better even though the condition p - p' _ A*
may not hold: some results have also been obtained for the three decision prob-
lem in which one is allowed to conclude that p - p' < A*.

In all of the models to be described, a decision is made after a finite number
of tests, with probability one, and no assumptions are made about a patient
horizon. The first question of interest relates to the effect of different sampling
rules on the number of patients put on the poorer treatment. It is clear that in an
infinitely extended series of trials, the PW rule is superior to the rule that pre-
scribes alternate sampling AIBABA (this rule will be designated as the
"Vector at a Time" rule or VT rule). For finite sets of trials, a comparison is of
interest because it is not clear whether a decision can be reached more quickly
by testing the same number of patients on both treatments, or whether the bias
introduced by the PW rule does not extend the trial by so much that ultimately
more patients are given the poorer drug than if the VT rule had been used.

The two sampling rules must, of course, be supplemented by stopping rules.
Here again, a wide choice of rules can be considered, but we focus mainly on two
stopping rules partly because of likelihood ratio considerations and partly
because they lead to analytically tractable problems. The first rule depends on

keeping track of the number of successes for both treatments at each stage and
computing Si - Sj = AS where Si and Sj are the numbers of successes on the
two treatments. The clinical trial is terminated when AS = r, where r is a critical
integer determined from P* and A*. The second stopping rule corresponds to
inverse sampling in which the trial terminates when either Si or Sj reaches a

critical value r'. Although the first stopping rule is usually better since it incor-
porates more information, the inverse sampling procedure warrants analysis
because it is easily generalized to choosing the best of k > 2 populations and
because it can be used as a basis for comparisons.

In the next section we compare the performance of the VT rule with the PW
rule when only two decisions are allowed, that is, that one or the other treatment
is better, and the trials are potentially of unlimited duration. It should be noted,
however, that with probability one the trials continue for only a finite number
of tests and the expected number of trials to termination is finite for any fixed
pair (p, p') with 0 < p' . p < 1. This will be followed by some results on select-
ing the best of k > 2 populations. Section 3 presents results obtained so far on
truncated testing in which a maximum number of tests is prescribed. In Section 4
we describe some sequential procedures for k > 3 and compare the PW and VT
sampling rules by Monte Carlo Studies. In Section 5 some alternative and allied
lines of current research are described. Finally, in the last section, we discuss
some of the many open questions in this area of research.
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2. Comparison of procedures RPW and RVT

Several results will be quoted here from different papers and some new tables
will be appended to confirm that these results hold not only for P* -+ 1 and/or
A* -O 0 but also for fixed smaller values of P* and fixed larger values of A*.
The basic termination rule is to stop sampling when AS = r. For any pair

p = 1 - q and p' = 1 - q' the integer r = rpw needed under PW sampling to
satisfy the basic requirement

(2j.1) P{CS} _ P* whenever p - p' _ A*

is found in [13] to be the smallest integer at least as large as the root in x of

(2.2) = 2qP {q -q2 - 4qq'P*(1 _p*- ] 1/2

where A = p'/p < 1 and q- = 2(q + q'). In the least favorable (LF) configuration
we set p' = p -A* (or q' = q + A*) and minimize the P{CS} or maximize the
solution of (2.2) in x as a function ofp for A* < p . 1. This minimum occurs at
a p value close to 1 and has been obtained exactly for the calculation in Tables
Ila through Ild. Denote the resulting precedure by RPW.
For the same termination rule we also consider the VT sampling rule and

denote the resulting procedure by RVT. Then, corresponding to (2.2), the
integer s = rVT needed under VT sampling to satisfy (2.1) was found in [3] and
in [12] to be the smallest integer at least as large as the root in x of

(2.3) P*(1 + bx) = 1,

where 6 = p'q/pq' < 1. Under the LF configuration we set p = -(1 + A*) and
p= 2(1 - A*) so that x is given explicitly by

(2.4) = log [(I - P*)/P*]

2 log(I +A*)
To compare the two sampling rules for the same pair (A*, P*) and the same

termination rule we use two different criteria which are calculated exactly in
[13] after the values of rpw and rVT are obtained. The first is the expected loss
or risk E{L} (which we write as L below) defined by

(2.5) E{L} = (p - p')E{NB} = L,

say, where E{NB} denotes the number of patients put on the poorer drug. This
has considerable interest in medical applications since it represents the difference
in the expected number of successes between a conceptual set of trials in which
the better treatment is always used and the actual set of trials; thus we have
E {L } for PW sampling and E {L RVT } for VT sampling.
The second criterion is the expected total number of trials needed for termi-

nation which can be written as
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(2.6) E{N} = E{NA} + E{NB}.
This is the standard criterion used in [3] for comparing procedures that satisfy
the same (A*, P*) requirement (2.1); thus we have E{NIRpw} for PW sampling
and E{N RVT} for VT sampling.

It is found in [13] by an asymptotic (P* -+ 1) analysis that the ratio
E{L RpwI/E{tI RVT} < 1 when

(2.7) P > + 0(A3).

Since A* is usually small we can disregard the term of order (A*3) and say that
PW sampling is preferred (L) when p > 1(6 - A*) and that VT sampling is pre-
ferred when the reverse inequality holds.

Similarly, according to the E{N} criterion it is found in [13] that the ratio
E{NIRpw}/E{NIRVT} < 1 when

(2.8) P + 0(A3)
4 8

wherep = j(p + p') and I= 1-
These results are corroborated in this paper by Tables Ila through Ild and

shown to hold for the four (A*, P*) pairs: (0.50, 0.75), (0.20, 0.75), (0.05, 0.95),
and (0.20, 0.95). The exact integer values of rpw and rVT are obtained and exact
values of

(2.9) E{LRpw} = (p + 2qr)'( _ Ar)(qI - qAr)
2(q' - q)A2r)

E{NRpw} = (1 - )r)(q' - qAr)(p + 2ri)
(1 - A).(q' - q)32r)p

(2.10) E{LIRVT} = s(l +1 5 E{N-IRVT} = 2s(1 +as)1 + 6 ENIvT (p - p')(I + 6S)
are computed for the generalized least favorable (GLF) configuration in which
p' = p - A* and A* < p _ 1. (A misprint in E{NIRpw} in (2.18) of [13] is
corrected in (2.9) above.)

In addition, we have tabulated E{NB} for the equal parameter (EM) con-
figuration (that is, for p = p') as a function of p. Note that this function
approaches infinity asp -+ 0 or p -+ 1 under VT sampling but this occurs only as
p -. 0 under PW sampling.

These tables show a definite crossover pattern in which PW sampling is better
for large p values and poorer for small p values. The results for VT sampling are
more constant and tend to be symmetrical about j. The need for an adaptive
procedure which switches from VT sampling to PW sampling when p (or when
p) appears to be larger than 8(6 - A*) is clearly demonstrated, but such a pro-
cedure has not yet been studied.
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From (2.9) and (2.10) we can find exact expressions for E{N} for p = p' (or
A = 1) when A* and P* are fixed; our principal interest is in the case where the
common p tends to 1 or 0. From (2.9) we have for p = p'

(2.11) E{NIRpw} = r + r2q

and from (2.10) we find that

(2.12) E{NjRV} = ( (1 + -S) -
(P P')(I + cs) pq'

where the last expression is the limiting value as p' - p.
If we now let A* -) 0 then we obtain from (2.2) and (2.4) for the respective

LF configurations

(2.13) r log ((1 - P*)/P*) log ((1 - P*)/P*)
log (1 - A*) ' 2log(1 - A*)

so that r is twice s for small A*. For A* sufficiently small we can disregard the r
term in (2.11) and, using the fact that r = 28, we note from (2.11) and (2.12) that
forp > 2(and hence forp -. 1) E{NIRpw} is smaller than E{NIRVT}. On the
other hand for p < 2 (and hence for p -* 0) it is clear that E{N I RVT} is smaller.
In fact, E{N I RVT} is smaller for p < 0.70 in most of our calculations. Hence
there is no uniform result in this comparison.

In [14] and [15] the termination rule employed is the so-called inverse sampling
where we stop when any one population has attained r' ( = r) successes; for con-
venience we drop the prime on r. New values r'w and r'VT are obtained to satisfy
the same basic requirement (2.1), let the resulting procedures be denoted by
RPW and RVT, respectively. For this purpose we use the exact expression for any
integer r _ 1

(2.14) P{CSIR'pw} = 2Er{Iq'(X, r) + Iq,(X + 1, r)},

where Ip(x, y) is the usual incomplete beta function Iq(O, r) = 1 = 1 - Ip(r, 0)
for r > 1, and the E, denotes expectation of the random variable X which has
the discrete negative binomial probability law

(2.15) f(x)=p(x+r )qx x=0,1,.

For the Vector at a Time procedure RVT we obtain exactly the same result (2.14)
so that the LF configurations must be identical for R'W and RVT and hence
r'w = r'T for any pair (A*, P*). (Similar results were found for k > 2, and
E. Nebenzahl has noted the same result for a fixed sample size problem, see
(2.26) and (5.2) below). This does not imply any equality in E{L} or in E{N} for
RPW and RVT and we need these to compare these procedures. In [14] we obtain
for k = 2 the exact expressions
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(2.16) E{NIRPw} =( + D[ - + ,Er{Ip'(r + 1,X)} - iE,I{I,(r,X)}]

+ - - - E,{Ip,(r,X + 1)} + - E,{Ip (r,X)J,2q'I 2q' 2q
2r 2r r

(2.17) E{NIRv.TT} = - + p, - Er+I{Ip,(r, X) + Ip,(r, X + 1)}
p p p

- ,Er{Iq,(X, r + 1) + Iq,(X + 1, r + 1)}.
p

In this form all the expectations in (2.16) and (2.17) tend to zero as r -oo. (This
can occur because A* -. 0 or because P* -+ 1). Hence, it easily follows that for
large r we have

(2.18) E{NIRpw} < E{NIlRVT}.
Againwenote forthecase ofacommonp thatEN - oo asp - Oorasp -* 1

under VT sampling but this happens only as p -. 0 under PW sampling. In
another formulation David Hoel includes failures of the opponent and defines
the score for A and B, respectively, as

(2.19) ~~~RA = SA + FB'

(2.19) RB = SB + PA,

and then uses inverse sampling with these R values. The results are similar to those
given here but one important difference is that E{N} is bounded in his case.
For the E{L} criterion we obtain from (2.19) in [14]

(2.20) E{LIRPw} = AIr+- rEr{Ip'(r + 1,X)} E,+I{r,X)lqILp P, P

+ ---E,{IIp.(r,X+1and using the result in (2.17) above 2 2
A

(2.21) E{LIRVT} = -E{NIIRVT}
Here again the expectations approach 0 as r - oo and we obtain for large r

(2.22) E{LIRPw} < E{LIRVT}-
In the common LF configuration, we found in [14] the interesting feature

that the minimum ofthe P{CS} (subject top - p' _ A*) occurs whenp andp' are
centered at 2 with difference A*; this was obtained by disregarding terms of
order (A*)2. Then the appropriate r value for both RPW and R'VT as a function of
A* and P* is

8 (222
(2.23) r = 27ti*
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where A = A(P*) is the P* percentage point of the standard normal distribution.
This is obtained by assuming r is large and approximating the difference of two
independent negative binomial chance variables by the appropriate normal
approximation. It is estimated that (2.22) will hold when r > p/2A and the same
estimate is obtained from (2.18) by dropping all the expectations in (2.16) and
(2.17).
The question of whether waiting for a fixed number of failures is better than

waiting for a fixed number of successes is also considered and it is found that for
P > 4 the latter is preferable but for p < 2 the former is preferable.

In [15] we consider the inverse sampling procedure with k . 3 populations
and again compare the two procedures RPW and RVT. Here we order the popu-
lations (say, A, B, C for k = 3) and consider a cyclic variation PWC of the PW
sampling rule. Observe A until it produces a failure. Switch to B until it produces
a failure; then to C until it produces a failure. Then return to A and repeat the
cycle. The results obtained are quite similar to those for k = 2: procedure RPW
is uniformly better than RVT for large values of r whether the criterion E{N} or

k

(2.24) E{L} = E (P1 - pi)E{IN}. P1 = maxpi,
i=l i

is used. The exact formulas and the correction term to the normal approximation
are of interest. For RPWC we obtain

(2.25) P{CSRPWC} = k Icn qj(X

+ [ _l Iqj(X, r)] [fl- Iqj(X +IIr I

1 = 2 [,= 2 j, a]

where X has the negative binomial probability law (2.15) with index r > 1,
success parameterp1 and mean rq1 /p. For RVT we obtain, after the first step of
minimization, exactly the same PCS in the form

(2.26) P{CSIR'VT} = kE{I,2,(X,r) Iq(2)X+ )} = P(CSIRpwc).

Hence, the LF configurations are the same and r'w = r'VT. The value of r needed
for both R'W and RVT and used in the formulas below is again approximately
given by (2.23), except that A = A(P*, p, k) is the value of H that satisfies

(2.27) {cDk-I(x p + H) dD(x) =P*

where p = 2 - 3A* + O{A*2} (which we approximate by 4), and (D(x)(resp.,
(p(x)) is the standard normal distribution (resp., density) function. Because
P 24, it is desirable to introduce a correction term to the normal ranking
integral (2.27). This is accomplished by proving a lemma about the left member
of (2.27). which we call A k- 1(p. H).
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For k > 3, any fixed H and positive p < 1

(2.28) d Ah =(k - 1)(k - 2)(p(H)9LH(i-
dp 2(1 + p)112

*Ak-3 I + 2p' H((I + p)(l + 2p))l
Then the P{CSIR',c} in the LF configuration is approximated by

(2.29) Ak_l(_H) 3A* (k - 6)(kH2) ( H) ( H

where H = A*(27r/8) 1/2. For example if k = 3, P* = 0.90 and A* = 0.10, then
thefirsttermof(2.29)givesH = 1.58andr = 74, but ifwetryH = 1.59and 1.60
in (2.29) we find that the latter is closer and this leads to r = 78 and a minimum
PCS = 0.9008.
For E{N} and E{L} the exact expressions are of less interest but the normal

approximations to these are for large r with Pi = maxi pi

(2.30) E{AN'IR wc} _ rql
pq I ______i

(2.31) E{LIR'pwc} - E

A Monte Carlo simulation by D. G. Hoel shows that these approximations are
very close to those obtained in 1000 Monte Carlo experiments for k = 3. A* =
0.2 and P* = 0.95. Some typical excerpts from his table are given in Table I.

TABLE I

E{L |Rpwcl E{, |Rpwc}
Observed Approximate Observed Approximate

pi = max pi (Monte Carlo) (2.24) (Monte Carlo) (2.23)

0}.2 45.5 44.8 369 364
0).4 21.3 21.0 177 175
0}.6 12.6 12.4 1 10 109
(>.t 7.4 7.() 72 70
I .(} I.1 0.0 33 28

For the case of equal parameters (EM configuration) we obtain in [15] for
q < 1

(2.32) E{N|R'Pwcl E I (01c Eqyar lt+ 1, r)q.=0 I(c1, r) -Iq(ca + 1, r)1
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which converges for 0 _ q < 1; the case q = 0 is obtained by continuity. This
is then approximated by

(2.33) E{NIR|wc} kr - A1(k -p)(r/q)112 (k-p)

where 2A = A,1(k) is the (100k/k + I)st percentile of the standard normal distri-
bution. The corresponding result in [15] for the VT rule is

(2.34) E{NIRVT} = kr {I (X. r) -I,k(X + 1 r)}
p I(X, r) I,(X +1, r)

where E +1 is defined as in (2.15) with r increased to r + 1. This is then approxi-
mated by

(2.35) E{NIR4VT} - [r - 21(rq)12] - k

p 2

where Al is defined after (2.33).
For k = 3, A* = 0.2 and P* = 0.95 we need an r value equal to 29 for both

procedures RPW and RVT. Using r = 29 the exact value of E{NIRpw} forpi =

P2 = P3 = 0.9 from (2.32) is 59.8 and the approximate value from (2.33) is
59.4. For smaller values of the common p. the approximation is even more
accurate.
For any common p. 0 < p < 1, and any r we find that E{L} = 0 for both

procedures.
In summary, the procedure R'WC is asymptotically (r - oc) superior to RVT

throughout the parameter space regardless of whether we use the criterion E{N}
or the criterion E{L}.

3. A truncated sequential procedure for k = 2 that uses vector-at-a-time

Another truncated version has been discussed by Kiefer and Weiss, [8],. for
the VT Rule. For this case a decision is made at or before test N (where each test
is assumed to contain both treatments). The termination rule again requires
ISA- SBI = s. Let us first calculate the probability of a correct selection for
this procedure. If we let Uk (n) be the probability of a correct selection on or before
test pair n (for p > p') given SA - SB + S = k then the Uk(n) satisfy

(3.1) Uk(n + 1) = aUk+1(n) + f3Uk(n) + yUk_-(n).

where

(3.2) = pq', /3 = pp' + qq'. y = p'q.

Equation (3.1) is to be solved subject to the boundary conditions UO(n) = 0.
U2,(n) = 1, and the initial conditions Uk(O) = 0, k # 2s, U2s(0) = 1. Equation
(3.1) is more conveniently handled by defining a new set of variables

(3.3) Vk(n) = Uk(cc) - Uk(n)
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TABLE Ila

COMPARISON OF EXACT RESULTS FOR VT AND PW SAMPLING RULES
USING THE TERMINATION RULE BASED ON ISA - SB| _ r

IN THE BINOMIAL Two ARM SELECTION PROBLEM

ForA* = 0.05 and P* = 0.75, we use rpw = 17 and rVT = 6, without randomization.

Note. Under the generalized least favorable (GLF) configuration, p = PA is the larger of the
two probabilities of success and p -* = PB iS the smaller of the two. The GLF comparisons are

made only for pairs (p, p - A*) with A* _ p _ 1. Under the equal parameter (EM) configuration,
p denotes the common probability of success on a single trial. E{NB} denotes the expected number
of observations on the "poorer drug" and, for the EM configuration, L = 0 and E{N} = 2E{NBI.

GLF configuration EM configuration
P = PA E{LIRPW} E{LIRVT} E{NIRPW} E{NIRVT} E{NBIRpw} E{NBIRVT}

0 - 0

0.05 16.2 6.0 663 240 2754 379
0.1( 15.3 5.9 630 235 1309 200
0.20 13.5 4.7 556 187 587 113
0.30 11.0 3.8 457 153 346 86
0.40 8.5 3.4 354 136 225 75
0.5( 6.3 3.2 266 129 153 72
0.60 4.6 3.3 194 131 105 75
0.70 3.2 3.6 137 143 70 86
0.75 2.6 3.8 112 153 57 96
0.80 2.0 4.2 90 167 45 113
0.85 1.5 4.7 71 187 34 141
0.90 1.1 5.3 53 212 25 200
0.95 0.7 5.9 36 235 16 378
1.00 0.3 6.0 21 240 9 oo

TABLE lIb

COMPARISON OF EXACT RESULTS FOR VT AND PW SAMPLING RULES
USING THE TERMINATION RULE BASED ON ISA - SBI _ r

IN THE BINOMIAL Two ARM SELECTION PROBLEM

For A* = 0.20 and P* = 0.75, we use rpw = 4 and rVT = 2, without randomization.

GLF configuration EM configuration
P =PA E{LIRpw} E{LIRVT) E{NIRpw} E{NIRVT} E{NBIRpw} E{NBIRVT}

0 oo oo
0.20 3.3 2.0 37 20 34 13
0.30 2.9 1.7 32 17 21 10
0.40 2.3 1.5 26 15 14 8
0.50 1.8 1.4 21 14 10 8
0.60 1.4 1.3 16 13 7 8
0.70 1.0 1.4 12 14 5 10
0.75 0.9 1.4 11 14 5 11
0.80 0.7 1.5 9 15 4 13
0.85 0.6 1.6 8 16 3 16
0.90 0.5 1.7 7 17 3 22
0.95 0.4 1.9 6 19 2 42
1.00 0.3 2.0 5 20 2 x



728 SIXTH BERKELEY SYMPOSIUM: SOBEL AND WEISS

TABLE 11c

COMPARISON OF EXA(T RESU LTS FOR VT AND P\\ SAMPLING RULES
t'SIN(: THE TERMINATION RULE BASED ON |¾S;, - ASB| _ r

IN THE BINONMIAL Two ARM SELECTION PROBLEM

FoI A* = 0.05 and( p* = 0.95. we use rpw = 50 andl rVT = 15. without randomization.

GLF configuration EM configuration
P = PA C{Lp1 RPW} E{LIRVT} ENIRPW} E{INRVT} E{NjBI RPW} E{NBIRVT}

0).05) 47.5 15.0 19.51 6(( 23.775 2368
0.10 45.1 15.0 1852 60( 11.275) 1250
0.20 40.1 14.8 1653 594 5.025 703
0.30 35.1 14.3 1455 573 2.941 536
0.40 30.1 13.8 1254 553 1.9(( 469
0.50(} 25.0 13.6 1049 544 1 .275 450
(.6( 19.8 13.7 841 547 8;)8 469
0.70 14.7 14.1 634 562 561 536
0.75 12.1 14.3 533 573 442 600
0.(0 9.7 14.6 433 584 338 703
0.85 7.3 14.8 337 594 246 882
(.9() 5.0 15.( 243 199 64 1250
0.95 2.7 15.0 152 60( 91 2368
1.(( 0.5 15.0 64 600 25 X

TABLE 11(i

(OMP'ARISON OF( EXACT RESUtLTS F(OR N'r ANI) }'\\ SAMII,LIN(G RuLES
UtSING THE TERMINATION RU-LE BASED OXN 1SA - BIj >-

IN THE BINOMIAL Two ARM SELECTION PROBLEM

For A* = 0.20 and P* = 0.95. we use rpw = 11 and rvT = 4. without randomization.

GLF configuration EM configuration
P = PA E{LIRpw} E{LIRVT} {NIRPW} E{INIRVT} E{NBIRPw} E{NBIRVT}
0 _ _ _
0.20 8.9 4.0 100 40 248 50
0.30 7.8 4.0 89 40 147 38
0.40 6.8 3.8 78 38 96 33
0.50 5.7 3.7 68 37 66 32
0.60 4.6 3.7 56 37 46 33
0.70 3.5 3.7 45 37 31 38
0.75 3.0 3.8 40 38 26 43
0.80 2.4 3.8 34 38 21 50
0.85 1.9 3.9 29 39 16 63
0.90 1.4 4.0 24 40 12 89
0.95 0.9 4.0 19 40 9 168
1.0( 0.5 4.0 14 40 6 x

which satisfy equation (3.1), but have the boundary and initial conditions

(3.4) Vo(n) = V2,(n) = 0, Vk(O) = Uk(00. k + 2s, V25(0) = 0
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If we define
V, (n) ,1 a 00 1*
V2(n) y # at ..*-

(3.5) V(n) A O y o8 ..* O

V2K 21 (n) i O O y

then V(n + 1) = AV(n) or

(3.6) V(n) = A'V(O).

For tridiagonal matrices of the form of A one can calculate A', and therefore
V(n), by using a spectral decomposition. First we note that A is similar to a
symmetric matrix B through the transformation B = T- 1AT, where T is a dia-
gonal matrix with elements Tj j (j-1a 2s-1-j)l/2. The transformed matrix
B is

0 0 0...01
C o o...0

(3.7) B O 0,B O

where 4 = (cy)'12 = (pp'qq')112. The spectral properties of B were studied by
Rutherford [11]. Denoting the jth eigenvector of B by uj and the corresponding
eigenvalue by Ai we have

(3.8)(uj), = ISin ), r = 1, 2, ,2s- 1

(8 = ,B + 2, cos (28)
If V(n) and V(O) are expanded in terms of the eigenvectors uj then a straight-
forward argument suffices to show that the elements of interest (the probability
of a correct selection) are given by

t(a)( 2 (1(-I)2 28)/ (s+ 1)/2 __ A')r12 Sin sin

(3.9) V = 2j ks

1+- -2 COSi-

A similar set of calculations can be used to show that the probability that no
decision will be made (that is, ISA - SBI < 8 in all n trials) is

I (s1)/2 2s- 1 + (-1 ((_)c si(7 )
(3.10) W'(n) 1/21+() co lr
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TABLE III

\ ALUES OF S AXD P Ix FOR FIXED A* AND N

A* = 0.1 A* = 0.2 A* = 0.3 A* = 0.4
N S Pmax S P.max s P- S Pmax

25 2 0.678 3 0.837 3 0.949 3 0.989
50 3 0.751 4 0.934 5 0.991 5 0.9996
75) 4 0.804 5 0.970 6 0.999
100 5 0.844 6 0.986 8 0.9997
150 7 0.895 6 0.992
200 8 0.931
300 10 0.968
400 12 0.985

TABLE IX

VALtUES OF 8 AND N CORRESPONDING TO FIXED P* AND A*

P* = 0.75 P* = 0.9) P* = 0.95 P* = 0.99
A* 8s N s N s N s NN

0.1 3 50 7 155 9 241 14 453
0.2 2 13 3 39 4 61 7 112
0.3 1 5 2 16 3 26 5 50
0.4 1 3 2 10 2 14 3 26

We have not succeeded in deriving an exact expression for the expected number
of trials to reach a decision or the expected number of patients on the poorer
treatment, but good approximations are available that have been verified by
Monte Carlo calculations.
Having obtained the general results of the last two paragraphs, we can now

discuss the uses to which they can be put in designing a clinical trial. Two
methods of using the exact information were discussed by Kiefer and Weiss
[8]. The first assumed that A* and N were fixed and that the probability of a
correct selection was to be maximized, and the second that P* and A* were
given and that the smallest N consistent with these requirements was to be
chosen. Both of these problems were studied for the least favorable configuration
which was shown to be p = 4(1 + A*) and p' = 4(1 - A*) as in the untrun-
cated case. Table III gives values of s and Pmax, where Pmax is the maximum
(over s) of the probability of a correct selection for fixed A* and N. Table IV
contains values of s and N for fixed P* and A*. The expected trial lengths have
been calculated and are not appreciably shorter than those for unrestricted
testing. Hence the most significant feature of the truncated tests is that an
absolute upper bound can be placed on the number of tests, with the trial design
retaining the same discriminatory ability as in the unrestricted design. A similar
analysis can be made for PW sampling but no detailed calculations have been
made so far to compare PW and VT sampling rules in their truncated versions.
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4. Comparisons of PW and VT sampling rules using sequential likelihood rules

Several sequential procedures have been investigated but here we shall only
report on one or two that do not include early elimination of noncontenders.
The VT rule for k binomial populations based on likelihoods is the procedure
described on pages 9, 270, and 324 of [3]1 we refer to it as RBKS. A remarkable
feature of this procedure is that both E{N} and E{L} remain essentially constant
for the GLF configurations with P I] = P[2] = = P[k- 1 P[k]= P[k- 1] + A*
and A* fixed. so that P[k] is the only variable. For example, for k = 3. A* = 0.2
and P* = 0.95 a Monte Carlo study based on 1000 trials gave the results
78 + 3.5 for E{N} and 10.4 + 0.5 for E{L} for the GLF configurations p =
0.2(0.05)1.0andp[I] = P[2] = P -A*

Another procedure based on likelihoods and without elimination is RLPWC
(or likelihood exact) which considers the most likely of the three possible
assignments of the observed data to the populations with ordered S values and
then stops when the infimum over all configurations with P[k] - P[k- II _ A*.
of this maximum likelihood is at least P*. To write down this stopping rule for
k = 3 let S, _ S2 . S3 denote the ordered S value (that is., the current numbers
of successes) and let Fi denote the current number of failures associated with
Si, i = 1, 2, 3. After some simplification, the explicit rule is to stop when

A* S3-S2 q F2-F3
(4.1) sup 1 - )- -S +±*)

+(1A)A* ) }<

A modification of RLPWC is RLCPWC (or likelihood conservative) which replaces
both factors q/(q + A*) in (4.1) by their upper bound 1. For P* > I this pro-
cedure stops if F3 _ min (F1. F2) and

(4.2) (1 - A*)5352 + (1 -A*)31 . P*

In both procedures we do not stop if S3 > max (S1, S2) and F3 > min (F1, F2).
If S3 = S2 (or S3 = S2 = S ) then we assign the subscript 3 to the population
with fewer (fewest) failures. If S3 = S2 and F3 = F2 then the left side of (4.1)
is larger than 1 and, for P* > I, the inequality (4.1) will not hold. Under the
PWC sampling rule, the differences Fi - F3, i = 1, 2. can only take on the
values 0 or 1.
Monte Carlo results for k = 3 show that RLPWC and RLCPWC procedures give

similar results with RLPWC showing a reduction of about 20 per cent in E{N}
over RLCPWC. In comparing RLPWC with the "constant" RBKS we find, as fork = 2
in (2.7) and (2.8) above, that there is the same crossover pattern in which the
PWC sampling rule is better for P[3] > 0.75 and the VT sampling rule is better
for P[3] < 0.75 (approximately). These results have been confirmed by Hoel.
Table V shows the Monte Carlo results obtained for k = 3, A* = 0.2 and
P* = 0.95.
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TABLE V

SELECTING THE BEST ONE OF k = 3 BINOMIAL POPULATIONS (THREE ARMED BANDIT)

EXPECTED TOTAIL NUIMBER OF OBSERVATIONS E{N} UNDER VARIOIUS PROCEDUTRES FOR
k = 3, A* = 0.2. P* = 0.95 AND GLF CONFIGURATIONS P[1] = P[21 = P - A*

Sequential Stopping Rules Based
Inverse Sampling Stopping Rules on Likelihood

(Monte Carlo results based on 1000
(asympt. (A* - 0) normal approx.) observations per entry)

Likelihood Likelihood
p = maxpi conservative exact
i = 1, 2, 3 R'T RW RBKS RLCPWC RLPWC

0.20 364.0 74.6 223.3 184.8
0.25 288.8 77.1 210.3 171.2
0.30 = E{INIRT} 238.5 77.2 196.6 164.1
0.35 202.4 77.6 188.2 155.5
0.40 175.0 76.9 178.8 145.9
0.45 3r r 1

+ 2q 153.5 77.9 162.5 134.5
0.50 -> 136.0 78.0 153.5 126.1
0.55 P P q±A* 121.4 76.5 141.8 115.1
0.60 108.9 76.7 126.8 103.0
0.65 97.9 77.4 116.3 94.5
0.70 = EJNJR'w} 88.0 78.3 102.9 83.0
0.75 78.8 81.3 90.3 74.7
0.80 70.0 80.2 75.9 61.4
0.85 61.2 81.6 62.4 51.0
0.90 51.9 80.9 49.6 39.3
0.95 41.3 80.4 36.5 30.2
1.00 28.0 80.1 23.7 20.2

see (2.17) based on see [3], see (4.2) see (4.1)
(2.16) pp. 259.

see [15] 270, 324

5. Related problems under investigation

Some other variations of the PW, VT and allied sampling schemes are under
investigation. E. Nebenzahl while at the University of Minnesota was studying
the PW sampling rule for a fixed sample size procedure RPNW with k = 2; that is,
he wants to determine a total sample size NPW (from both populations) such that

(5.1) P{CSJR N)} = P* when p - p' = A*,

where A* > 0 and P* < 1 are preassigned. He then compares NPW with the
NVT required for the corresponding procedure R N) based on VT sampling. He
has found that for any fixed even N

(5.2) P{CSIR N} = P{CSIRvN}
and hence NPW = NVT for any pair (A*, P*).
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In another three decision problem with k = 2 populations he allows the
three decisions:

D1: population 1 is better, that is, Pi > P2;
D2: population 1 and 2 have approximately equal values of p;
D3: population 2 is better, that is, P2 > Pl

Based on a total of N observations and the PW sampling rule, he uses the
statistic

(5.3) W = SN S2
N

where Si is the number of successes from population i, i = 1, 2. We make the
decision

D1 if W > d,

(5.4) D2 if -d _ W > d,
D3 if W < -d,

where d > 0 and N are to be determined. Let A and PA correspond to the better
population so that PA > PB. Ifp1 = P2 and the common value is 0 or 1 then the
power of the procedure based on PW sampling is clearly very poor. However,
for specified P*. P*. A* and y*. we can choose a pair (N. d) satisfying simul-
taneously the conditions

(a) P(selectingA) _ P* when PA -PB _ A*.
(5.5) (b) P(deciding D2) > PI when PA = PB _ Y*
where Pi' < 1. i = 1. 2. A* > 0 and 0 < y* < 1: for convenience it is also
assumed that y* > '(1 + A*). The corresponding problem for the VT sampling
rule is also considered (the condition PA = PB _ y* in (b) is now replaced by
PA = PB). A comparison of the results shows that the number of observations
NpW(NVT) required by the PWV sampling rule (VT sampling rule) asymptotically
(A* -+ 0) satisfies the inequality

(5.6) NPW _ NVT
In general for a fixed number of observations the VT sampling rule is prefer-

able, but for a sequential problem neither sampling rule is uniformly preferable.
In another avenue of investigation, Nebenzahl showed that if we consider

a class of inverse sampling procedures in which the ith procedure switches only
after i successive failures, i = 1, 2, * *, then the best ranking and selection
results are obtained by taking i = 1. More explicitly, he finds an ri for procedure
R' based on inverse sampling and switching after i successive failures such that
(2.1) holds. He then computes E{NR'} and finds that: (1) for all i the supremum
occurs when PA = PB, and (2) the smallest supremum is obtained by taking
i = 1.
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Y. S. Lin, at the University of Minnesota, is applying the PW sampling scheme
to the problem of finding the "fairest" of two or more coins, that is, the one
with p closest to 1/2. A trial consists of three tosses of a coin and if we observe
1 or 2 heads it is a success, otherwise it is a failure. The probability of success on
a single trial, 3p2q + 3pq2 = 3pq, is a maximum for p = 2. Hence the coin
with p closest to 2 should give the most successes. In this way the problem is
again brought into the framework of selecting the population with the highest
probability of success on a single trial. The PW scheme is then applied to the
trials and a comparison of the PW and the VT sampling scheme is made. It will
also be compared with a straightforward (ranking and selection) approach to
this problem of finding the fairest coin which was solved for k = 2 (the case
k > 2 is still incomplete) by Sobel and Starr [12].

Along different lines D. Feldman with one of the authors has studied a modi-
fication of the PW sampling rule which is called the "Follow the Leader" (or
FL) sampling rule. Here we again stick to any population as long as it provides
successes. When it gives a failure and the current numbers of failures (F1, F2)
are not equal then we switch as before. If F1 = F2 and S, = S2 then we ran-
domize, that is, perform an independent experiment with equal probability for
each.

Exact formulas for the PCS, E{L}, and E{N} were obtained for the procedure
RFL based on the FL sampling rule and termination rule AS = r. Our first
result was that for any fixed r

(5.7) P{CSIRFL} < P{CSIRPW}.
It follows that the r value rp, for RPW is not greater than rFL for RFL. For any
P*, if A* is not too small then rFL = rpw. When this happens the procedure RFL
becomes a serious competitor to RPW and is superior (in the sense of a smaller
E{L} and E{N}) for most of the GLF configurations (p = p' + A*) with p
varying from A* to 1. On the other hand if A* 0 then RPW is uniformly
preferable to RFL.
The corresponding comparisons for the fixed sample size problem and for the

inverse sampling problem have not yet been investigated.

6. Open questions

Any enumeration of the practical difficulties associated with clinical trials
is a good source of problems for future research. The principal shortcomings
of the trial designs just described are the assumptions of dichotomous and
instantaneous response to treatment. The first of these can be handled by some
of the techniques given by Bechhofer, Kiefer, and Sobel [3] which principally
use the VT rule and also more complicated termination rules than those described
so far. No analogue of the PW rule has been proposed for the case in which the
response is continuous-a very important consideration in the testing of anti-
cancer treatments for which a natural measure of effectiveness is lifetime.
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The example of testing anticancer treatments also suggests the second difficulty
of a response at some random time after administration of the treatment. Zelen
[16] has proposed an analogue to the PW rule for dichotomous response with
random reporting intervals. His idea is to bias future assignments to the two
treatments according to present trial results. Thus, every success with A would
generate a future test with A and every failure with A generates a future test
with B. Whenever a new patient arrives, the treatment assignment is made by
randomly choosing one of the possibilities generated by past trials, or the choice
is made with probability 2 if all past results have been accounted for. The
analysis of this sampling scheme in the context of our present formulation of
terminating rules has not been made nor has it been compared to other
alternatives.

Flehinger, Miller. and Louis [6] have discussed a fixed sample analogue of
the PW rule for testing differences in mean survival time in two populations,
each of which has an underlying negative exponential distribution of lifetimes.
The method is a fairly complicated one in which the information at any stage
is summarized in a six dimensional vector including the number of patients on
each treatment who have died, those who are alive, and the total time lived by
patients on the two treatments. Because of mathematical difficulties. results
could only be obtained by Monte Carlo methods, and no comparison with
other methods was made.
Much remains to be done on the problem of choosing the best of k _ 2

dichotomous populations. We have encountered great difficulties in trying to
deal analytically with any termination rule other than the one prescribed by
inverse sampling. Inverse sampling is probably inefficient for small A*, as we
have demonstrated in the case k = 2. It would certainly be of interest to consider
the ranking problem for k > 2, keeping in mind the objective of doing so with
as small a number of patients as possible on the poorer treatments. Another
problem that has not been touched is that of multiple patient entries. It would
seem of some interest to investigate multistage trials to alleviate the possibly
overpessimistic designs generated by using the least favorable configuration.
Many further problems suggest themselves based both on practical difficulties

in the expanding use of clinical trials and on the basic theory developed so far.
There is clearly room for much further investigation in the area of clinical
trials based on ethical and technical considerations.

0 0 0 0 0

The authors are indebted to Dr. David G. Hoel presently of the National
Institute of Environmental Health for the computation in Tables I and V. We
also wish to thank Leo May of the University of Minnesota for his help with
Tables Ila through Ild.
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