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1. Introduction

This paper describes some studies on the age dependent binary branching
process. These studies are partly theoretical and partly numerical. We shall
first describe the model and then mention two problems which suggested this
investigation.
The model is one that is sometimes used to represent the growth of cellular

populations under favorable conditions, in which there are no deaths, and the
life of each individual terminates by a process of fission giving rise to two new
individuals. The life length of an individual is the period from its inception by
binary fission of its parent to the instant of its own fission. This period varies
randomly in the following sense. Let G(t) be a distribution function (to be called
the generation time distribution) which is such that G(O-) = 0. Suppose that
at time 0 a single individual of age zero is present, and that its life length is L
where P{L _ t} = G(t). At the end of its life it is replaced by two individuals
of age zero and their life lengths L1, L2 are independently distributed according
to the same law; that is, P{L1 _ t} = P{L2 < t} = G(t). At the end of their
lives these two individuals are each replaced by two newly born ones in the same
way. Note that at any instant of time the probability of fission for each indi-
vidual depends on its own age, but not on the number of others present, nor on
absolute time. This model is a special case of the process that is described in
Harris ([1], chapter VI). We shall summarize certain results given there (which
we shall use), which are particularly concerned with the behavior of the process
for large values of the time.

Let Z(t) be the population size at time t.
Let p, which we shall call the "Malthusian parameter," be the unique real

positive root of the equation

(1) f te-pdG(t)
Let

(2) nli = [4p f| te-pt dG(t)]
609
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Then

(3) Z(t)/(n,eP') - W as t

where, under wide.conditions given in [1], W is a random variable that has an
absolutely continuous distribution. Writing g for expectation, we can state the
following properties of W. Let e-g8w = +(s). Then a well known argument based
on the regeneration point of the process gives the equation

(4) +(s)= i [(seP)]2 dG(u).

Differentiation of this equation with respect to s gives
(5) &W = 1, and Var W = (412 - 1)/(1- 2I2)
where we define
(6) I= e-il'dG(t) for j = 1, 2,

From the point of view of applications, we may remark that if log Z(t) is
plotted against t, then with increasing t it will approximate to a straight line
of slope p whose intercept on the ordinate is log W + log ni. The stochastic
variations represented by W arise mainly from stochastic fluctuations in the
life lengths of individuals in the early generations, which influence the whole
later development of the population.

Let us define the coefficient of variation of the generation time distribution by

(7) CV(L) = VVi/ 7/gL.
Then models in which CV(L) -*0 can be taken to represent the situation of
"approximate equivivancy." D. G. Kendall [2] discussed the special age
dependent binary fission process in which L has the distribution of (1/2k)x2k,
where X is a fixed positive constant (1/X being &L) so that CV(L) 0 as k oo.
He showed that

(8) CV(L) -+* ln2 0.98 as k oo,

and gave an heuristic argument suggesting that this limit would hold for more
general forms of G(t). He also pointed out that the ratio in (8) is never far from
unity.

Let Z(x, t) be the number of individuals alive at time t whose age does not
exceed x. Then

(9) Z(x, t) - A(x) for each x, with probability 1,Z(t)
as t -X o. This limit, known as the limiting age distribution, is related to the
generation time distribution by

(10) A(x) = 2p fox e-P'[l- G(t)] dt.

One of the problems which suggested the present investigation is biological.
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Various hypothetical mechanisms of cellular growth and fission lead to corre-
sponding hypotheses about the nature of G(t), and it would be desirable to
discriminate between them. Kendall [2] describes a process of duplication of
subunits within the cell which might give rise to the x2 form of G(t). In Kendall's
process, duplication of subunits proceeded in sequence, and an alternative orig-
inating with Rahn [3] was to suppose that duplication took place in parallel or
simultaneously. With certain assumptions about the system of probabilities
involved, this leads to G(t) = (1 -e-e)k where X is a positive constant and k is
equal to the number of entities to be duplicated, and these two forms were
compared by Powell [4] using goodness of fit methods on directly observed life
lengths of individual bacterial cells. It is clearly difficult to obtain enough direct
observations to discriminate sharply between the alternatives, even leaving
aside the appearance of phenomena such as dependence between individuals,
and day to day changes in growth rates. This leads us to enquire whether the
age distribution or some other property of the process might be markedly
different for alternative forms of G(t).
The other problem we had in mind was a theoretical one. Consider non-

negative, negative exponential random variables Tl, T2, * * *, 'r. Suppose ri has
the probability density Oi1 exp (-t/O0) where 0i (= 8ri) is a fixed positive
constant. Then, in well known terminology, if the life length L has the distribu-
tion of the sum Ti + T2 + * * * + Tk, we shall say that the generation time is
"Erlangian." Note that the symbol Ek is used to indicate the appearance of
the same sort of distribution in the standard notation specifying inter arrival
time and service time in a queueing system. The parameter k is called the
"number of phases."
Both in population and in queueing problems, waitinig times of the Ek type

have often been introduced. One reason has been that it seems plausible that
they will give results that are approximately true for systems involving more
general distributions of waiting times. In [5], D. G. Kendall made several
remarks about this practice in queueing theory. We may quote: "Suppose, for
example, that we are concerned with MIGIs and that we decide to replace this
by MIEkIs; how should k be chosen? . If, for instance, we are mainly
interested in the imean waiting time, then we may recall that for M/I/1 this
depends only on the first two moments of the service-time distribution, and so
we should feel tempted to choose k so that Ek and G have the same coefficient
of variation, even for s > 1. Is this correct, and how large can the error be?"
These remarks suggest a similar problem for population growth processes. We
can set up processes based on different Erlangian generation times Ek and Ek'
where the means and variances are equal, but the parameter sets 01, * * *, Ok and

1', *'', Ok' are not the same, and compare properties of the processes. We can
also select specific forms of G(t) other than Erlangian and compare processes
based on these with the Erlangian ones.

In the ensuing sections of this paper we first show that in the situation de-
scribed as the "approach to equivivancy," the limit (8) holds for all Erlangian
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processes. We then select a number of specific forms of G(t) and carry out some
computer studies of the limit (8), with particular reference to the rate of con-
vergence, and of the limiting age density A'(x) defined by (10). Within the
family of Erlangian processes, our theoretical study of the limit (8) suggests
that the x2 form represents an extreme of behavior and also suggests an opposite
extreme. We therefore numerically study these two extremes and a related
limiting distribution. We also select for study some non-Erlangian forms of G(t),
either on the basis of suggestions appearing in biological work, or in an attempt
to find examples that deviate from the general pattern.

2. The "approach to equivivancy" for Erlangian processes

Let 01, * * *, ok be the set of parameters of a k-phase Erlangian generation
time distribution. We shall suppose that the mean generation time EL is fixed.
Let

k
(11) E00 = si for j = 1, 2, 3.

Without loss of generality, we can suppose that
(12) s1= EL= 1,
and note that 82 = Var L, and S3 is proportional to the third central moment
of L. We shall show that as Var L -*0 (when, necessarily, k -X oo) the limit (8)
holds in the equivalent form

VarWL(13) VvarL W2(1og2)2.
We shall first express p, and then Var W, in terms of the sums Si, S2, 83. IXFor G(t)
of Erlangian form we have

k
(14) Ij III (1 + jpOrf-1.

r=1

Taylor's theorem, with the remainder at the second term, gives

(15) log (1 + POr) = POr - 2 (p0r)2/(l + OpGr)2.

Here, and later, we shall use 0 as a general symbol for a quantity such that
0 < 0 < 1, and it may represent a different quantity of this type at different
times. Now by (14), II` > 1 + p E'=i 0rX whereby using (1) we get 1 + p < 2.
Thus p < 1, from which we obtain a fortiori POr < 1; and so

(16) 1 < (1 + OpOrt-2 < 1,4

which, with a different 0, gives in (15)

(17) log (1 + po'r) = Por - 20d2?
Summing for r = 1, * , k, we obtain on the left ln II1, which by (1) is equal
to ln 2. Therefore,
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(18) p=log2+ 0s2.

We now obtain an estimate for 412. Let P9r = Er. Then 4 = lr'= (1 + E0)2;
hence, again using Taylor's theorem and expressing the remainder by means
of a 0 symbol, we have

(19) log 4I2 E log (1 + 2
r=1 l +2,Er

r=E log (1 + 1 +2r)
k e2 0 k 4Er r=11+~)

r=1 1 + 2er 2,=1 (I + 2

C2 kc 2(1 + 2fr) + 20efr
r=1 -r=1 (1 + 2e)

Consideration of possible values in and on the boundary of the square
0 _ 0 < 1, 0 < er < 1 shows that
(20) 2< 2(1 + 2Er) + 20er< 2

3 (1 + 2Er)2

From (19), (20), and (18), by using two symbols 0 and 0', we obtain

(21) log 412 = p282 - p3S 32 (1 + 30')3

= (log 2)2S2 + 0(log 2)s2 + 4 02S2

2
2 (1 + 30') {(log 2)3S3 +

3
0(log 2)282S3

+ 4- 2823 + 8 2333
= (log 2)282 + B(s2, 83).

Note that if S3/82 0 as 82 -* 0, then B(s2, 83)/S2 -+ 0. Using ex- 1 = x +
1/2x2e0z, we have from (21)

(22) 412 - 1 = (log 2)282 + B(s2, S3) + 2 {(log 2)282 + B(s2, S3)}2 exp {0 log 412}
where the term exp {0 log 4I2} is bounded, say by M. Thus
(23)
Var W 4I2-1
Var L 82(1 - 212)

[1 - 2I2]'[ (log 2) + s, + 2{(log 2)2 +}2]

-+ 2(log 2)2, which is (13).
To prove that (13) holds for all Erlangian processes as Var L -* 0 with 8L = 1,
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we need only note that the restricted maximum of s3 under the conditions si = 1
and 82 = 6 can be obtained by means of Lagrange's multipliers and is

(24) s3(max) = T2{3k - + (k-i- (k - 2) k

where necessarily k > 1/a. It follows that s3(max)/6 -O 0 whence 83/82 -O 0 as re-
quired to ensure the limit in (23). We may remark that if fission is to form a
fixed number b of offspring where b > 2, the preceding work can be generalized
to show that Var W/Var L -+ (b/b - 1) (log b)2, but since binary fission is the
case of biological interest, we omit the proof.

3. Basis of numerical investigation

For the numerical investigation, values of p, ni, Var W/Var L, and A'(x) were
computed for various generation time distributions G(t). The following distribu-
tions were investigated.

(a) Erlangian Ek of X2 form. Results for this model are well known (see [2]).
We tabulate numerical values for comparison with other models and particularly
with those to be described under (b) and (c).

(b) Erlangian Ek of maximum skewness. Let /13(L) denote the third central
moment of the generation time. The condition following (21) in section 2 is
equivalent to
(25) P3(L)/Var L -O 0 as Var L -O 0.
For comparison with (a) we take Var L = 1/j. Then we can consider two

Erlangian distributions which we indicate by Ej(X2) and Ek (skew). For given j
the parameters for the E,(X2), which is as described in (a), are necessarily
01 = 2= ** = Q, = 1/j. For k > j one can obtain an infinity of parameter
sets 1, * * *k such that

k k

(26) 0Or21 =1/-j.
r=l r=l

Among these there is the set

(27) 01=-* = Ok-1 = {1 - (k -j ))},

Ok = k{l + ((k j)(k 1 }

which gives the maximum value of _r= I or. We call the corresponding Erlangian
distribution Ek (skew). Note also that the set

01= -= Oj=.
(28)

8j+l = Ok = °,

gives the minimum value to r _I 0 under the conditions (28). Now (25) holds
for all Erlangians under (26), but the role 93(L)/Var L plays in (21) suggests



SENSITIVITY OF A BIRTH PROCESS 615

that skewness of G(t) may influence the rate of convergence in (13). The Ek(X2)
are those with minimum skewness, and for comparison we take Ek (skew), which
has maximum skewness.

(c) Limit of Erlangian distribution of maximum skewness. Still under condi-
tions (26) we now consider j as temporarily fixed and let k -m oo. The distribu-
tion Ek (skew) has as its limit a distribution which we shall denote by E.o (skew).
This limiting distribution can be specified by defining L as the sum of a negative
exponential random variable having mean 1/v7, plus a fixed waiting time
1 - 1/vj'. Since for fixed j and k > j the skewness of Ek (skew) increases
with k, we take E. (skew) for further comparison with Ej(X2).

(d) Reciprocals of Erlangian and normal variates. A suggestion has recently
been made that the generation rate is approximately normal (see Kubitschek [6]).
Since in deterministic growth the generation time is the reciprocal of the genera-
tion rate, we take L-1 to have a truncated normal distribution, since L must
be nonnegative. Because of the requirement of nonnegativeness, and for com-
parison with (a), we also take L-' to have a distribution of x2 type, but we
change the scale to give EL = 1. The distribution of L that results will be
denoted by Ek:l(X2).
The Ek l(X2) distribution has the density function g(t) given by

( (k - 1)k 1e(k1)/t for t _ 0
(29) g(t) = (k-i)!

° for t < 0

when k _ 2. Note that L has only k - 1 moments. We also consider the case
where L-1 is a negative exponential variable with mean EL-1 = 1, and denote
this by E(1(X2).

In general we have
(30) EL = 1 (for k _ 2) and Var L = (k -2)-1 (for k _ 3).

We have pointed out (following (6)) that stochastic fluctuations in the life
lengths in the early generations strongly affect W. In particular, extreme values
of L, L1, L2, and so on, should be important. Distributions with no moments
such as E1 (x2) can therefore be expected to produce marked differences of
behavior from the norm displayed by the Ek(X2) model, for example, and this
appears in our numerical results. In (29), for k > 2, the variable is obtained by
taking the reciprocal of a variable distributed as (1/2k)X2k and then rescaling to
give mean 1. Since El I(x2) has no mean, we also, for comparison, scale the re-
ciprocals of x2 type variables to have median 1, and the different behavior
for small values of k will be noted in sections 4 and 5.

(e) Logarithmic variable. The variables Ej' (x2) for small k, and also the
truncated normal, have no moments, and in this sense, large "tails" as t -+ o.
In view of the possible effect of extreme values, it seemed desirable to compare
the behavior of a model where the generation time density has a singularity at
t = 0, and for this purpose we took the density g(t) given by
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(31) g(t) {t4 (log 4 - log t) for 0. t . 4
O for t < 0 and for t > 4.

4. Remarks on numerical results for Variance ratio

In tables I through VI we give values of p, n1, Var W, and the ratio Var W/Var
L for the models described in section 3. Tables I, II, and III provide a direct

TABLE I

El:(x2)

k p ni VarW Var W/VarL

1 1.0000 1.0000 1.0000 1.0000
2 .8284 .8536 .4890 .9781
3 .7798 .8079 .3239 .9716
4 .7568 .7857 .2422 .9686
6 .7348 .7638 .1610 .9658
8 .7241 .7530 .1206 .9645
10 .7177 .7466 .0964 .9637
12 .7136 .7424 .0803 .9632
15 .7094 .7381 .0642 .9628
20 .7053 .7339 .0481 .9623
25 .7028 .7314 .0385 .9620
30 .7012 .7297 .0321 .9618
35 .7001 .7285 .0275 .9617
40 .6992 .7276 .0240 .9616
60 .6972 .7255 .0160 .9614
80 .6962 .7245 .0120 .9611
100 .6956 .7239 .0096 .9611

TABLE II

Ek (x2)

k p ni Var W Var W/VarL

2 1.0272 .8894 .5223 -
3 .8462 .8285 .3487 .3487
4 .7899 .7989 .2603 .5206
6 .7478 .7704 .1714 .6857
8 .7310 .7569 .1272 .7635
10 .7220 .7492 .1010 .8078
12 .7165 .7442 .0836 .8362
15 .7112 .7393 .0664 .8635
20 .7063 .7346 .0494 .8897
25 .7035 .7318 .0393 .9049
30 .7016 .7300 .0327 .9147
35 .7004 .7287 .0279 .9217
40 .6994 .7278 .0244 .9268
60 .6973 .7256 .0162 .9384
80 .6962 .7245 .0121 .9442
100 .6956 .7239 .0097 .9474
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TABLE III

E. (skew)

i p ni Var W Var W/VarL

2 .8141 .8281 .3642 .7284
3 .7699 .7898 .2336 .7009
4 .7496 .7723 .1746 .6985
6 .7304 .7554 .1180 .7077
8 .7210 .7471 .0899 .7196
10 .7154 .7422 .0731 .7305
12 .7117 .7389 .0617 .7402
15 .7081 .7355 .0502 .7527
20 .7044 .7321 .0385 .7691
25 .7022 .7301 .0313 .7819
30 .7007 .7287 .0264 .7922
35 .6996 .7277 .0229 .8008
40 .6988 .7269 .0202 .8080
60 .6970 .7251 .0138 .8290
80 .6960 .7242 .0105 .8428
100 .6955 .7237 .0085 .8528
200 .6943 .7225 .0044 .8799
300 .6939 .7221 .0030 .8930
400 .6937 .7219 .0023 .9011
500 .6936 .7218 .0018 .9068
750 .6935 .7217 .0012 .9160
1000 .6934 .7216 .0009 .9216

comparison between the models Ek(X2), Ek1 (X2), and E. (skew). For all these
models p -* log 2 = 0.69315. Note also that 2(log 2)2 = 0.96091 and that
VarL = l/k. Values of k have been chosen for the following purposes: (i) to
illustrate the behavior of the process for fairly small values of k ((1) through
(15)). Some differences appear here; (ii) to look for differences in the range of
Var L that is of biological interest, corresponding to values of k from 20 through
60; and (iii) to take Var L sufficiently small to get close to the limits in each case.

Note that in the range of k that is of biological interest, the differences in
Var W/Var L among the models is not large. Compared with Ek(x2), E°o (skew)
differs more greatly and approaches its limit more slowly than Es I (X2).

Table IV provides two special models. One is based on making L-1 a normal
N(1, 30-1/2) variable, conditional on being nonnegative, following the suggestion
of Kubitschek [6]. The probability of negative values is, in fact, negligible,

TABLE IV

OTHER DISTRIBUTIONS

p ni Var W Var W/VarL

Reciprocal of a truncated
normal [L-1 is N(1, 30-112)] .6777 .7311 .0358 -

Logarithmic .9674 1.0123 1.1056 1.4215
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but the nonexistence of moments prevents consideration of Var W/Var L. In
order to obtain a dispersion of approximately the order of magnitude involved
in biological problems, we have taken Var L-' = 30. The other model, which
we call "logarithmic" (see section 3(e)), was deliberately chosen in a search for a
model that would differ appreciably from the others, and we note that
Var W/Var L does appear somewhat larger.

In table V we take L-1 to have a distribution of x2 type, but we center L-1

TABLE V

E,l(x2) WITH L CENTERED AT MEDIAN m(L)

k p p
m(L) = 1 &L = 1

1 .5700 -

2 .6120 1.0272
3 .6329 .8462
4 .6453 .7899
40 .6877 .6994

Note: for k = 1, gL does not exist. Measuring in units of
&L-' = 1 in this case we have p = 0.3951.

at its median. This gives a basis for comparing the reciprocal of a negative
exponential variable with the others.

In table VI we give some results for an approximation by an Erlangian model

TABLE VI

Ek (skew) FOR FIXED VARIANCE OF GENERATION TIME Var L = 1/2

Var W/Var L
k p n= 2VarW

2 .8284 .8356 .9781
3 .8217 .8409 .8598
4 .8188 .8367 .8178
6 .8169 .8333 .7830
8 .8161 .8318 .7677
10 .8157 .8310 .7591
12 .8154 .8305 .7536
15 .8151 .8300 .7482
20 .8148 .8295 .7430
25 .8147 .8292 .7400
30 .8146 .8290 .7380
35 .8146 .8289 .7366
x0 .8144 - .7284

where the situation is not one of "approach to equivivancy." We take Var L =
1/2 and tabulate results for Ek (skew) having this fixed variance. Thus the table
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shows a comparison between the Ek (skew) models and E2(X2), which appears
again at the top of table VI.

5. Remarks on numerical results for age distribution

As with the ratio Var W/Var L, some differences appear among the models
with Var L = l/k when k is not large. These can be seen in the early entries in
table VII. Note also that in the "logarithmic" model for which EL = 1 and

TABLE VII

MEANS AND VARIANCES OF AGES

Ek(X') Ej l(xl)
k Mean Variance Mean Variance

2 .5000 .2071 .4263 .2075
3 .4887 .1747 .4686 .2101
4 .4804 .1549 .4736 .1863
6 .4701 .1325 .4693 .1512
8 .4641 .1205 .4643 .1320
10 .4602 .1131 .4607 .1207
12 .4576 .1080 .4579 .1134
15 .4548 .1028 .4551 .1063
20 .4519 .0976 .4521 .0995
25 .4501 .0944 .4503 .0956
30 .4489 .0922 .4491 .0931
35 .4481 .0907 .4482 .0913

Note: for the "logarithmic" model the age has mean 0.5321 and variance 0.2484.

Var L = 7/9 the mean age is somewhat larger than in the other models. However,
when k = 35, once more in the range suggested by the biological applications,
the difference between Ek(X2) and Ek- I(x2) is very slight. The densities (figures
1, 2, and 3 are all of very similar appearance, clearly due to the strong effect
on the age distribution of the exponential term in (10).

6. Conclusions

The features of the binary branching process that we have examined are the
growth rate, the variance of the population size for large values of the time, and
the limiting age distribution. These depend on the generation time distribu-
tion G(t), and numerical investigations show some differences, especially be-
tween models in which G(t) takes markedly different forms. The differences
are less, and would perhaps be difficult to detect experimentally, in the bio-
logically interesting situation where Var L is fairly small. A similar situation
occurs in Slater's stochastic dissociation rate theory ([6], chapter 9) in which
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Age density A'(t) for Ek(X2) model.
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dissociation of a molecule depends on the random time gap T between occur-
rences of a critical value of a normal mode coordinate, and thus is affected by
the gap distribution. After introducing a gamma type gap distribution as an
intermediate between a negative exponential distribution for r, and the model
in which T is fixed, Slater concludes from numerical values of the rate constant
that "gap distribution effects are likely to be of secondary importance among
factors determining the rate, but they deserve inclusion in a refined theory."
One of the authors (D. G. Burnett-Hall) wishes to acknowledge the hospitality

of the Hudson Laboratories of Columbia University while this work was in
progress.
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