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1. Basic concepts and definitions

1.1. With the advent of very complex engineering designs such as those of
high-speed computers or supersonic aircraft, it has become increasingly im-
portant to study the relationship between the functioning and failure of single
components and the performance of the entire system and, in particular, to be
able to make quantitative statements about the probability that the system
will perform according to specifications. It is the aim of this paper to present
some inequalities for this probability.

1.2. We shall assume that there are only two states possible for every com-
ponent of a system, as well as for the system itself: either it functions or it fails.
When the system consists of n components, we shall ascribe to each of them a
binary variable which will indicate its state

(1.2.1) _ {1 when the i-th component functions,
0 when the i-th component fails

for i = 1, 2, * , n. Similarly, we ascribe to the entire system a binary indicator
variable
(1.2.2) fl when the system functions,

*O when the system fails.

When the design of a system is known, then the states of all n components
(that is, the values of xl, x2, * , xn) determine the state of the system, that is
the value of u so that
(1.2.3) u = 0(x1, x2, ... , x,n)
where 0 is a function assuming the values 0 or 1. This function 4 will be called
the structure function of the system. The indicator variable xi will sometimes be
referred to as "component xi" and 4 will sometimes be called "structure 4,."
The n-tuple of O's or l's

(1.2.4) (xI, x2, ... , xn) = x
will be called the vector of component states or, in short, the "state vector." It
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can assume any one of the 2n values represented by the vertices of the unit
cube in n-dimensional space: (0, 0, * * *, 0), (1, O, * * , O), (1, 1, . .. , 0), ... ,
(1, 1, * - *, 1). This set of all possible values of x will be denoted by I.. Thus the
structure function c4(xi, x2, *. *,xI) = +(x) is a binary function on In.

1.3. Furthermore, we shall assume that the state of each component is de-
cided by chance, so that the value actually assumed by xi is a binary random
variable Xi with the probability distribution

(1.3.1) Pr{Xi= 1} = * **, n),
Pr{Xi =O} = qi= 1- pi,

and we shall make the assumption that Xi, X2, * * *, Xn are totally independent.
The probability Pi will be called the reliability of the i-th component.

In the following, it will always be assumed that

(1.3.2) pl =P2 = ... = pn = P)
that is, that all components have the same reliability, for example, the reliability
of the least reliable component.

1.4. For a known structure function +(X), the value of p determines the
probability that the system will function

(1.4.1) Pr{f(X) = lip} = h+(p),

that is, the reliability of the system for given component reliability p. The function
h,(p) is called the reliability function for 0; we will mostly denote it by h(p),
omitting the subscript qb.

In this paper we shall present inequalities for h'(p), the derivative of the reli-
ability function, which can be obtained when only partial information about

(x) is available. We shall then discuss a procedure by which such inequalities
can be used to obtain some conclusions about h(p).

1.5. The assumption of 1.2 is restrictive, since it precludes consideration
of systems whose components may function only partially and yet the systems
will deliver a satisfactory performance. Similarly, the assumption of 1.3 is
rather special, since, often, functioning or failure of different components of a
system is correlated. Nevertheless, these two assumptions are a reasonable
approximation to many practical situations, and they make it possible to sim-
plify the theory to a manageable level.

1.6. For state vectors x, y we shall use the following notations:
(i) x< ywhenxi < yifori = 1, 2, *--, n;
(ii) x < y when x < y and xi < y, for some j;

(iii) (Ok, ) = (X1, X2, * Xk-1, 0, Xk+l .** Xn);
(iV) (lk, X) = (X1, X2, * *

- Xkly, 1, Xk+l, .** Xn)i
(v) O = (O, O, * * *, O), 1 = (1, 1, ' * *, 1).
A component xk is called essential for the structure +(x) if there exists a state

vector x* such that
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(1.6.1) )(lk, X*) $ O(0k, X*).
If +(x) is any function on I, not necessarily a structure function, the same
definition of an essential component can be used.

1.7. For given n there are 2(2') possible different structure functions. Among
all these possible structure functions we shall single out the class of coherent
structure functions which is defined in the following (this definition was intro-
duced in [1]), and which not only has some intuitive appeal, but also has been
found to have a number of rather interesting properties [2].
A structure function +(x) is coherent when it fulfills the following conditions:

(1.7.1) 4 (x) < 4)(y) for x < y,
(1.7.2) 4)(0) = 0, 4)(1) = 1.

From now on we shall assume that all structure functions considered are co-
herent.

1.8. A state vector x is called a path for 4 when +(x) = 1, and x iscalleda
cut for 4 when 4+(x) = 0. This terminology is analogous to that used in circuit
theory.
That 4 is coherent implies immediately that (a) if x is a path for 4 and x < ,

then y is a path for 4, and (b) if x is a cut for 4 and x 2 y, then y is a cut for 4.
For every state vector x e I,, we define S(x) = St I xi equal to the number

of functioning components in x and call SLx) the size of x.
For a given structure +(x) we consider the following numbers:

(1.8.1) Aj = number of paths of size j, for j = 0, 1, 2, * , n.

Obviously one has

(1.8.2) Ai < (n4) j = 0, 1, * ,n.

1.9. For O(x) coherent, one can prove [1] that

(1.9.1) Ajn < A+j1 for j = 0, 1, *,n-1,(n) -(n+)

(1.9.2) h(0) = 0, h(1) = 1,

(1.9.3) h'(p) > 0 for 0 < p < 1.

2. Inequalities for h'(p) and grids for h(p)

2.1. Let us assume that for all reliability functions h(p) belonging to a certain
class 3C, one can prove an inequality of the form

(2.1.1) h'(p) 2 4,(p, h), for all 0 < p < 1, 0 < h < 1.

This means that there exists a function 4,(p, h) on the unit square 0 < p < 1,
0 < h < 1, such that when a curve representing h(p) c 3C passes through a
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point (p, h), then the slope of that curve at that point must be at least 41(p, h).
If the inequality is replaced by equality, then (2.1.1) becomes a differential

equation
(2.1.2) C' = DC(p,X),
which, under very general assumptions on 4'(p, X), has a one-parametric family
of solutions 9C,(p) with the parameter c. We shall say that the family of curves
representing the functions 9C,(p) for 0 < p < 1 forms a grid for the class 3C. In
view of (2.1.1), this grid has the following properties:

(1) through every point (p, h) in the unit square goes exactly one grid curve
Xc (p) ;

(2) if the curve representing a reliability function h(p) E 3C goes through a
point (p, h) and 9C,(p) is the grid curve going through the same point,
then h'(p) 2 $C'(p) = 4(p, h). This means that if the curve h(p) e 3C
intersects any grid curve, then it intersects it from below. It should be
noted, however, that there may be points in the unit square 0 < p < 1,
0 < h < 1 such that no curve h(p) E JC goes through them.

The knowledge of a grid may be utilized in various ways which will be dis-
cussed later, but the most immediate application is the following.
Assume that all one knows about a reliability function h(p) E 3C is that for

given component reliability po, it assumes a known value h(po) = ho. Then there
exists a parameter value co such that a:,(po) = ho, and from grid property 2,
it follows that h(p) 2 9Cc(p) for all p > Po.

2.2. It is well known that for the class JC, consisting of reliability functions
for all coherent structures, the inequality

(2.2.1) h'(p) . h(p)[1 - h(p)]
p(l - p)

holds for 0 < p < 1. This inequality, obtained for two-terminal networks in [3]
and generalized in [1] to all coherent systems, and in [4] to the case of com-
ponents with unequal reliabilities, is of the form (2.1.1). The corresponding
differential equation of the form (2.1.2) is

(2.2.2) EC = (1 - )

Its general integral is

(2.2.3) 1-c(P) =c P c >O, 0 < p <,
1 -a:,(p) i-p

and this one-parameter family of curves forms the so-called Moore-Shannon grid.
Figure 1 indicates the shape of the curves of this family which, for c = 1, in-
cludes the diagonal a:1(p) = p.

2.3. We shall need the following concepts defined by analogy with terms
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used in the theory of circuits: the length 1, of a system 0 is the smallest number
of components such that if only they function, the structure functions; the
width wo of 4 is the smallest number of components such that if only they fail,
the structure fails.
According to these definitions we have

+(x) = 0 for all x such that S(x) < 1 - 1,
(2.3.1) +(x) = 0 for some x such that 1 < S(x) < n -w,

4O(x) = 1 for some x such that I < S(x) < n-w,
¢(x) = 1 for all, such that n-w + 1 < S(x).

Sometimes the only information one has about a system 0 consists of the
knowledge of 1,, or w6, and, possibly, Al or A.. The remainder of this section will
be devoted to the problem of obtaining grids when some or all of the parameters
1, w, AI, A. are known.
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According to (2.3.1), we compute
n

(2.3.2) E{fo(X)[S(X) - i]} = jEO(z (OM(x)(i
j=O S(x)=j

E(j- 1) F 4(X)pi(l - p)n-i
j=L S(X)=j

+ E (j 1) E pi(' p)nij
j=n-w+l S(X)=j
n-w

= _ (j - 1)Ajpi(l - p)--
j=l

+ E (i 1) (n) pi(l _ p)n-jj=n-w+l'
Hence, using formula (6.3) in [4] for pi = P2 = = pn, we obtain

(2.3i.3) cov {4(X), S(X)} = p(l - p)h'(p)
= E{(X)S(X)}-E{-(X)}E {S(X)}

= lh(p) + F (j - 1)A2pi(l - p)n-j
j=l

+ E 1i - 1) (0) pi(l - p)n-i- h(p)np
j=n-w+l ,

= (1 - np)h(p) + ,I (j - 1)Ajpi(l - p)n-i
j=l

+ E (j - 1) (n) pi(1 - p)n-.
j=n-w+1 ,7

Using the inequality Aj 2 1 for 1 < j < n - w, which follows from (2.3.1),
and inequality (1.9.1), one obtains

(2.3.4) A>max l 1 for l<j.n-w.

Since

(n\
(j2) _ !(n-I)! _ (n-j +1)(n-j + 2) ... (n-I)

(2.3.5) (n j!(n-j)! (I + 1)(l+ 2) ...j

and n - i 2 1 implies

(2.3.6)n-j+1 n-j-+2 n-i1(2.3.f) n -+1 > 1+ 2 > ... > j 1,

hence (n.)/ (n) > 1. Similarly, n - j < 1 implies
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(2.3.7) n-j + 1 < n-j + 2 < ... < n .I< 1
1+I 1 +2j

hence 1)/( .)

We conclude

Aj > Al (n for j < n-,

(2.3.8) )

Ai > 1 for j > n-.
Finally we obtain the inequality

(2.3.9) p(l - p)h'(p) 2 (1 - np)h(p)

+ Al1n(j 0) -p(_ p)n-i

n-w

+ F (j - l)pi(l - p)n-j=n-l+1

+ E (j-I) (nj) pi(l - p)n_i
j=n-w+l

In this inequality, the first sum may be empty if 1 > n - 1, and the second
sum may be empty if w > 1 - 1. Both these sums are empty when 1 > n - 1
and w > 1 - 1, which implies 1 + w > n, so that, in view of the known in-
equality 1 + w < n + 1, one then has 1 + w = n or 1 + w = n + 1.

Inequality (2.3.9) is of the form (2.1.1). The corresponding differential equa-
tion of the form (2.1.2) is

(2.3.10) =1 - np + Al n-I (j1 pi-i(j - p)n-ilp(l - P) +(n) j=1l+1 ( -)(j i- lpn

n-w

+ 2 (j - l)piP(1 - p)n-11j=n-l+1

+ E (j 1) (n) pi-l(l -)n-ijj=n-w+l

and, again, the first or the second sum, or both, can be empty.
The general solution of (2.3.10) is

(2.3.11) 9Cc = cp1(1 - p)n- + AI n, (i) pi(1 - p)n-i
3=1+1(fn)

+ F pi(l - p)ni + n (n) pi(1 _ p)nij
j=n-l+1 j=n-w+l1
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The family of functions (2.3.11) constitutes a grid for the class of reliability
functions corresponding to coherent systems with given n, 1, w, and A l. This class
will be denoted by JC,(n, 1, w, A1).

If I and w are known, but Al is not known, then (2.3.9) can be replaced by a
(weaker) inequality by setting Al = 1, and one obtains the grid

())(2.3.12) EC = cp1 (1 - p)- I +
n

( j) pi(l - p)n-

n-w n n
+ pi(l - p)n-j + .) pi(l - p)n-i

j=n-l+l j=n-w+l S
for the class 3C,(n, 1, w) of reliability functions corresponding to coherent systems
with given n, 1, and w.

If only n and 1 are known, then the resulting grid is

n-I (~
(2.3.13) qc = cp'(1 - p)n-I + E pi(l - p)ni

j=l+1l (in)
n

+ F£ pj(l - p)n-j.
j=n-l+l

When in (2.3.9) all terms but the first on the right side are omitted, one arrives
at the particularly simple grid for aC0(n, 1):
(2.3.14) qc = cp1(j - p)n-1.
For h(p) e J3C(n, 1, w, AI), one always has

n
(2.3.15) h(p) = Alpl(l - p)n-1 + Ajpi(l- p)n-i > Alpl(l -p)n-1,j=l+1

so that no h(p) in this class can go through points in the region h <
A1lpl(1 -p)n-.

2.4. Again using (2.3.1), one computes

(2.4.1) E{[1 - O(X)][n - w - S(X)]}
n

=_E [1 - (x)](n-w -j)P{X =Z
j=O S(x)=j

= E0 (in-w-j)ij) pi(l - p)n-i
j=O
n-w-1

+ (n - w - j)Api(l p)-
j=1

where A* = (n.) - Aj = number of cuts of size j. Hence,
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(2.4.2) coV {O(X), S(X)} = p(l - p)h'(p)
= E{4(X)S(X)} - E{j(X)}E{S(X)}
= [1-h(p)][np- (n-w)]

i-1

+ E0 (n-W _i) (n) pi(l -p)l-i
+ E (n -w-j)A pi(1 p)--ij=l

and duplicating the arguments of section 2.3 one obtains

(2.4.3) p(l - p)h'(p) 2 [1 - h(p)][np - (n - w)]

+ 5 (n-w-j) (j) pi(- - p)-j=o
w-1

+ F_ (n - w-j)p'(1 - p)n-i
j=1

+ An E (n-w - j) (n) pi(, p)n-;

an inequality of the form (2.1.1).
As was done in section 2.3 with regard to inequality (2.3.9), we may retain

all or some terms of the right side of (2.4.3), replace in each case inequality by
equality, integrate the resulting differential equations, and obtain grids for the
respective classes of reliability functions. We consider here, explicitly, only the
case when all but the first term on the right side of (2.4.3) are omitted. One
obtains then the simple grid

(2.4.4) 'c(p) = 1 - cpn-w(l - p)w

for the class 3C,(n, w) of reliability functions for coherent systems for which n
and w are known.

3. The use of several grids for the same class of reliability functions

3.1. If there are several different grids for a given class 3C of reliability func-
tions, then all these grids can be used to obtain lower bounds for an h(p) E JC
which are better than bounds based on any single one of the grids. For example,
let us consider a class 3C for which there are two grids X.a(p) and Xb(p), with
parameters a and b, respectively. If for an h(p) E JC it is known that h(po) = ho,
then one can determine ao and bo so that 9Ca(po) = XbX(PO) = ho, and choose that
one of the curves 9Ca(p), Xbo(p) which is steeper at po. If, for instance,

(3.1.1) DCaxo(po) > Xto(PO),
then DC.(po) will be used as a lower bound for h(p) for p 2 po until, possibly, it
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intersects some curve of the X-grid which is steeper at the point of intersection,
that is, until the first value pi > po such that for some bi, one has

(3.1.2) Xb.(P1) = SWP(PO, Xb,(P1) > 9C.(p1).
Then Xb,(P) can be used as a lower bound for p 2 Pi, and so on. Figure 2 illus-
trates this procedure.

X a()b(P)

I~~~~~
ho X ~~~~~~~~~..........................

I

PO P
FIGURE 2

In some cases, an analytic discussion can be carried out for the use of several
grids, and a practically useful example of such a discussion follows.

3.2. In sections 2.2, 2.3, and 2.4 we have seen that the families of curves
(2.3.14), (2.2.3), and (2.4.4) are grids for the class 3Ce(n, 1, w). For the purposes
of our discussion we rewrite the equations of these grids to be
(3.2.1) 9Ca(p) = apl(l - p)-I

(3.2.2) b(P) 1 + bp( + (b - l)_p'
(3.2.3) As,(p) = 1 - Cpn-w(l - p)w.
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In order that the curve of each of these families passes through a given point
(pi, hi), the corresponding parameters must assume the values

(3.2.4) a, = p hl-

(3.2.5) bi = hi * 1-_p
pi1 - h

(3.2.6) Cl= (1 - .p)

The derivatives of the three curves passing through (Pi, hi) at that point are

hih1( - ni(3.2.7) Xa'l(pi) = pi(' -npi)
hP(i)

(3.2.8) Xl(pi) = hp(' - hp)
(3.2.9) -l(pi)=(1 - hi)(w - n + npi)

We have

(3.2.10) $'.(Pl) > 0 if and only if 0 < pi <

(3.2.11) 4I1(P.) > 0 for all pi, 0 < p < 1,

(3.2.12) I41(pl) > 0 if and only if n < pi < 1,

so that (3.2.1) is a nontrivial grid only for 0 < p < 1/n, (3.2.3) only for
(n - w)/n < pi < 1, whereas the Moore-Shannon grid (3.2.2) consists of func-
tions which increase for all p, and hence is useful for 0 < p < 1.
In view of the known inequality 1 + w < n + 1, wp have 1/n < (n -w)/n,

except for the case when 1 + w = n + 1, which occurs if and only if the struc-
ture is "I out of n"; in this case,

(3.2.13) h(p) = E (n) pi(l - p)n-i

and is completely known. In all other cases the intervals (0, 1/n), (1/n, (n -w)/n),
((n - w)/n, 1) are nonoverlapping, and for 0 < p < 1/n we need to consider
only grids (3.2.1) and (3.2.2), for 1/n < p < (n - w)/n only grid (3.2.2) and
for (n - w)/n < p < 1 only grids (3.2.2) and (3.2.3).
Comparing the derivatives (3.2.7) and (3.2.8), we see that the 9c-grid is steeper

for 0 < p < I/n if and only if h > np - I + 1, and comparing (3.2.8) and
(3.2.9), we find that the u-grid is steeper for (n - w)/n < p < 1 if and only if
h > np-n + w. The parallel lines h = np-I + 1 and h = np-n + w
divide, therefore, the unit square in three regions, from left to right, such that
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the a-grid is steepest at all points of the first region, the X-grid in the second and
the ,A-grid in the third region.

3.3. A specific example is presented in figure 3. For n = 10, 1 = 5, w = 2,
the lines

1.0

0.8

0.6

h(p)
0.4-R

0.2 %2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

p
FIGURE 3

(3.3.1) (11)h = 10p - 4
(3.3.2) (12)h = lOp - 8
partition the unit square in the three regions described in the preceding section.
The curves of the Moore-Shannon grid (3.2.2), shown before in figure 1, are
reproduced in figure 3 in solid lines and, in addition, several curves of the
DC-grid (3.2.1) are indicated by dotted lines, and of the u-grid (3.2.3) by broken
lines.

If it is known that h(p) E fC0 (n = 10, 1 = 5, w = 2) and that the graph of
h(p) goes through the point P1 = (.20,.05), then our theory tells us that for



RELIABILITY FUNCTIONS 283

p 2 .20, that graph is bounded from below by a curve which first goes along
the 9C-curve through P1 to its intersection with 11, then along the Moore-Shannon
curve (in this case the diagonal) to its intersection with 12, and then along the
A-curve. This lower bound is indicated by a heavy line.

Similarly, if a reliability function h(p) of our family is known to go through
P2 = (.34, .10), then for p 2 .34 one obtains for h(p) the lower bound indicated
by the heavy line beginning at P2.

Another lower bound for h(p) going through P3 = (.32, .40) is indicated by
the heavy line beginning at that point.

ADDENDUM

It should be mentioned that an improvement of the Moore-Shannon grid has
been recently obtained. One can show that the following inequalities hold for
all h(p) E 3Cc

I (-p log p)h'(p) -h log h,
II [-(1 - p) log (1 - p)]h'(p) 2 -(1 - h) log (1 - h).

The corresponding grids are

(i) Dc(p) = pe, c > 0,
(ii) 9c.(p) = 1 -(1- p)c c > O.

These grids are an improvement on (2.2.3), since (i) is steeper than the corre-
sponding Moore-Shannon curve at every point such that p > h, and (ii) at
every point such that p < h. A derivation of this new grid is being prepared for
publication [5].
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