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1. Introduction

In 1953, L6vy [3] proved that for almost all Brownian motion paths X(t) in
the Euclidean space RN of dimension N > 3,
(1) A,({X(T): 0 < r < t}) < Kt,
where A, is the Hausdorff measure in RN formed with the function p(a) =
a2 log log a-', and conjectured that

(2) Ap({X(T): 0 < T < t}) > kt

with probability one.
L6vy's conjecture was proved in 1961 by Ciesielski and Taylor [2]. The use

of a density theorem of Rogers and Taylor [5] enabled them to obtain (2) by
proving that with probability one,

(3) lim sup T(a, t)/p(a) = CN,
a- O

where
(4) T(a, t) = fo V(X(r); a) dr,

(5) V(x; a) = 1, Ixl < a,
= 0, lxl > a,

is the sojourn time up to time t of the path inside a sphere of radius a about the
initial point X(O) = 0. (Actually, the proof of (2) used only the fact that the
lim sup in (3) is bounded below with probability one.) The constant CN is ex-
pressed in terms of the zeros of Bessel functions through an eigenvalue problem
for Laplace's equation.

In [2], Ciesielski and Taylor conjectured in turn that the result (3) holds also
for N = 2 if the function p is chosen to be p(a) = a2 log log log a-'. This was
proved in [4], with the implication, as in [2], that the lower bound (2) holds
with probability one for planar Brownian motion, with the above choice of p.
The proper constant for (3) in this case turned out to be C2 = 2. Finally, Taylor
[6] used (3) and related results to extend (1) to the planar case.
The point is that Taylor's work showed that properties (1) and (2) of the
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Hausdorff measure of the sample path could be obtained for homogeneous
processes from the asymptotic behavior of the sojourn times. The point of this
paper is that, in turn, asymptotic properties such as (3) depend to a large extent
only on the local behavior of the potential kernel of the process.
We will try to emphasize this by proving a form of (3) for a class of processes,

including the transient symmetric stable processes, which can be described by
conditions on the singularity of the potential kernel.
A general form of the result can be stated as follows. One is given a Markov

process X(t), 0 < t < S, in RN, with stationary transitions, with the strong
Markov property, and with almost all path functions right continuous and
having limits from the left. The terminal time S may be identically infinite or
may be an exponentially distributed variable independent of the paths, intro-
duced to make the potential operator finite.
The potential operator of the process is

(6) Hf (x) = gx {ff f (X(t)) dt}-

We will suppose that Hf(x) is finite for each x and for each continuous function f
with compact support, and is given by a continuous symmetric kernel relative to
Lebesgue measure; that is,

(7) Hf (x) = f H(x, y) f (y) dy, H(x, y) = H(y, x).

THEOREM. If the potential kernel of the process satisfies conditions A, B, and
C below, then

(8) lim sup T(a; S)/X(a) log log a-NX(a) = 1
a-0

for almost all paths with initial point at the origin, where X(a) is the largest eigenvalue
of the potential kernel on the sphere of radius a:

(9) X)(a) = max { ff H(x, y)q5(x)qS(y) dx dy; fxI <a +2(x) dx = 1}.
Ilx. Ivl <a

For the transient stable processes, taking S

(10) H(x, y) = Ca.N Ix - ylaN,
Ca,N = r (N 2 )/2,rvNI2/ (-),

where 0 < a < 2 if N > 3, a < N if N < 2. Because of the homogeneity of the
kernel, X(a) = aaX(1), and the result of the theorem becomes

(11) lim sup T(a; S)/aa log log a-' = X(1).
In this case, also, the result is invariant under translation and can be applied
toward proving (1) and (2).
The conditions of the theorem do not cover the recurrent stable processes.

For planar Brownian motion, however, the result proved in [4] agrees with (8),
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since X(a) - 'a2 log a-'. For the Cauchy process stopped at an exponentially
distributed time independent of the paths,

H(x, y) = 1og 11 + 0(1),
(12) =2 1x-y

X (a) = 2 a log 1+ 0(1).
7r a

Part of the proof below applies, with the result that for the Cauchy process
starting at the origin, with probability one,
(13) lim sup T(a; S)/X(a) log log a-'X(a) > 1.
As in [4], however, quite different techniques from those of this paper are
needed to prove the opposite inequality.
The distinction between the cases, rather than transience and recurrence, is

that the singularity of the potential kernel grows slower than a power for the
Cauchy process. A condition that restricts processes to those resembling the
transient stable processes is the following.
CONDITION A. As a tends to zero,

(14) ,A(a) = min {H(x, y): lxl < a, IYI < a} - Ca-l4(a),
with 0 <6 < N, where t (a) is a slowly varying function; that is,
(15) limf(ba)/t(a) = 1,

a-0

uniformly for b bounded above and below.
The proof in outline follows that given in [2]. The first step is to estimate the

distribution of the sojourn time in terms of the eigenvalue X(a). Sufficient to do
this is condition B.
CONDITION B. For some integer p and some constant K1,

(16) HaP1(x, x) < KlaN(p-1)(M(a))P, lxl < a,
when a is small.

Here H(P) is the p-th iterate of the potential kernel on the sphere of radius a;
that is,

Ha(X Y) = Ha1)(x, y) = H(x, y), |xi, IyI < a,
(17) a Y) = 11< H(P)(x, u)H(u, y) du.

The estimate which we will obtain in section 2 under condition B easily
provides a sure upper bound for the sojourn times when A also holds. That this
upper bound is the best possible is proved by breaking the path into segments at
the passage times out of a sequence of spheres. By the strong Markov property,
these segments are independent, conditional on the places of passage, and the
sojourn times during the segments together with the places of passage form a
Markov chain. The estimates of section 2 can be applied to these segments if
the spheres are sparse enough that a return to one of them after passage out of the
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next larger is a rare event, since then the sojourn time during the segment is
almost the entire sojourn time.
We therefore need estimates of the distribution of the places of passage out of

spheres and of the probability of returning to spheres. These probabilities were
found for the symmetric stable processes explicitly in [1], and we can use the
same method to get appropriate estimates if the potential kernel has a fairly
regular growth at the origin, and if the singularity at the origin predominates.
CONDITION C. There are constants K2 and K3 such that

(18) ha(x) -=J 1<a H(x, y) dy < K2aNi.(a V lx|)

if a and lxi are small;

(19) ha(x') < ha(X) + K3aN

if lxl < lx'l, again with a and lx'l small. Here a V lxl is of course the larger of the
numbers a and lxi.

It is easy to verify that the transient symmetric stable processes satisfy A, B,
and C. Note also that the Cauchy process satisfies B and C, and also A if : = 0
were allowed. One can construct other processes for which the conditions hold,
for example diffusions, but obviously the necessary estimates can be obtained
more efficiently in any special case. The form of the conditions is intended not
to provide generality but rather to indicate that the singularity of the potential
kernel determines the path's local behavior in a relatively detailed way.

2. Estimates of the sojourn time distribution

In this section we need assume only property B of the potential kernel, to
prove lemma 1.
LEMMA 1. As t/X(a) tends to infinity,

(20) log WP,{T(a; S) > t} = -t/X(a) + 0(1),

uniformly for lxI < a, if a is small.
We begin with some facts about the spectrum of the operator Ha. First, a

simple semigroup argument shows that H, and hence also its restriction Ha to
the sphere of radius a, is positive definite. Let R. be the resolvent operator of the
process

(21) R,f(x) = 8xz {ffo e-'tf(x(t)) dt}.

Puttingf = H(-, y), it is just a matter of interchanging the order of integration
to prove a special case of the resolvent equation sR.H = sHRs = H - R., s > 0.
This and the symmetry of H imply that R. is symmetric. It is also standard that
H = fAo R2 ds, which with the symmetry of R. implies that H is positive definite.
Now B states that for some integer p, Mercer's theorem applies to the p-th

iterate of Ha, namely H. has an orthonormal sequence of continuous eigen-
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functions 4)n(x) = d)(x; a), n = 1, 2, * , with corresponding eigenvalues
An = X,(a), satisfying
(22) Ha(P(x, y) =LA+()ny

< Kja1(P-1)(A(a))P,
the series converging absolutely and uniformly for IXlI, IYI < a. In particular, if
we let X1 = X = X(a) be the largest eigenvalue, then
(23) 1P42(x) < K1aN(-')(A(a))P.
Integrating over the sphere,
(24) X(a) < K4aNA(a).
On the other hand, with the usual notation for the inner product of square

integrable functions on the sphere, X = (Hai, cI1) > (Ha+,,4) whenever
(,6, 4,) = 1. This implies that X is simple and 01 > 0, at least if a is small, for
since H(x, y) 2 ,u(a) > 0, (Halll, loil) exceeds (Ha4l, 41) unless 4, = j5ij. It
follows from 4,' > 0 that
(25) X4,1(x) = Ha401(X)

= fAyl la H(x, y)4,O(y) dy
> A (a) (0i, 1),

so that, upon integration over the sphere,
(26) X(a) > klaN,(a).
By (23) and (26), 4,(x) = 0(a-rNI2), |XI < a, which implies

(27) (41, 1) > k2aNI2(01, 41) = k2aNI2.
Turning now to the proof of lemma 1, we write

(28) F(x, t) = 6P.{T(a; S) > t},
G(x) = 8.{e-uT(a;s)}.

Using the Markov property,

(29) G(x) = 1- gz{1 - exp [-ufs V(X(T); a) d]j}
= 1- S{10 dt uV(X(t); a) exp [-u f " V(X(T); a) dr]}

= 1-8Z {f0 dt uV(X(t); a)G(X(t))}

= 1 uHaG(x).
This equation allows us to compute the expansion of G in terms of the eigen-
functions of Ha: (G, 4,,) = (1 + uX,(a))'(4, 1). We can invert the Laplace
transform to get (F, 4,) = exp {- t/l}(, 1). Note now that the expansion
for F converges uniformly for lx| < a:
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(30) F(x, t) = E exp {-t/XA} (O., 1)0b(x),
and can be differentiated term by term in t. Write

(31) FI(x, t) = -dF(x, t)

= E -e'/)(k>n 1)4+n(x);An

then HaFi = F. Since F1 2 0,

(32) F(x, t) f= l <a H(x, y)FI(y, t) dy

2 y(a) fl <a Fj(y, t) dy

=.I(a) E A et/n(jQkn 1)2

>i.(a) et/x(kl, 1)2X(a)

by (24) and (27), if Ixi < a.
To get an upper bound for F(x, t), use the Schwartz inequality

(33) F(x, t) < { (O. 1)2} 1/2{E e-2t/An),.0(X)j 1/2.

Using condition B and the bound (26), if 2t/X(a) 2 p,

(34)2t/X(a) e2/"4() = , exp [- A (A - i)] +2(X)

< ; (X./X)p'02(X)

= (X(a))-PHa(P(x, x)
< Kik l a-f

Since also E (On, 1)2 = (1, 1)2 = 0(aN), it follows that when lxl < a and t/X(a)
is large, F(x, t) = 0(e-t/x(a)), and this completes the proof of lemma 1.

3. Estimates of hitting probabilities

Next we obtain from condition C estimates of probabilities relating to the
passage of the process out of a sphere and its subsequent return to the sphere.
The strong Markov property is the basic tool in what follows.

Let E be an open subset of RN, and let P = P(E) be the passage time of a
path of the process into E, with the convention that P(E) = S if the path never
enters E:
(35) P = P(E) = inf {t < S; X(t) e E},

= S if X(t) F E, 0 < t < S.
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According to the strong Markov property, the stopped process X(t), 0 < t < P,
and the renewed process X(P + t), 0 < t < S - P, are independent, conditional
on the value of X(P) and the event P < S; and with the same conditions, the
renewed process has the same transition function as the original process.

In particular, the sojourn time T(E'; S) in a subset E' of E depends only on
the renewed process, so that, as in [1],

(36) JE H(x, y) dy = Fz{T(E', S)}

= 8Z {fE H(X(P), y) dy; P <S}S
Let us write P = P(a) in case E is the exterior of the sphere of radius a about

the origin; that is, P(a) = inf {t: IX(t)I > a}.
LEMMA 2. There is a positive number E so that for small a and b, if ,u(b)/,u(a) is

also small and IxI < a,

(37) Pz{IX(P(a))J < b, P < S} 2 1 - K5 ((Iab) + ,(b))
The form of the result arises from the asymptotic behavior assumed in con-

dition A, but without using the assumption , > 0.
For the proof we use (36) with E' a spherical shell {y: a < IYI < c}. Using

the notation of C,

(38) hc(x) - ha(X) = fa<VI<C H(x, y) dy
= 8.{hc(X(P)) - ha(X(P)); P < S}
< (hc(x) + K3cN)612{iX(P)J < b, P < S}
+ K2cNA(b)6Pz{IX(P)I > b, P < S},

since necessarily |X(P)I 2 a. This implies

(39) 6'.,{IX(P) I . b, P <s .1 1 - -ha(X) + KSCN
hc(x) - K2cNA(b)

Since the minimum of H on the sphere of radius c is ,(c), hc(x) is bounded below
by a multiple of Ces(c). If ,u(b)/,u(a) is small, we can find c > a with ,(c) = M,u(b),
M being chosen so large that K2CNI(b) <1hc(x). This, together with the bound
for ha(x) in condition C, gives

(40) ha(x) + KscN _ 0 (aNA(a) 1
hc(x) - K2cN,u(b) \ cN,u(c) +i(c)J

Now since a slowly varying function must increase more slowly than any
power, condition A implies that ,u(a)/,u(b) increases as a power less than N of
c/a as c and a/c tend to zero,

(41) A(a) - ((C)NI(l+e))
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for some E> 0. But then

(42) a'-(a 0( ~c E

cN(c) ((M(a)) )
since A(c) was chosen equal to a constant multiple of ,(b), we have the bound
stated in lemma 2.
The other estimates we need concern the return time to the sphere, given by

(43) R(a) = inf {t > P(a): IX(t)j < a}.

Again we set R(a) = S for paths which do not return in the interval (P(a), S).
If the process states at a point x with lxl > a, then of course P(a) = 0, and the
return time coincides with the first passage time into the sphere.
LEMMA 3. Suppose a, b and A(b)/,(a) are all small. If ixi > b, then

(44) 6Px{R(a) < S} < K6A(b)/u(a);
whereas if lxl < a,

(45) 6'.{R(a) < S} > k3.

To prove the first estimate, use (36) taking for E the interior of the sphere of
radius a. Since H has the lower bound ,u(a) on the sphere, and siince necessarily
IX(R)i < a,

(46) fyI <a H(x, y) dy = &x {JfI <a H(X(R), y) dy; R < S}

> kiaNA(a)6x{R(a) < S}.

If lxl 2 b, the bound assumed for the left side in condition C gives (44).
Next suppose a < lxl < c, and apply the bounds in the opposite directioni:

(47) kiaNA(c) < L <a H(x, y) dy

=z x {fly <a H(X(R), y) dy; R < S}
< K2aNAu(a)6>J{R(a) < S}.

Finally, suppose lxl < a. The time R(a) depends only on the path after the
passage time P = P(a), so that by the strong Markov property,

(48) (Px{R(a) < S} = &Z{6Px(p){R(a) < S}; P < S}

2 &x{JPx(P){R(a) < S}; iX(P)i < c, P < S}

2 (k1j(c))/(K2A(a))6?x{jX(P)i < c, P < S}.

If we choose c so that u(c) is a fixed but sufficiently small multiple of ,(a), then
the last factor on the right has a positive lower bound by lemma 2, so that (45)
follows.
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4. Asymptotic behavior of the sojourn times

Turning to the main result, we find that a sure upper bound for the sojourn
times in small spheres is easily obtained from the estimates of section 2, assuming
j3> 0 in condition A. This is the sole use of that part of A.

Fix a positive number &. Since X(a) is a continuous increasing function of a,
there is a sequence of numbers a. decreasing to zero with X(a.+i)/\(an) = 1 - 6.
For this sequence we have certainly that log X(a.) = n log (1 - 6) + 0(1). On
the other hand, X(a) is bounded below by a multiple of aNy(a), by (26), and ,u
has the asymptotic behavior assumed in A, so that
(49) log X(a.) = log a.N,i(a.) + 0(1)

= (N -,)log an + 0(1).
With the above this gives

(50) log an X(an) - log (1 - 8) + 0(1);

writing
(51) a (a) = log log a-NX(a),
we have u(an) = log n + 0(1), assuming # > 0.
By lemma 1,

(52) log dPo{T(an; S) 2 (1 + b)X(an)a(an)}
- (1 +8) a(an) + 0(1)
= -(1 +8) log n + 0(1).

Thus the series E_ 6oP{T(an; S) 2 (1 + 3)X(an)a(aX)} converges, and with proba-
bility one, T(a.; S) < (1 + 6)X(a.)o(an) for all but finitely many n.

Fix a path for which this holds. If a is small enough, then an+1 < a < an, with
T(a; S) < T(an; S) < (1 + 6)X(an)o-(an). On the other hand, by the choice of
a., X(a) 2 X(a.+1) = (1 -B)X(an), while obviously a(a) = a(an) + 0(1). The
result is that with probability one, for a small,

(53) T(a; S) < 1 + 6 X(a)a(a) + 0(1).

Since 8 can be arbitrarily small, lim supa,o T(a; S)/X(a)a(a) < 1.
The proof of the opposite inequality was sketched in the introduction. Fix a

positive number 6. Since A(a) is continuous, monotonic, and becomes infinite as
a -O 0, we can find a sequence of numbers an decreasing to zero with

(54) log u(an) = n1+1,
at least for n sufficiently large.
As in section 3, let Pn = P(an) = inf {t: JX(t)l > an} be the first passage

time out of the sphere of radius an, again with Pn = S if the passage does not
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occur before the terminal time S. Let Y. = X(Pn) for those paths for which
P. < S, and let
(55) T. = fP'- V(X(t); a.) dt

be the sojourn time in the sphere during the segment (P., P.-,).
Fix n momentarily. For m > n, Tm and Ym.- depend only on the stopped path

X(t), 0 < t < Pn; for m < n, Tm and Ym.- depend only on the renewed path
X(Pn + t). By the strong Markov property, these two sets of variables are
conditionally independent on the event Pn < S and on the value of Yn. In other
words, (Tn, Y1), Pn < S, form a Markov chain.
We proceed to estimate the transition function of this chain. Since, conditional

on Pn < S, the renewed process is a copy of the original one with initial point Y.,
(56) P{Tn < (1 - 6)X(an)o-(an), Pn-1 < SIX(t), t < Pn} = Qn(Yn)
for almost all paths with P. < S, where

(57) Qn(x) = P2{Tn < (1 - B)X(an)c(an), Pn-1 < S}.
Now Qn(x) is defined for all x by the above, although it applies in (56) only for

lxl > an. For lxl < an, since the event on the right involves the path only after
time P.,
(58) Qn(X) = 8z{Qn(Yn); Pn < S}.
Also for such x we can find a suitable estimate for Qn(x).
LEMMA 4. If lxl < an, for n large, then Qn(x) < 1 - k4n-1.
To prove the lemma, suppose first that a path starts at a point x with lxI > an.

Then P. = 0, and

(59) T. = T(an; S) - fS V(X(t); an) dt.

The integral on the right has the value zero unless the path returns to the sphere
of radius a. after time Pn-1. The probability of this event is

(60) 8zQPYRl{R(an) < S}; Pn-I < S}

< KcAu(an-1)IA(an)
= Kc exp [-nl+6 + (n -1)1+8]
= o(n-1)

by (44) and (54). Thus except with a probability small compared with 1/n,
T. = T(an; S), and

(61) Qn(X) < Qn(X) + o(nw1), lx| > an,
where
(62) Q*(x) = PY{T(an; S) < (1 - b)X(a.)o(an)1.
In turn, Q*(s) is defined for all values of x, and lemma 1 gives an estimate

when lxl < an. In fact, since by (54)
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(63) a(a.) = log log anNX(an)
= log log/.(an) + 0(1)
= (1 + 6) log n + 0(1),

we have
(64) Qn(x) < 1-exp [-(1 - )(an) + 0(1)]

< 1kn-('-")
< 1- k5n-', lxl < an.

Supposing once more that lxl > an, the entire sojourn time T(a.; S) involved
in Q*(x) occurs after the return time R(a.), vanishing if no return occurs. Hence,
for |x| 2 an,
(65) Q*(x) = 8£{Q*(X(R(a.))); R(an) < S}

+ 6_J{R(an) = S}
< 1 - k5n--1PYl{R(an) < S}.

Finally, suppose Ixi < an again. Using (58), (61), and the above,
(66) Qn(X) < £z{Q*(Yn); Pn < S} + o(n-1)

< 1 -kn-19,{ Py^f{R(an) < S}; Pn < S} + o(n-1)
< 1 - k3k5n-' + o(n-1)

by (45), and this completes the proof of lemma 4.
With the preliminaries now over, fix m, and for n > m let

(67) Fn(x) = (Pz{Tj < (1 - 5)X(aj)a(aj), m < j < n, Pm-i < S}.
Since (Ta, Yn-1) form a Markov chain,
(68) Fn(x) = £z{Fn_1(Yn_1); Tn < (1 -B)X(an)o(an), Pn-l < S};
and using the Schwartz inequality,
(69) (Fn(x))2 < &.{(Fn_1(Yn-1))2; Pn-, < S}Qn(X).
We will establish, at least for large m,

(70) (Fn(X))2 < AmnQn(x), lxl < an-1,
where Am,n = I (1 - k4j-') + 1/m- 1/n. This is certainly true if n = m.
Suppose it holds for given n. Then since 0 < Fn < 1,
(71) (Fn+l(X))' _< Qn+l(X)[F£z{(Fn(yn))'; I|Yn| < a.-,, Pn < SI

+ 6x{1Yn | > an-1y Pn < S}].
If n is large enough, lemma 2 applies, and

(72) y,{iYn I > an-1, Pn < S} < K5 A(an1)) + ,(a ))

= K5 exp [-e(nl+5 - (n -
+ K6 exp [-nl+±]
= o(n-2).
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On the other hand, using the induction hypothesis, (58), and lemma 4,

(73) z(F.(Y.)) |Y.n| < a.-,, P. < SI
< Am,n£z{Qn(Yn); P. < S}

< Am,nQn(x)
< Am,n(l - k4n-1)

if Ixi < a.. Thus for such x,

(74) (F+,i(x))2 < Qn+l(x) [Amn(l - k4n-1) + 2n'

< Qn+l(x)Am,n+i
if n is large, completing the proof of (18).

Putting x = 0, we have from (18) that limmn, limn-. Fn(O) = 0; but this
implies that with probability one, T(an; S) > (1 - 6)X(a.)a(a.) occurs in-
finitely many times, or that lim supao T(a; S)/X(a)o(a) > (1 -o). Since 5 can
be taken as small as desired, this completes the proof of the main result.
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