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1. Introduction

In [1] Doob associated with any sequence {X,} of random variables two new
sequences {M,} and {W,} in such a way that X, = M, + W,, {M,} is a
martingale, and finally {W.} is a.s. monotone noncreasing in n if and only if
{X.} is a supermartingale. Doob noted that an analogous decomposition in the
continuous parameter case did not seem easy to obtain.

Recently, two interesting works have dealt with the continuous parameter
problem. Consider the case where the parameter varies over a compact interval
[0, a]. First P. A. Meyer [6], [7] showed that a right-continuous supermartin_
gale {X} will satisfy X, = M, — A, for some martingale {M,} and some process
{4,} which has almost all sample functions right-continuous, monotone in-
creasing, vanishing at ¢ = 0 and which satisfies E[4,] < « if and only if {X}
satisfies a certain mild integrability condition. A process satisfying said integra-
bility condition Meyer refers to as belonging to class D.

Then D. L. Tisk, following up ideas introduced by Herman Rubin in an
invited address at the 1. M.S. meetings at the University of Oregon in 1956, con-
sidered a class of processes, called F-processes below, and showed in [3] that an
F-process with continuous sample paths could be decomposed as X, = M, + Wy,
where {}M,} is a martingale and {W, has almost every sample function of
bounded variation, the total variation even having a finite expectation, if and
only if {X} belongs to class D. Fisk’s methods depend on the assumption of
continuity; on the other hand, Meyer’s methods depend on dealing with super-
martingales, rather than just F-processes.

The present paper grew out of a desire to prove a decomposition theorem for
F-processes without assuming continuity. Our main result is that for right-
continuous F-processes the desired decomposition exists if and only if the process
belongs to class D. The assumption of right-continuity is fairly harmless, as
will be seen below. Our proof makes heavy use of ideas of both Meyer and I'isk.

We will say X = {X,, 5, I'} is a stochastic process if I' C [0, ), for cach
t €T, X, is a random variable, , is a Borel field of events, s < { and s €T,
t € T imply ¥, € F,, and finally X, is measurable with respect to F,.

Let X = {X, &, [0, a]} be a stochastic process, and let a be a positive num-
ber. Then X is an F-process if E|X,| < « for all {, and there exists a number K
such that for every partition {, < ¢, < --- < t, of [0, a],

n—1
W BT 11X~ Xl < K
P
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A number K satisfying the indicated inequalitics will be called an F-bound
associated with X.

Still considering the parameter interval [0, a], it is evident that every super-
martingale and every submartingale is an F-process. From the analogy with
functions of bounded variation one is prompted to ask whether every F-process
is the difference of two supermartingales. We do not know the answer. If the
process can be written as a sum of a martingale and a process which has sample
functions of bounded variation, it is casy to sce that it can be written as the
difference of {wo supermartingales, so that our resulis here imply an affirmative
solution to the problem for right-continuous F-processes of class D.

A number of remarks are appended at the end of the paper. The rcader may
find it useful to look at these before (or without) attacking the body of the paper.

2. F-processes

Our first lemma is a straightforward generalization of a submartingale inequal-
ity (see Doob [1], p. 314).

Lemma 2.1, Let (X}, Fy, b =1, -+, n} be a stochastic process, | X, < «< for
cach k and satisfying
n—1
(2) ¥ kzl [E{( X1 — XD)IF)] = K < =,

Then for X > 0,
(3) MNPmax X, > A < KX, |+ K; M[min X, < =] < K
k k

nl + K

Proor. It clearly suffices to prove one of the inequalities, say the first
one. Set

n

) M=o 2NN < N <N, A=Y A
k=1
Then
3) / Nl = % | Xuar = i Xe o (Y, — Xl 2 3 ONP(AL)
A k=1 JAx k=1 k=1

n—1

+ 3 (X,L X)) dp

n—1 v n—-1 [
(6) Z (\'/, — Xy dP = AZ} X Z (Xjp — Xj)dr
A = =k
n—1 ’
=3 / \ X — X)dr
1k

Uk=
/Uk 1 Ax (XJH_ J){JJ ar.

g ,/UA_I Ak

i=1
n—1
J—l
Hencee,

oI5 / (X, — X dP| <

(X — N)IF P < K.



F-PROCESSES 303
From (5) and (7) we obtain
®) NP\ < [ XadP + K < EiX.| + K.

We obtain at once our version of the Kolmogorov-Doob inequality.

TuEOREM 2.1. Let {X,, 4, [0, a]} be a separable F-process, where 0 < a < =,
and let K be an I'-bound. Then for X > 0,

)} M’ sup X, > \] < E|X.+ K; N[ inf X, < =\ < KX+ K.
0<s<a 0<s<a

Proor. The theorem follows from lemma 2.1 as in the supermartingale
case (see [1], p. 353).

From theorem 2.1 we know that the sample functions of X, are a.s. bounded
functions on [0, a]. To obtain further regularity properties of the sample func-
tions, one can proceed as one does for supermartingales. We state an appropriate
‘“up-crossing lemma.”

Lemma 2.2, Let {Xi, S, k=1, .-+, n}_be as in lemma 2.1. If a, b are real
numbers, a < b, then the expected number of up-crossings of [a, b] by the sequence
Xy, Xs, -, X ts bounded by [E(X, — o)t + K}/ (b — a).

Proor. Parallel the proof given in ([5], p. 392).

The previous lemma allows one to infer that the sample functions of an
F-process are well behaved (see [1], p. 361).

TueoreMm 2.2. Let {X,, 54, [0, a]} be a separable F-process, where 0 < a < <.
T hen almost every sample function has finite left and right limits at every t € (0, a),
the right (left) limit existing when t = 0(t = a).

As is well known (see, for instance, [1]) the conclusion of theorem 2.2 implies
that almost all sample functions are continuous, except for a denumerable num-
ber of discontinuities at most. In particular, the process can have at most a
denumerable number of fixed discontinuities.

We conclude with a theorem which extends to F-processes an important
property of supermartingales, but which requires a proof different from those
usually given in the supermartingale case (see [1], p. 311).

TaEOREM 2.3. Let {X,, &4, [0, a]} be an F-process, {l;} a decreasing sequence
of elements in [0, a]. Then the X,, are uniformly integrable.

Proor. Assume the {X,} are not uniformly integrable. Note that onc of
the following three cases must hold.

Case a: there exists an e > 0 and a sequence {\;} increasing to infinity, so that

(10) ﬁmw>gk=mw, where Av = [Xo > N

Case b: rome subsequence of {X,,} satisfies casc a;

Case c: the sequence {—X,,} satisfies case b.

Clearly, then, we may suppose that we are in case a, the other cases casily
reducing to it. Define ki, ks, - - - inductively as follows: k; = 1. Suppose k, has
been defined. By theorem 2.1 I’[A,] — 0 as k — «. Thus there exists a j* > k,
such that
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(1) [ Xy dr < 2

i

for all j > j*; the least such j* is to be k,;1. Note that

(12) 2> f\k Ny, dP = [ [Ny + EX, — X [F, 21dP

kn i
T ¢ : )
> et [\,L. l]’ WXy, = X, )iFy, ) dP

s0 Lthat
(15) BNy, = N, B}l 2 = [ B0, = Xy )l ) 2 o2
Thus

(14) I ngl lE{(thn o A"kn“)igf}c“l}l 2 mé/?,

and because this tends to infinity with m, we obtain a contradiction, since the
process was assumed to be an F-process.

3. The bounded case

Tet X = {X,, %, [0, a]} be a separable stochastic process, and let a be a
positive real number. Let S be a denumerable separating set dense in [0, aj,

S = {to, lh, ---}, and assume {, = 0, {, = a. Let (&, 17, - - - , t¥) be the elements
{to, by, - -+ , t,} arranged in increasing order. We set
(15) (X)) = Xp, = Xp);  D}X) = E&)(X)[Fy),

and we define

(16) M = le,, for & <t <y §7 = Ty for &f <t <.

We use the notation 3 ;e to indicate summation over {j: ¢, < t}. When
the variable of summation is j, we may write simply > ¢ for 2" ;cme-

A process Wn(X) = {(W~(X), 5}, [0, a]} is defined by the relation

(17) (X)) = ("Z{Z) Dj(X)

for ecach nonnegative integer n.

TueoreM 3.1, Let W* = W}(X), and set M} = X — W} Then (M}, )
s a martingale.

Proor. The proof is obvious.

The following lemma appears in [3], and in [6] a similar result is used.

LemMa 3.1 (Fisk). Let X = (X, §,, [0, a]) be a separable FF-process which is
bounded, say sup, |X.| < ¢, a.s. Then for each t, [W»(X)], is integrable uniformly
mnn.

Proor. Write W7 for [W(X)1,, D} for D}(X). Let g(n) be the biggest integer
7 such that 7, < (. Then
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(18)  E{(W}))?%} = E{((Z;) D) = E{(g) D7)+ 2 (Zn D} % Di

J <k<q(n)

<E{ Z IDjl1a7{+2 2 IDMNE{ ¥ Diss}}
(n,t) n,t) J<k<q(n)
< E{ ("E” D3| A7) + 2 (Z” D} | Xe,,,p0 — Xi,l < 6K,

qin) 41
where K is an F-bound of X.

THEOREM 3.2. Let X = {X,,%,[0,a]} be a separable F-process which 1s
bounded, say sup, |X,| < ¢, a.s. Then there exists a decomposition X = M + W,
such that M = {M,, 5, [0, a]} is a martingale and W = {W, &, [0, a]} is a
process having almost all sample functions of bounded variation, and such that the
total variation of a sample funclion is a random variable with finite expectation.

Proor. We use the notation introduced at the beginning of this section.
Since X has at most denumerably many fixed points of discontinuity, we as-
sume also that the separating set S includes all these points. We now apply
theorem 3.1 to write X = M» 4 W~ Yort € S, X = X, for all w, provided
n is big enough; hence, X7 — X, both a.s. and L, as n — .

By lemma 3.1 W7} is integrable uniformly in n for fixed ¢. It follows (see [2],
p. 294) that for fixed t some subsequence of {W7} converges in the weak I,-to-
pology. (If Z, are integrable random variables, they converge to Z in the weak
Li-topology if and only if E{YZ,} — I{YZ} for every bounded random vari-
able V).

By applying a diagonal argument we obtain a sequence n’ — « such that
Wi’ converges in the weak L;-sense to a limit W, as n — » for every ¢t € S.
One verifies easily that {W, &,t € S} is a stochastic process, and we claim
that almost all its sample functions are of bounded variation. The definition of
bounded variation is the usual one, even though the sample functions are de-
fined only on a denumerable set S. Since for every finite partition of [0, a] N S
there exists an n such that ({5, t1, - - - , fz) is a refinement of that partition, we
need only show that the limit as n — o« of (a0 H'th,_,ﬂ — Wl;_zi is a.s. finite.

The last-named sum is monotone nondecreasing in n, and so, by the monotone
convergence theorem it will suffice to show that the expected value of the sum
is bounded uniformly in n; in fact, this will show that the total variation of W
has finite expectation. Observe now that if Z, — Z in the weak L;-sense, then
E|Z| < liminf E|Z,| asn — c. Writing 3 (m.sp for the sumover {j: s < {1 < t},
we have

(19) w By W"Z = weak L];nhll.lw ’ nZn Dy (X),
(ot 41

and so it follows that
(20) EWg,, ~ Wal <lminf B T DF(X)
(m' it 1)
<lminf E{ X |DyY}.

e (it 4 1)
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Again writing K for an F-bound of X, we obtain

@) F EW, W< ¥ IminfE{ T |DF])

kEn,a) m—» m’-";i- ‘;cl+ .
<liminfE ¥ |Dr| <K,
m'—w (m',a)

as desired.

Now set M, = X, — W, for t € S. Then {M,F,t €S8} is a martingale.
This follows easily from the facts that {7, 37, [0, ¢]} is a martingale (theorem
3.1) and that M}" — M, in the weak L;-sense, since the corresponding conver-
gence assertion holds for both X™ and W=. For almost all w it is true for each
of the processes {M, .t €S} and {W, &, t € S} that for every ¢ € [0, a],
the sample functions have a limit as s converges down to ¢ through values in S.
(For M this follows from ([1], p. 358); for W it is clear by the bounded variation
property.) For ¢t € [0, a] — S we now define W, by right-continuity; on the
exceptional w-set, where these limits fail to exist, set W (w) = 0.

Now define M for all t by setting M, = X, — W,. Since (M,, F,, S) is a martin-
gale, and since for ¢t € [0, a] — SM, is a.s. equal to the limit of M, as s con-
verges down to ¢ through S, fixed discontinuity points of X all being in S, we
verify easily that {}M,, F, [0, a]} is a martingale. Since cach sample function
of {W, &, [0, a]} has the same variation as the corresponding sample function
of {W, g, S}, we still have that the sample functions of W have finite total
variation, the expected value of the total variation being bounded by K.

4. Unbounded case

We again let X = {X,, 5, [0, a]}, where a is to be a positive real number.
As in the previous section, we take X to be a separable I’-process, but now we
also impose the hypothesis of right-coniinuity, by which we mean (i) almost all
sample functions of X are right-continuous, and (ii) for t € [0, a], 5, = N.F..
(For a discussion of condition (ii), see [6].)

We make some definitions. For N > 0, we define the stopping time Ty =
inf {t: |X,| > N}, and on the set where Tx is otherwise undefined, we set it
equal to . We define the truncated process X~ by setting X¥ = X, for0 < ¢ <
Ty < a, and X = X, for Ty <t < a. We shall also neced XV defined by
XY =X,for0<t<Ty<aqand X =0for Iy <t <a.

Our first aim is to show that if X is an F-process, then the XV are I’-processes
with an F-bound K’ independent of N. We neced an estimate of TFisk (see [3],
p. 24.)

LEmma 4.1 (Iisk).  The following inequality holds:

(22) EYXIDIEN L E (g} D} (X))} + fn<a |Xa| AP

n,a

Proor. Let Ax(n,j) = [Ty > 7], Qx(n,j) = [ < Tx < }41], and let Ac
denote the complement of A. Evidently,
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(23) EY DI =E{Z IDIXL+ X [, (DIEY)
(n,a) (n,a) (ma) J Anin )
= DiX)))aP - ¥ |D}(X)| dP,
(n,a) Aljv(n,j)

and estimates for the {wo sums on the right will now be given:

2 T [ (DI = O] ar
ST [y (DI = D3 ar
< Xy — X ’ = X '
- (%) /Ax(n,j) IX’}'+1 \’j+l| dl (,,,Za) Qu(n.g) I\'.i+ll‘.
@3 X \DjXO[dP = 3 3 D} (X)) dP

(.8) LAY (.g) JE€ma) k<j Jexiuk)

2 | \Dj (X)) dr

rEm.a) f@,\ Guk) (i >k Ema)

E{(—sgn (X,» AT X)|F w}) dP
2 B o (oS, B s (X D)5 )

Il

— sen (X » )ANX)) dIP?
= /Qh'("’k)((j:j>l§e(u,an gn (X AN(X))

E X . _ X, N

= EEm.a) j;?x(n,k) (!\zkﬂl X)) dl

= E 7n > !‘ ,a )'
k&m,a) «l;?x(ﬂ,k) (lA[k+—l‘ a frr,\vga Xu]) di

Obviously (23)-(25) give the desired conclusion.

The next lemma is required to get us from X¥ to X~. By a stopping time will
be meant a random variable T with values in [0, a] such that [T < t] € &, for
all ¢; since 7' need not be defined for all w, we may take 7" = « on the set where
T is not otherwise defined.

LemMa 4.2. Let X be a right-continuous F-process with F-bound, K, and T
a stopping time. Then [;, |Xr|dP < [p oo XodP + K < E|X.| + K.

Proor. First assume that there exist numbers Ay < Ny, -+ <\, = a such
that [T < a] = U1 [T = N Let Ay = [T = N\J. The desired estimate is
obtained by proceeding as in lemma 1.1. The case of an arbitrary stopping time
T is obtained by approximating by a sequence of stopping times 7™ of the
kind just considered such that 77 | T a.s. as n — « and by using the right-
continuity of X.

LeEmMa 4.3. Let X be a right-continuous F-process. Then for N > 0, XV is also
a right-continuous F-process, and there exists a number K’ independent of N serving
as F-bound for all XN. Further, XN = MN + W~ where MY = (MY, 5, [0, a]) 1s
a right-continuous martingale and WY = {W7, §,, [0, a]} has sample functions of
bounded variation and finite expected total variation.
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Proor. Write XV = X¥ + (X¥ — X¥). The second term on the right is a
process with sample functions which vanish for ¢ < Tx and equal Xy, for
t 2 Tx. So applying lemma 4.2 to this term and lemma 4.1 to the first term on
the right, we obtain the first desired conclusion. Since |X¥| < N, the final
assertion follows from theorem 3.2 and lemma 4.2.

At this point we see that X¥ has a quasi-martingale decomposition XV =
MY 4- WX, To carry the argument further along the ideas of Fisk one needs a
suitable kind of canonical decomposition. Fisk was able to restrict himself to
continuous decompositions, because he assumed X to be continuous. In our
present, context we have available the important concept of natural decomposi-
tion discovered by Meyer [7].

To explain the notion, consider a process W = {W, F,, [0, a]} which is
right-continuous, has almost all sample functions of bounded variation, and is
such that the expectation of the total variation is finite. Let ¥ = {V,, &,, [0, a]}
be a right-continuous martingale which is bounded, that is sup: |V < ¢ < =
a.s. Then for e > 0, s € [0, a],

(26) T (W= WO — V)]

1<s, | Vim Vi >e
is a.s. a finite sum, and thus well defined. As ¢ | 0, the sum converges a.s., and
in the L;-sense to a limit denoted by

(27) Z W= W)Yo = Yo,

The process W is natural if E{3 <, (W, — W, )(Y.— Y.)} =0, for all
s € [0, a] and all bounded right-continuous martingales Y.

Lemma 4.4, Suppose X = (X4, §,, [0, a]) is right-continuous and has a de-
composition X = M' + W' where M' = (M{,F,, [0, a]) s a right-continuous
martingale and W' = (W, F,, [0, a]) has almost all sample functions of bounded
variation and the expected total variation of W is finite. Then X has a decomposition
of the same kind X = M + W such that W is natural. There exists only one such
decomposttion, and W is given by

t
(28) W, = weak Ll-lim1 / E{X.x — X|Fs) ds.
k{0 h 0

Proor. Under the additional assumption that X is a supermartingale, this
result is in Meyer [6], [7]. Writing W’ as the difference between its positive and
negative variation, we see that X can be written as the difference of two super-
martingales, X = X’ — X"/, where cach of X’ and X"’ satisfy all the hypotheses
of the present lemma. Therefore, the results of Meyer apply to X’ and X",
and we deduce that X = M + W, with W given by the formula of the theorem,
is a decomposition of X, with W natural. To prove that the decomposition is
uniquely determined by the requirement that W be natural, one can proceed
as in Meyer ([7], p. 4).

We continue to use the notations XV, X¥, T in the manner in which they
were introduced at the beginning of this seetion. We arc now in a position to
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usé Fisk’s idea for showing in the decompositions X¥ = MY + W¥, that the
WY converge a.s., provided one uses the canonical decomposition. If X is a
right-continuous process, lemma 4.2 shows that XV satisfies the hypotheses of
lemma 4.4.

Lemma 4.5. Let X be a right-continuous F-process, Ny < N,, and let

(29) XNt = MN: 4 W, XN = M¥N: + WM

be the decompositions guaranteed by lemma 4.4. Then

(30) Wh = W) for t<Tx a.8.
Proor. Let

(31) M= MY for 0<t< Ty <a,

(32) M: = M¥, for Ty <t<a,

and

(33) Wt=W) for 0<t< Ty <a,

(34) Wi =Wg, for Twm <t<La.

One verifies at once that

(35) XN = MM Wh = M* + WH

and that the second decomposition is also a “natural decomposition.” In order
to see that W* is natural, note that if Y is a bounded right-continuous martingale
and

(36) Y}
Yt

Y. for t< Ty <a,
YTN1 for Ty, <t<a,]’

then
37) E’{‘;’ Wt —Wr )Y, — Y. )} = E{t;‘; W, — W XY} —Y!)} =0.

The fact that Y* and M* are martingales follows, of course, from the op-
timal stopping theorem. So the uniqueness result of lemma 4.4 applies, giving
W¥: = W* and hence the desired conclusion.

LemMa 4.6. Let X = {X,, F,, [0, a]} be a right-continuous process. Then

(38) sup E /:% |E{(Xosn — X,)|F.}| ds < sup E{:g:; |E{(Xy;., — X1)|Fe} |}

the supremum extending over all partitions (o, ti, - - - , t.) of [0, a].

Proor. The lemma needs proof only under the assumption that the su-
premum on the right-hand side is some finite number K, so that X is an F-
process. We rewrite the left side by interchanging expectation and integral.
Hence 6, so we must consider an integral of the form [§ E(1/h)]|---| ds. If this
exists as a Riemann integral, we can show that it is bounded by K by examining
Riemann sums formed by taking equal intervals of width h/m, where m is a
big integer, and comparing them with the expression on the right side of the
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desired inequality. We shall show Riemann integrability by proving that the
integrand is right-continuous. That is, it must be shown that as s | s, the
Lynorm of E{X,.» — X.|F.} tends to that of

39) E{Xqtn — Xo|Fo) -

We casily sec more, namely

(40) E{Xomn — X5} — E{Xotn — Xy |Fs,)
in the L;-sense. For

(41) E{X,5}) = X,—> X,

in L;-sense by right-continuity, which is assumed, and uniform integrability as
guaranteed by theorem 2.3. Also

(42) ]fl {Xs-Hz gn} - F'(Xs,,-l-hlgso} ! < EiE{Xx+hlg E{Xso_‘,hlf};} l
+ FlE lX%“’hlJ} - 1X30+hl£;30}|,

and the last term vanishes when s < sy + h. As for the first term on the right,
the assumption of right-continuity and theorem 2.3 again guarantee convergence
to zero as s | s,.

LemMma 4.7. Let X be a right-continuous F-process, and let XN = MY 4+ W~
be the canonical decomposition guaranteed by lemma 4.4. There exists a constant
K’, not depending on N, such that the expected total variation of W~ is bounded
by K'.

Froor. Since WY is right-continuous, there exists a sequence of partitions
{t"*} such that

(43) YWY — W
7 J+1 i

converges to the total variation of W¥ a.s. Since the approximating sum is a
monotone function of =, it suffices to show that it has an expectation bounded
by K'. Now,

44) E Z (wa —W;Y,

FES
=F (Z weak Ll-hm [h/ E{XY — X5} ds:l}
n,a)
< Z lim inf E { f E{( XY — X5 dsI}
(>,a) h{ 0

< lim inf [— f B {(XFn — XD)[5.)| ds
Ay h Jo

<K,

by lemmas 4.3 and 4.6.
TreEoREM 4.1. Let X = {X,, F,, [0, a]} be a right-continuous F-process. Then
X has a decomposition X = M + W, where M = {M,, &,, [0, a]} 1s a right-
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continuous martingale and W = {W,, §,, [0, al} is a process which has almost all
sample functions of bounded variation with expected total variation of the sample
Junctions being finite, if and only if for cvery t € [0, a], X;¥ — X, in the L,-sense
as N — o,

Proor. Tirst suppose the desired decomposition exists. Write

45)  BIXe= XM= [ INe= XnJar < [ IXJar+ [ Xnar,

Ty <t
and note that as N — «, the first integral in the last member tends to zero.
Using the decomposition, the last integral becomes

(46) fl NIz + Wrlar < /1 o Pl ar + /l Wl ar,

Since M is a martingale, |M| is a submartingale; hence, by the optional stopping
theorem,

(47) Joo o rdar < [ paar,
and the last integral converges (o zero as N — . The integral
(48) Joo o W ar

is handled by writing W as the difference of 1two monotone functions.
Now to prove the theorem in the other direction, let

49) XY = MV 4+ W¥
be the canonical decomposition of lemma 4.4. From lemma 4.5 it follows that
as N — o« through the integers, W¥ converges to a limit W, a.s., and indeed
V(@) = Wi(w) for 0<t< Ty <q
WY (w) = Wry(w) for Tx(w) <t < a.
Let var f(-) stand for the total variation of f(-); the interval over which the

total variation is considered will be indicated unless it is [0, a]. Observe first
that

(51) var W¥(w) = var W{¥(w) — var W. (), . a.s.,
0<t<Tx;

(50)

the convergence being monotone. The monotone convergence theorem together
with lemma 4.7 gives

(52) E{var W.} = lim E{var W%} < K’
Now

Next note that

(53) WY =W < var W, < var W,
Tn <8<t Tx<s<a

hence

(54) EWY — W, < ﬁT Ly (var W) dP =0

as.V — x. Wesee that as .V — o« 'Y — W, in the L;-sense, even uniformly in ¢.
Using the hypothesis that X7¥ — X, in the Li-sense as .V — =, it follows that
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also MY — M, say,as N — =, and hence, M = {M,, F,, [0, a]} is a martingale.
This concludes the proof of the theorem.

REMARKs. (i) According to Meyer, a stochastic process {X,} belongs to
class D if the random variables {X7} are uniformly integrable, T' ranging over
all stopping times. Consider an F-process with compact parameter interval
[0, a]. Obviously, if the process is of class D, it will satisfy the conditions of
our theorem 4.1. The converse implication follows from the fact that the exist-
ence of the decomposition obtained in the theorem is easily seen to imply that
the process belongs to class D.

(ii) Fisk used the following condition D’ instead of ‘“‘class D”: P[Os<u‘g | X >

Stsa

N] = o(1/N). For continuous F-process it turns out that D’ is equivalent to
“class D.” In the supermartingale case, this was first pointed out by Johnson
and Helms in [4]. It is interesting, in view of lemma 2.1, that one always has
O(1/N), so that for continuous F-processes it is the difference between O and o
that decides whether or not one is in class D.

(iii)) Meyer works on the interval [0, «). However, the necessary and suffi-
cient condition for the right-continuous supermartingale X = {X,, F,, [0, ©)}
to have the desired decomposition is that {X,, &,, [0, a]} be of class D for every
finite a. It is, of course, clear that we could also work with processes on [0, ©)
which are F-processes when restricted to compact parameter intervals.

(iv) Johnson and Helms [4] give a most instructive example of a super-
martingale (nonnegative, with continuous sample functions vanishing at «)
X = {X;,F, [0, )} such that the X, are uniformly integrable but X is not
of class D. It follows from ([6], proposition 1) that {X,, &, [0, a]} also fails to
be of class D for some finite a.

(v) Let X = {X,, F,, [0, a]} be right-continuous. Our proof makes it natural
to consider such a process satisfying the additional requirement

(55) E ﬁ) “|E{Xun — X|F}| dt = Oh).

We know this relation will hold if X is an F-process, by lemma 4.6. What about
the converse implication? It is interesting to look at the discussion in ([8], p. 372),
of an analogous problem, the relation between function of bounded variation
and those satisfying [? |f(z + k) — f(z)| dz = O(h).
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