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1. Introduction

In [1] Doob associated with any sequence {X,,} of raindomii variables two nliv
sequences {Ml,,} and {W7, in such a way that X. = M,, + W, {m-, is a
martingale, and finally {W1} is a.s. monotone noncreasing in n if and only if
{X,,} is a supermartingale. Doob noted that an analogous decomposition in thle
continuous parami-eter case did riot seem easy to obtain.

Receintly, two interestinig works have dealt with the continuous paramlleter
problem. Consider the case where the parameter varies over a compact interval
[0, a]. First P. A. Mleyer [6], [7] showed that a right-continuous supermartin
gale -Xt} will satisfy Xt = il,- A, for some martingale -{.MI,} and some process
{At which has almost all sample functionis right-continuous, mnonotolle in-
creasing, vanishing at t = 0 and which satisfies ElAal <cc if and only if {,t}
satisfies a certain mild integrability condition. A process satisfying said integra-
bility condition Mleyer refers to as belonigiing to class D.
Then D. L. Fisk, following up ideas introduced by Herman Rubin in anl

invited address at the I.MI.S. meetings at the University of Oregon in 1956, coil
sidered a class of processes, called F-processes below, and showed in [3] that. anl
F-process with continuous sample paths could be decomposed as Xt = Mllt + T,,
wherc {Ml1} is a martinigale and {Wl,} has almost every sample funct'on of
bounidld v-aiation, the total variation even having a finite expectation, if anid
oiily if {X,} belongs to class D. Fisk's methods depend on the assumptioni of
con-tiniuity; oni the other hand, Meyer's methods depend on dealing with super-
iiartinlgales, rather than just F-processes.
The present paper grew out of a desire to prove a decomposition theorem for

F-processes without assuminig continuity. Our main result is that for right-
continuous F-processes the desired decomposition exists if and only if the process
belongs to class D. Tlhe assumption of right-continuity is fairly harmless, as
will be seen below. Our proof makes heavy use of ideas of both MIeyer and Fisk.

WXe will say X = {Xt, 5t, 1'} is a stochastic process if P c [0, cc), for each
t G F, Xi is a random variable, i:, is a Borel field of events, s < t anid s e F,
t e r imply 58 C at, and finally X, is measurable with respect to .t.

Let X = {Xt, 5,, [0, a]} be a stochastic process, and let a be a positive num-
ber. Theni X is an F-process if EIX,I < oc for all t, and there exists a number K
stlch tlhat for every partitioni to < t1 < . < t, of [0, a],

(l) t l{ E (X,,,, - Xti) 1V5t,} < K.
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A iiuiiiber K satisfyinig the iindicated ine(qualities will l)e called aii F-bound
associated with X.

Still considering the palameter interval [0, a], it is evident that every super-
miiartinigale anid every submartinigale is ani F-prIocess. From the anialogy with
functions of botunded variation one is prompted to ask whether every F-process
is the differenice of tvo supermiartiingales. W0te do iiot kiiow the answer. If the
process can be wiitteii as a suiml of a martingale anid a process wlhichl hias samiiple
funlctions of bounided variationi, it is easy to see tl-iat it cani be wriitten as the
differenice of txvo supermartinigales, so that ou resuilts here imiiply ani affirmnative
solution to the problem for right-coiitinuous F-processes of class D.
A number of remariks are appenided at the enid of the paper. The reader miiay

finid it useful to look at these before (oIrwithout) attackinig the bodly of the paper.

2. F-processes

Our fir'st leimiiia is a straightforward genieralizationi of a subimar-tinigale inie(qual-
ity (see Doob [1], p. 314).
LEMMA 2.1. Let -{Xk, Sbk, k = 1, ,..- be a stocha.slic process, EIXkl < X for

each k al(1 sati'sfyiflg
1- I

(2) F E'(Xk X+lk-)k) ik = K < .
k=1

T'hent for X > 0,
(3) X1P[nax Xk .> Xl < EELX,,I + K; X1'[1m1in11 Xk <-] < 'IXI,,I + K.

k k

Pl0ooF. It cleai'ly suffices to prove onie of the inie(qtualities, say the filst
onie. Set,

(4) Ak = [XI, > X,,Xk-I < X, X, < X], A
k=1

k=1~~~ ~~~~~~~~~~~~~ =I1

(5) j X,"11= [Xk + (Xn Xk1)](1' >. XP(Ak)JA~~ )/C=1 JAk k=1 JAk k=1

+ i J (X,, - Xk) (11
k= I JAk

((;) A1 IXk (A,, - N1)X) (11 ± J (x(j+l- xj) (11I
A7I= Ak k= 1 JAk j k

j1J j. I,\A('\ +l - ,\j) (1l 9

tl-I jukIA

-±l fU1= Ak E{(Xitl X1)lj~J} dl'.
Ilenice,

1-1 /I-
(7) z I (N\,, -N,.) (1/) < EI i 1L (Xi+, - Xj)ThjTl(11) < K.k=I JAk j= 1Uk =I Ak
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From (5) anid (7) we obtain

(8) xP(X).<JIA XndP + K < EiXn +K.
We obtain at once our vers.on of the Kolmogorov-Doob inequality.
THEOREM 2.1. Let -X,, 5t, [0, a]' be a separable F-process, where 0 < a < x,

and let K be an F+-bound. T'hen for X > 0,

(9) XP1[ sup X, > X] < EIXaI + K; XIP[ iinf X, < -X] < EIX,Jl + K.
O<s<a O<s<a

P1ROOF. The tlheornem follows from leimma 2.1 as in the supermiiartinigale
case (see [1], p. 353).
From theorem 2.1 we know that the sample funictions of Xt are a.s. bounded

functions on [0, a]. To obtain further regularity properties of the sample func-
tions, one can proceed as one does for supermartingales. WN'e state an appropriate
"up-crossiiig lemma."
LEMMA 2.2. Let -{Xk, 5k, k = 1, i ", nN be as in lhLmmia 2.1. If a, b are real

numbers, a < b, then the expected numnber of up-crossings of [a, b] by the seqielnce
Xl, X22, ..* Xm is bounded by [E(X. - a)+ + K]/ (b - a).

PROOF. Parallel the proof given in ([5], p. 392).
The previous lemma allows one to infer that the sample functions of ail

F-process are well behaved (see [1], p. 361).
THEOREM 2.2. Let {X,, Yt, [0, a]} be a separable F-process, where 0 < a <

YhIen almost every sample function has finite left and right limiits at Xvcry t e (0, a),
the right (left) limit existing when t = 0(t = a).
As is well known (see, for instance, [1]) the conclusion of theoremii 2.2 implies

that almost all sample functions are continuous, except for a denumerable nuin-
ber of discontinuities at most. In particular, the process can have at most a
denumerable number of fixed discontinuities.
We conclude with a theorem which extends to F-processes an importaiit

property of supermartingales, but which requires a proof differeiit from those
usually given in the supermartingale case (see [1], p. 311).
THEOREM 2.3. Let {X,, it, [0, a]} be an F-process, {t4b a dIecreasinig sequence

of elements in [0, a]. T'hen the Xt, are uniformly integrable.
PROOF. Assume the {Xt,) are Inot uniformlly integiable. Note that on1e of

the following three cases must hold.
Case a: there exists an E > 0 and a sequence -j(Xk increasinig to infiniity, so that

(10) f Xt, dP > e, k = 1, 2, , whlere Ak = [Xtk > Xk;]

Case b: rome subsequence of {Xtk} satisfies case a;
Case c: the sequence X-t,X} satisfies case 1).
Clearly, then, we may suppose that we are in case a, the other cases easily

reduciing to it. Define ki, k2, * inductively as follows: ki = 1. Suppose kI, has
been defined. By theorem 2.1 P'[Ak] -O 0 as k - T. Thus there exists a j* > k,,
such that
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(ll)~~ ~ ~~~~~l1 Xtk, dl- < E/2

for all j 2 j*; the least suchj* is to be k41. Note that

(12) E/2 > | Xtk dI1 = | [Xtk. + E fXl,,. - X Ik..jTk l]]1f1
~ + fA/ {(X~ -n Xt+ )lk k,}k lI

so that

(13) ElE {(X,kn X-k), k1, -|f {(X,k -XNik )Tl'k.,,, > e/2.
Thus

Lm
(14) nF-1 1 {(Xtk - Xtk+)Itk,} me/,

and because this tends to infinity with m, we obtain a contradiction, sinice the
process was assumed to be an F-process.

3. The bounded case

IJet X = {X,, 5vt, [0, a]} be a separable stochastic process, and let a be a
positi-c real number. Let S be a denumerable separating set dense in [0, a],
S = {to, tl, * and assume to = 0, t, = a. Let (tn, tn, * * , tn) be the elements
Vo, 11, * **, t,} arraniged in increasinig order. We set

(15) A'n(X) = (X,n -Xjn); Dj(X) = E{An (X) l,n},

aiid we define

(I6) X(,) = X,n for t, < t < tj+,; 5=,n lor tj' < t < tj+X.

We use the notation _je(n,t) to indicate summation over {j: tj.+l < t . Wlhen
the variable of summation is j, we may write simply E (n,t) for 7jG(,, t).
A process W"(X) = {W(X), j [0, a]} is defined by the relation

(17) [W (X)], YD7(X)(n,t)
for each nonnegative integer n.
TIIEOREM 3.1. Let W = W (X), an(i set IItz- - lB'. Then (Mr, 7)

is a martingale.
PROOF. The proof is obvious.
The following lemma appears in [3], and in [6] a similar result is used.
LEMMA 3.1 (Fisk). Let X = (Xt, 5t, [0, a]) be a separable F-process which is

bounded, say sup, I,Y < c, a.s. Then for each t, [11'7(X)]t is integrable uniformilly
in n.

PlZOOF. Write W7 for [TV'7(X)],, 1)7 for )j7(X). TLet q(n) be the biggest integer
i such tlhat t1"', < t. Then
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(18) E{(Wn)2} = E{( Dj)2} = E; E (Di)2 + 2 E Di E Dk}
(n,t) (n,t) (nt) j<kI<q(n)

< Et _EDjAi "I + 2 E IDj tE{ E Dk15ti}}(n,t) (n,t) j <k <q(n)

< E{ ID,I |Ain + 2 E nDl| |XI)+l- < 6cK,
(n,t) (?nt) IiXn+ ~1

where K is an F-bound of X.
THEOREM 3.2. Let X = {X1, it [0, a]} be a separable F-process which is

bounded, say sup,, IXj < c, a.s. T1hen there exists a (lecomn position X = A1 + X,
such that M= { :t,t [0, a]) is a nartingale and TV = {T,iVt, [0, a]} is a
process having almost all sanmple functions of bounded variation, and such that the
total variation of a sample function is a random variable with finite expectation.
PROOF. We use the notation introduced at the beginning of this section.

Since X has at most denumerably many fixed points of discontinuity, we as-
sume also that the separating set S includes all these points. We now apply
theorem 3.1 to write Xn) = M,n + Uin. For t e S, X' = Xt for all w, provided
n is big enough; hence, Xt -* Xt both a.s. and LI as n ox.
By lemma 3.1 Ut' is integrable uniformly in n for fixed t. It follows (see [2],

p. 294) that for fixed t some subsequence of {W7" converges in the weak LI-to-
pology. (If Z,, are integrable random variables, they converge to Z in the weak
Li-topology if and only if E{YZn} -/E{f)ZJ for every bounded random vari-
able Y).
By applying a diagonal argument we obtain a sequence n' -x such that

Wtl' converges in the weak Li-sense to a limit W, as n -4 o for every t E S.
One verifies easily that {W,, 5, t G S} is a stochastic process, and we claim
that almost all its sample functions are of bounded variation. The definition of
bounded variation is the usual one, even though the sample functions are de-
fined only on a denumerable set S. Since for every finite partition of [0, a] n S
there exists an n such that (to t1, * * *, tn) is a refinement of that partition, we
need only show that the limit as n -x o of Z(1a ,jn - W,.l is a.s. finite.

J+I

The last-named sum is monotone nondecreasing in n, and so, by the monotone
convergence theorem it will suffice to show that the expected value of the sum
is bounded uniformly in n; in fact, this will show that the total variation of W
has finite expectation. Observe now that if Z, -> Z in the weak Li-sense, then
EIZI < lim inf EIZnIas n -4 c. Writing (mr,s,t) for the sim over {j: s < t7'+, < t},
we have

(19) UTW - H> = weak L,-limn Dk (X),

and so it follows that

(20) EiWn - W lim infEl _ Dx ((X) ik+< k in'- -'
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Again writing K for an F-bound of X, we obtain

(21) E EIW,n - Wtn < E lim infE{ IE Dj l}
ke(n,a) k+1 k ke(n,a) m'-*oo

< lim inf E F_ j < K,
7tl' W)(r',a)

as desired.
Now set Mt = Xt - 't for t e S. Theni -Ml,, J,, t e S, is a martiingale.

'This follows easily from the facts that -'317, St, [0, a]} is a martingale (theorem
3.1) and that Mt" -l Mt in the wveak Li-sense, since the corresponding conver-
gence assertion holds for both X(11) and Wn. For almost all cw it is true for each
of the processes {Mt, SYt, t E S} and {Wj, giY, t G S} that for every t E [0, a],
the sample functions have a limit as s converges down to t through values in S.
(For M this follows from ([1], p. 358); for W it is clear by the bounded variation
property.) For t G [0, a] - S we now define UWt by right-continuitity; oln the
exceptional co-set, where these limits fail to exist, set Wt(co) = 0.
Now define l1 for all t by settinig M,t = ,t - TV,. Since (31t, it, S) is a martill-

gale, and since for t e [0, a] - SMt is a.s. equal to the limit of 3I,l as s con-
verges down to t through S, fixed discontiniuity points of X all being in S, wec
verify easily that {M1t, i,, [0, a],- is a martingale. Since each sample function
of {W,, F,, [0, a]' lhas the same variation as the correspondiing samlple functioi
of {Wt, 1, S,', we still have that the sample functions of TV ha-c finite total
variation, the expected value of the total variation being houinided by K.

4. Unbounded case

We again let X = {X,, i,, [0, a],, where a is to be a positive real niumber.
As in the previous section, we take X to be a separable F-process, but niow we
also impose the hypotlhesis of right-continuity, by which we mean (i) almost all
sample functions of X are right-continuous, and (ii) for t c [0, a], gt = n.,t.,-
(For a discussion of condition (ii), see [6].)
We make some definitions. For N > 0, we define the stopping time TN =

inf {t: iXtl > N}, and on the set where Tv is otherwise undefined, we set it
equal to oo. We define the truncated process XN by setting Xt = Xt for 0 < t <
Y'v < a, and Xi" = XTV for T1v < t < a. We shall also iieed x-v defined by
xlt' = X, for 0 < t < Tv < a, and XP' = 0 for Tv < t < a.
Our first aim is to show that if X is an F-process, theni the XN are F-processes

with an F-bound K' independent of N. We need an estimate of Fisk (see [3],
p. 24.)
LEMMA 4.1 (Fisk). The following inequality holds:

(22) 'F Dl/ (X')L < It' Di (X) + f X,, (/l'.
v,a (n,a) T.<a

PROOF. Let AN(n,j) = [TN > tj], Qv(n,j) = [t1 < Tv < tI',], and let AC
denote the complement of A. Evidently,
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(23) E Di" (XI,) E D7(X) + Z f (lDj(XA)
(n,a) (n,a) (n,a) A(L(n,J)

- IDjn(X)1) dP- (aID)n(X)I dl',
(n,a ) f4c (n j)A'N(n,j)

and estimates for the two sumlls oni the right will now be given:

(24) ) f4x(n,j) (|ID (XA ) - |Dj (X) |) (lp

< JAY( ) (VD XN) - D, (X)|) dl'
(n,a) JAN(n,j) X - Xn (J XnI

i
| xn+ - X/J+1+1j1 (na) LQ(n,j) 'j+i

I1), (X) (11 > y 7
f D (X) dP,(( ),a) A¢4 (,,.j) je (n ,a) k <j Qf (n,k)

L' F.aI(2s(lk) Zj:> )DS(X) ) (/
Ak (na) Q,v%(b,k) )j:j>k,j&(n,a)h

k&=(Ina) fQN(k?I)j >kj(na) ±1
- Z L| () Z -sgll (XAn )A(X)) d-

kE(n a) QN(n ,k) (1j:j >k, (,a))+

ke(,a
y
X,

- VK,i) (II'kcFi(n,a) fQN(nx(7l,k) k*tt-+lX dI).

-k)n,a) JQ.N(flk) (IX,n I (llF X a)(11-<

Obviously (23)-(25) give the desired conielusioni.
The next lemma is required to get us from XYY to X-x. By a stopping timie wvill

be meanit a random v-ariable T with v-alues in [0, a] such that [Y' < t] E 5t for
all t; since T need Ilot be defined for all co, we may take 7' = x on the set wherc
T is not otherwise defined.
LEMMA 4.2. Let X be a right-conttinuouts F-process wvith F-bound, K, and 7'

a stopping timte. Tlhen fT<a IXTI dP < f7'<a Xa dP + K < EIXaI + K.
PROOF. First assume that there exist numbers Xi < X2, *-- < X,, = a suchi

that [T < a] = U>-l [T = Xk]. Let Ak = [T = Xk]. The desired estimate is
obtained by proceeding as in lemma 1.1. rhe case of ain arbitrary stoppinig timc
7' is obtained by approximating by a se(iuenice of stoppinig times T7'0 of thc
kinid jtust considered such that 7'T() j 7' a.s. as it -* o and by usinlg the right-
cointiniuity of X.
LEMMA 4.3. Let X be a right-continuous F-process. Theni for N > 0, X," is also

a right-continuous F-process, and there exists a number K' independent ofN serving
as F-bound for all XN. Fiurther, XN = MN + W}N wvhere MIN = (M11V, 5t, [0, a]) is
a right-continuous martingale and TV-N = { 5,Vi, [0, a]" has sample functions of
bouin(led variation and finite expecte(l total variation.
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PROOF. Write XN = ,yv + (XA, - XN). 'lhe second termli on the right is a
process with sample functions which vanish for t < TN and equal XTN for
t > TN. So applying lemma 4.2 to this term and lemma 4.1 to the first term on
the right, we obtain the first desired conclusion. Since XNvl < N, the final
assertion follows from theorem 3.2 and lemma 4.2.
At this point we see that XN has a quasi-martingale decomposition Xv =

AIN + W1N. To carry the argumenit further along the ideas of Fisk one needs a
suitable kind of canoniical decomposition. Fisk was able to restrict himself to
continuous decompositions, because he assumed X to be conitinuous. In our
present context we have available the important concept of natural decomposi-
tion discovered by 1\Ieyer [7].
To explain the notion, consider a process W = {W,, it, [0, a]} which is

right-continuous, has almost all sample functions of bounded variation, and is
such that the expectation of the total variation is finite. Let Y = {Yt, 5F,, [0, a]}
be a right-continuous martingale which is bounded, that is supt IYtl < c <Ko
a.s. Then for e > 0, s E [0, a],

(26) E [(1Yt - t) -)(z_)]
t <s,1 Y -Y,_l >f

is a.s. a finite sum, and thus wvell defiiied. As e J 0, the sum converges a.s., and
in the LI-sense to a limit denoted by

(27) E (WI-V e-))(Y -Yt-).
t<8

The process W is natural if E{Y_<, (W -Wt-)(lt - Y',-)} = 0, for all
s E [0, a] and all bounded right-continuous martingales Y.
LEMMA 4.4. Suppose X = (X,, 9,, [0, a]) is right-continuous and has a de-

composition X = 11' + TV', where 11' = (At', St, [0, a]) is a right-continuous
martingale and WI' = (WV,, IT,, [0, a]) has almtost all samiple functions of bounded
variation and the expected total variation of W' is finite. Then X has a decomposition
of the same kind X = Al + W such that W is natural. There exists only one such
decomiposition, and IV is given by

I rt(28) Wt = weak L1-lim- lfE{X8+, - X,15} ds.
k Jy O h^ f

PROOF. Under the additionial assumption that X is a supermartingale, this
result is in Meyer [6], [7]. Writinig It,' as the differenice between its positive and
negative variation, we see that X can be written as the difference of two super-
martingales, X = X'- X", where each of X' and X" satisfy all the hypotheses
of the presenit lenuna. Therefore, the results of Meyer apply to X' and X",
and we deduce that X = Al + I1', with W gi-ven by the formula of the theorem,
is a decomposition of X, with W natural. To prove that the decomposition is
uniquely determined by the requirement that W be natural, one can proceed
as in Meyer ([7], p. 4).
We continue to use the notationis Xv, X`v, TN in the manner in which they

wer-e inltr-oduced at the begimmniing of this section. We are niow in a positioni to
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use Fisk's idea for showing in the decompositions XN = MN + WN, that the
WN converge a.s., provided one uses the canonical decomposition. If X is a
right-continuous process, lemma 4.2 shows that XN satisfies the hypotheses of
lemma 4.4.
LEMMA 4.5. Let X be a right-continuous F-process, N1 < N2, and let

(29) XN' = AIN, + IV7N1, XN2 = MN2 + WN2

be the decompositions guaranteed by lemma 4.4. Then
(30) WN' =-itA2 for t _< TN, a.s.

PROOF. Let
(31) At =MGV2 for 0 < t < TNI < a,
(32) Mt = MTN for TN, < t < a,

and
(33) W* = Wz ' for 0 < t < TN, < a,
(34) W,* = WT for TNI < t < a.

One verifies at once that
(35) XNi = MNi + WNi = M* + W*,
and that the second decomposition is also a "natural decomposition." In order
to see that W* is natural, note that if Y is a bounded right-continuous martingale
and
(36) Yt = Yt for t < TN, < a,l

YZ = YTN1 for TN, < t < a,J'
then

(37) E{, (Wt- Wt)(Y, - Ye)} = E{, (We- W,-)(Y,* - Y_.)} = 0.
t<8 t<a

The fact that Y* and M* are martingales follows, of course, from the op-
timal stopping theorem. So the uniqueness result of lemma 4.4 applies, giving
WN1 = W*, and hence the desired conclusion.
LEMMA 4.6. Let X = {Xt, 5t, [0, a]} be a right-continuous process. Then

1- I n-1
(38) sup E f hE{(X.+h - X.) 3}jIds < supE{ _E{(Xtj+1 - Xti) 1,} l}

hh ~~~~~~~~~j=O
the supremum extending over all partitions (to, ti, *** tn) of [0, a].
PROOF. The lemma needs proof only under the assumption that the su-

premum on the right-hand side is some finite number K, so that X is an F-
process. We rewrite the left side by interchanging expectation and integral.
Hence 0, so we must consider an integral of the form foa E(1/h) I-... ds. If this
exists as a Riemann integral, we can show that it is bounded by K by examining
Riemann sums formed by taking equal intervals of width h/m, where m is a
big integer, and comparing them with the expression on the right side of the
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desired inequality. We shall show Riemann integrability by proving that the
integrand is right-continuous. That is, it must be shown that as s * so, the
L1-norm of E{X8+h - X,jl58} tends to that of
(:39) E- X8.+h, - X8j I }o.
We easily see more, namely
(40) E{'X,+h - X8, -5>,- E ((X8,, h X,o
in the LI-sense. For

(41) E{X815} = X8 Xs0

in L1-sense by right-continuity, which is assumed, and uniform integrability as
guaranteed by theorem 2.3. Also
(42) El {X8+,,)'- E-(Xs.+hj5:s < ElE{Xs+hLlj5S} - E{,YX±+hlJ}

+ EjE{(X.O+h,LS} - E{Xy80+hI80} 1,
and the last term vanislhes when s < so + h. As for the first term on the right,
the assumption of right-conitiniuity and theorem 2.3 again guarantee convergence
to zero as s I so.
LEMMA 4.7. Let X be a right-continuous F-process, and let XN = MN + UVN

be the canonical decomposition guaranteed by lemma 4.4. There exists a constant
K', not depending on N, such that the expected total variation of WV is bounled
by K'.

FItOOF. Since W-X is right-continuous, there exists a sequence of partitions
{t'} such that

lIVN WN1(4.3) tq
-

converges to the total variation of WN a.s. Since the approximating sum is a
monotone function of n, it suffices to show that it has an expectation bounded
by K'. Now,
(44) E X (W;v - WN)

(n,a)(,aJ+l J t t
tn

< E {im inf weak Lrhim [!fXl E{X:Yu-v X-1;,} ds(n,a) LhJhn[h

< E lim inf E~r EfLi+l +,- XN)lTY8} dsl}
(?,ah 0 IhJn

< lim inf [- jaEE{(Xs';+, - Xi' ) 15:} (IS

< K',
by lemmas 4.3 and 4.6.
THEOREM 4.1. Let X = (Xt, 5t, [0, a]} be a right-continuous F-process. 7hen

X has a decomposition X = A + 1V, wvhere M1 = I,,f,, [0, a]' is a right-
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continuous mtiartingale and TV = {W't, 3,t [0, a]) is a pocess which has almtiost all
sample functions of bounded variation with expected total variation of the sample
functions being finite, if and only if for every t e [0, a], X,-* X, in the Li-sense
as N -* .
PROOF. 1"irst sulppose the desired decomiposition exists. WVrrite

(45) EIX, - X; = f7,<t iX - X7..j (IP < f X,j di' + It..d<i,f7,,v <t -~~~~f IN ,I<t f7.<
and Inote that as N x, oc, the first initegral in the last member tends to zero.
IUsing the decompositioni, the last integral becomes

(46(;) f|~ j(M"<
+ Ii7'T) (11<. f 1I7TI (11 ± |IfY(I

<

Since 1I is a martinigale, 1MI is a subimiartinigale; henice, b)y the optionial stoppinig
theorecm,

(47) k~~~Or<t 1. TVj (11l < IT" <t| u (/

and thle last iintegral converges to zero as N -X x. The integral

(48) f|<t T| dlY

is hanidled by wvritinig 11 as the differenice of two imionlotoiie funietiolns.
Now to prove the theorem in the other directioii, let

(49) XV = MN + WN

be the canioniical decomposition of lemma 4.4. From lemma 4.5 it follows that
as N -o through the integers, WN converges to a limit WV, a.s., and indeed

W7'(w) = W&(c0) for 0 < t < Tv < a;
Wtv(W) = TV7V"(W) for TN(cw) < t < a.

Let varf(-) stanid for the total variation of f(.); the initerval over which the
total variation is considered will be indicated unless it is [0, a]. Observe first
that

(51) var WI(w) = var Wt (w) -4 var W. (w), a.s.,
o<t<TN

the convergence being monotone. The monotone convergence theorem together
with lemma 4.7 gives
(52) E{-vxar IV.' = lini E'var WIf < K'.

N-o
Next niote that

(5:) It - t <I ar IF. < var lVs,T,.v <8 <t 7 <,R <a
henice

(54) EIWv- Wt <J (var W.) dP -*0
as A" -.c W1e see that as N -x -, TITN -l , in the Li-senise, even uniiforimily in t.

Ulsilnig thie lhypothesis that XA NX, in the L,-senise as N x,it follows t hat
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also MN -. Mg, say, as N -X oo, and hence, M = {Mt, W, [0, a]} is a imartingale.
This concludes the proof of the theorem.
REMARKS. (i) According to Meyer, a stochastic process {Xt} belongs to

class D if the random variables {XT} are uniformly integrable, T ranging over
all stopping times. Consider an F-process with compact parameter interval
[0, a]. Obviously, if the process is of class D, it will satisfy the conditions of
our theorem 4.1. The converse implication follows from the fact that the exist-
ence of the decomposition obtained in the theorem is easily seen to imply that
the process belongs to class D.

(ii) Fisk used the following condition D' instead of "class D": P[ sup IXtI 2
o<t<a

N] = o(1/N). For continuous F-process it turnis out that D' is equivalent to
"class D." In the supermartingale case, this was first pointed out by Johnson
and Helms in [4]. It is interesting, in view of lemma 2.1, that one always has
0(1/N), so that for continuous F-processes it is the difference between 0 and o
that decides whether or not one is in class D.

(iii) Meyer works on the interval [0, oo). However, the necessary and suffi-
cient condition for the right-continuous supermartingale X = {Xi, 5g, [0, mO)}
to have the desired decomposition is that {Xt, 5t, [0, a]} be of class D for every
finite a. It is, of course, clear that we could also work with processes on [0, oo)
which are F-processes when restricted to compact parameter intervals.

(iv) Johnson and Helms [4] give a most instructive example of a super-
martingale (nonnegative, with continuous sample functions vanishing at 00)
X = {Xt, 5ty [0, 0)} such that the X, are uniformly integrable but X is not
of class D. It follows from ([6], proposition 1) that {Xt, 5t [0, a]} also fails to
be of class D for some finite a.

(v) Let X = {Xt, 9t, [0, a]} be right-conitinluous. Our proof makes it inatural
to consider such a process satisfying the additional requirement

(55) E faE{XX+h - X,15j dt = 0(h).
We know this relation will hold if X is an F-process, by lemma 4.6. What about
the converse implication? It is interesting to look at the discussion in ([8], p. 372),
of an analogous problem, the relation between function of bounded variation
and those satisfying f. lf(x + h) - f(x)I dx = 0(h).
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