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1. Introduction

A variety of results concerning strongly stationary processes with smooth
trajectories turns out to be derivable from a theorem, which extends the formula
for changing the variable in the differential on the real axis to the case of measure
spaces with a one-parameter group of measure preserving transformations.
The paper starts with the statement of three results, which will be shown

in the end to be special cases of the main theorem. The middle part consists of
the formulation and proof of this main theorem.
EXAMPLE I. Let xt, t c R be an E-valued measurable stationary process,

that is, a Lebesgue-measurable family of mappings from a measure space
(Q, YZ, P) into a measure space (E, B). The a-algebra Y is generated by the xt,
and P is a a-finite measure such that the shift transformations S", u e R, leave
P unchanged; that is,

(1) PSJ(x1, e B1, * xt, e Bn) = P(xtl+u E B1, xt*, GE Bn)
= P(xt, e B1, xt. G Bn),

and therefore,
(2) PSu(A) = P(A), for all A E M.

Assume now that E is the real axis and that for almost all oo, w e Q, x(t, w) =
xf(w) is a differentiable function of t with derivative x(t, w). Let t = h(x) be a
differentiable function such that for almost all w the graph in R X R of t -+ x(t, w)
has exactly one point in common with the graph of x -- h(x). This common point
will be called (t(w), x(t(w), w)); h(x(t(w), w)) = t(w). The most trivial example
is h = t* = const. If x(t, w) is bounded from above for all paths of a process,
then every h with sufficiently small positive derivative would do.
Now let h be fixed. We write (x(w), t(co)) which is short for (x(t(co), co),

(I(X), w)). We consider the "shift by h" Sh defined as follows: Sh(W) belongs to
the set {x,. G B} if and only if x(t(w) + u, w) c B. The result that interests us
here is

(3) (P)Sh, = P(1 -x(O, w)h'(x(O, w)))
or

(4) (P(1 - (co)h'(x(W)))>1)Sh = P.
99
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To clarify the notation, let us spell out the result. The image of P by Sh is
absolutely continuous with respect to P, and the Radon-Nikodym density is the
above function of [x(O), t(0)]. This implies the followiing:

(a) if the joinit distribution of (x(O, w), .i(O, co)), or equivalently, tllat of
(x(t, w), x(t, w)) is dy(x, .i), theni the joinit distribution of x(t(w), w),
±(t(co), c) is

(5) (1- i h'(x)) d,us(x, x);
(b) if we associate a functioni F(t, x, xt) with every P-integrable f onl S2 by thle

relation

(6)) E(f Ix(, w), xt(t, Fo)= (t, x(t, w), x(t, w)),
then

(7) E(f Ix(Qw), Nt(w)) = F(t(.), x (c), * (w)).
Notice that F(t, x, .i) is determined by d,u(x, .i), almost everywhere for every

fixed t. Thus, for a fixed h, F(t(c), x(c), x(w)) is tisually niow-here on Q2 determined
by f.

However, if fg.(c) = f(T')), theni wve cani choose the associated functions F.,
so that

(8) F,(t, x, x) = F(t + s, x, i').
T'he result started above is aii oversimplificationl of the relationi that will actually
be derived below; namely, the set of all triples s, x, xvwith

(9) E(f8;x(w), t(w)) #D F(s + t(w), x(w), Nw))

is a iiull set with respect to the product of Lebesgue measure anid dM.
EXAMPLE Ii. Let xt again be an E-valued measurable stationary process on

(Q, 1Z, P). Assume that V is a strictly positive fnnietioni oni F such that for
almost all c,

(10) s(a, w) = f0 V(x(t,cw))dt isfiniiteand s(a,)-* as a-4r* .

The function s(a, w) thus has a uniiquely determinied inverse T(S, w),

(i)I 1, T )s1f (x (t, w)) di.

For every s we consider the "shift by T(S, w)" T. defined as follows: 7%(w)
belongs to {x,, c B' if anid only if x(T(s, w) + 11, w) e B. Clearly, T8, =T's-
In this case our result oni the images of P by the 7', is:

(12) y(s, w) = x(T(s, w), s e R is a stationary process oni
(£2, on,P.1 V(x(O, w)). The slhifts of the y-process are the Y'.

As one may notice, this implies that the stationary distribution of the y-process
is V(x) -d,(x), if that of the x-process was d,u(x). The transformation described,
wbhen applied to the y-process with V' = 1/1', gives back the x-process.

EXA1NIPLE nir. R. A. Pudley has studied families of probability measiires
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PX(xo,Xl,l ,X 3), 1 = (V12,V2tV3), IVi| < 1, oni the set 52 of all world liies
with right-hand side continuous taingents everywhere in relativistic space-time
with the following properties.

(i) If co is the orbit of a mappinig from (-c, +xt)iltO 4,

(13) t -> (xo + t, xd(t, 4), x2(t, 4) x4(, e())(x. + t, x (t, ?)A),
theni P2 is definled oni the a-algebra 91x = SOnx genierated by the sets {0(t, W) e B},
where B is a Borel set in R3 and t > 0.

(ii) For Pz-almost all w, one has

(14) (xo, _X(0, w)) = x anid X(0, w) = V

"Ps`-almost all world Iiiies pass through x with velocity v."
(iii) F'or every t > 0 and every A in the a-algebra genierated by the x., u > t,

ihe Markov property is satisfied; that is,

(1I5t)) I (A! X,'dt X) = P-? (A)

where y(w) = (x0 + t, x(t, w)), w(w) = (d/dt)x(t, co).
(iv) If the action of the orthochronous inhomogenieous Lorentz group onl the

space Q of world lines is definied in the obvious pointwise fashioll, theni the
iinduced mappinigs oll the measures onl Q act oni the family fP}. "The Lorelitz
group trailsforms the PI into each other."

Dudley's result is, roughly speakinig, that there is a onie-to-onie correspondenice
betweenl such families {P.r} aild the infiniitely divisible (radial) probability
measures oni the Lobatchevski space.

It is another applicationi of the maini theorem of this paper to show the
existeiice of a u-finite measure P OIn Q to every family fl{'I, which is invarialnt
unider all Loreintz tranisformationis anid such that the 1', are the conditionial
processes. It turnis out that P restricted to the a-algebra Mxo cani be definied by
all initegral: for A e nZx,

(1(;) P( ) =|ff -10,z(A) di,() (1 -I 12)1!2 dVQ)

where d,u deniotes the 3-dimensionlal Lebesgue measure anid dv thc Haar measure
onl the Lobatchevski space. We will not give a full proof of the Lorentz invarianice
of 1' in this paper. IIowever it may be of interest to see a lin}k to the examples
I anid II. From (iii) anid (iv) anid the strong AIarkov property, for every P2 it
follows that the process v with

d
(17) v(r, w) = dt X(t(T}, 4), w)

is a process with inidepenidemit inierementts oni the Lobatchevski space for every
PZD, if t(Tr, ) is determinied as
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(18) r = f (I - x(s, W))2) (IS

(r measures the proper time on a woorld line, a qiuanitity, whlich does not refer to
aniy specific coordiinate frame). Since the Haar measure dp(r) is a stationiary
distribution for the v-process, accordinig to example II,
(19) (l- ~!,2)-j12 dp(r)

is a stationary distribution for the process (d/dt) x(t, w).
This is roughly the argument for the invarianice of P unider time shifts; the

result of the first example can be used to establish the invariance under homo-
geneous Lorentz transformationis; space shifts act in a trivial way oni l'. A de-
tailed study of the Lorentz-invarianit Markov random functions 7' wvill be given
in a forthcoming paper. Dudley's work will appear in A rkiv for Matematilo.

These results can be obtained by application of the following tlleorem.
THEOREM. Let (Q, M, P) be a u-finite measure space, and Tt, t e R a one-

parameter group of P-preserving transformations of Q, acting measurably on C2.
Furthermore, let sp be a measurably invertible transformation of Sl such that there
exists a real-valued function t(w) with the property that (p(w) belongs to a set A E MZl
if and only if Tt(w) belongs to A for t = t(co).
The following regularity assumption on t(c) is made. For almost all w, t(s, w) =

t(T8w) as a function of s, s G R, has only finitely many jumps on a bounded
initerval, and betweeni two jumps t(s, w) is absolutely coIntiniuous. The assertioni
is that if v(c.) = 1 + (d/ds)t(O, w), thein p maps the measure P., onito 1' in the
somewhat weakeined sense that for every initegrable g,

(20) f g dl' = f q(T (w)) .v( II)(11
for Lebesgue-almost all s.

In sections 2, 3, 4, and 5 we shall study a couple of special cases of thle thleorem
before we establish the proof for the general case in section 6. The considerations
in sections 2 and 3 will be needed there. The argumenits in sectionis 4 and 5 takeni
together are very close to giving a proof of the theorem. The gap lies in the
irregularity of the decomposition of Q into parts, where sections 4 and 5, respec-
tively would apply, if the decomposition were nice. The argument in section C)
seems less direct. Besides, it requires a lot of preparationi of topological nature.
Sinice some of those topological concepts are also needed in sections 4 and 5, this
preparation is presenited after sectioii 3.

In more complicated formulas we shall use a morc convenient notatioln.
For a P-integrable funcetioni f anid for a measurable set A xve shall write,
ffdP = P Of anid f4 dP = P ) (A).

If f' is a measurable function on (Q', M') and (p a measurable mapping from
(2, on) into (9', on'), theni so*(f') denotes the Mt-measurable function f defined
byf (w) = f'(w(w)). Let (P)<p, or shortly, (P)yo, denote the image of P on (Q', 'nz').
We have by definitioni of this image
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(21) (P)o 0 f' = p O <*(f)
for every f' for which w*(f') is P-integrable.

If g is a nonnegative f-measurable function; then P g denotes the measure
defined by

(22) Pg*y (A) =fA g dl'.

lThe assertion of the theorem is, roughly speaking,
(23) (P'-lvl)P* = P;
the exact statement is, for every P-integrable g and for L-almost every s,

(24) (P- vj)'* O T?*(g) = P 0 Tg(g) = P 0 g.

Throughout the paper L denotes the Lebesgue measure on the real line.

2. Transformations of the Lebesgue measure

The real axis with Lebesgue measure L is the measure space Q. The translations
form the group of L-preserving transformatioiis Tt(co) = co + t, and so is a piece-
wise monotone function and is absolutely continuous on every piece; it attains
every real value exactly once. Clearly, t(w) = p(w) - c then satisfies the
regularity conditions stated in the formulation of the theorem. Thus, in this
special case, the assertion is

(25) (L 1+ = (Lt * = L.

This is just the formula for changinig the variable in the measure element dx,
usually writteii as
(26) Id(<,(x))J = <'l-dx,

f f (<(x) Ip'(x)I dx = f (y) dy.

This formula is usually proven in elementary texts for continuous sP with coni-
tinuous derivative. In our case p' is measurable; therefore, by Egorov's theorem,
we can find a countable union of intervals with a total length smaller than E,
such that so' is continuous on its complement Ae. We can assume, that A,
contains none of the poinits of discontinuity of p. There is a continuous function

f which coincides with p' on Ae, has constanit sign in every interval of monoto-
nicity for 5o, and satisfies for every pair w, w' G A,

(27) | PE dw = I:' p'dw = p(c') -s(,o)

We will now fix an arbitrary c* E A, and consider the function f,, which
does not depend on the choice of w*,

(28) Pf()=(X*) + J* f dw.

The fuInetion V, coincides with s on A,, has continluous derivative p,'P and
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defines a one-to-one mappinig of the real axis onto itself. The classical formula
yields, therefore,

(29) L(L 4 ) =

anid

(.30) (L. [] p' (L. [-,] * L= [A]
if [A,] deniotes the iiidieatoi fuinetioni of -I, anid [A'.] that of the 5p-image of .1

Since so is absolutely cointiiiuous, the complemenit of A, is mapped illto a set
of measure less thaii b(e), where 6(E) -O0 as e -*0. Therefore, L1 [A,] inicreases
to L as E decreases to 0. This shows that

(31) (LL.)s= .

This result has a local counterpart. If so is a strictly monotone absolutely ConI-
timiuons mappinig of ani interval I onito ani initevxal I', theni for every ftiunctioln h
which vaanislhes outside 1,

(32) f h (L = f h(p(w)) y'(L4 (IL.

A seconid special case is wvell kniowvn in fluctuation theory.

3. Measure preserving transformations on denumerable decompositions

The measure space Q is arbitrary; {'I, is ani arbitrary groiip of measure-
preserving transformations; 5o is ani invertible mappinig of Q onito Q; anid there
exists a decompositioni of Q inito deniuimerably maniy B; such that p is giveul by
a certaini Y ti on Bi. W1'e ,hall prove that sp is measure preserving.
The (p-images of the B;, called Bf, form a decompositioni of Q2. We show for a

set A' containied in onie of the B, that (P)(p 0 (A') = P 0 (A'). This suffices,
since any -et is a counitable unioni of sucl sets.

Set A = -{w: p(w) E A' }; by definiitioni of the Sp-image of 1',

(33) (P)p O (A') = 1 (A).
For w e A, p(w) c A' C Bi we have T,i(w) = p(cw) e A', anid since 71t, is in-
vertible, only the w in A satisfy T,j(w) e A'. The tranisformationi T,, is meastule
preserving; thus

(34) (I'), O (A') = 1P 0 (A) = (IP)Tt 0 (A4') = 1' 0 (A').
There is also a local counterpart of this restlt. Asstume that < is a mapping

into Q defined on a measurable subset B C Q, anid fol w E B, (p(w) =
where t(co) attainis oni B only denumerably maniy distiniet values in the gotop.
Let g be a positive ftunietioni which vanishes otitside B. Let h.(w') = F g(c) where
the sum is extended over all w with p(o) = co'. Assume that h(w') is fillite for
I'-almost all w'. By the argumenit above we get in this case

(35) (1'.g)p = P.h.
If g is the inidicator funcetion of a set B, theii we shall speak of P.g as the re-
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str-ictioin of P to the set B. Some prepalationis are iiecessary for the study of more
complicated situationis.

Let {T,, u e R} be a one-paramiieter fanily of transformations of the measure
space (Q, a, P) which leave P unchaniged. An D1Z-measurable funietionl f is called
cointiinuous, if f (Tu(w)) is a conitinluous functioin of u for every W. A subset A of
Q is called openi, if there exists a funietion a(w) which is strictly positive onl A alnd
SR-measurable, anid such that T',(w) e A for Itl < a(w). Anl openi set A is called
finite if P(A) < 00; a conitiniuous function is said to have finite support if
{w: f $d 0} is finite. We call the Borel field generated by the finiite open sets
Mo. The mappinig Y':(u, w) -Y'(w) is continiuous if P. carries the topology
described anid R X Q the obvious product topology.
LEMMA 1. If I' is a measure on (Q, 9I), invariant under all Tu, u E R, and

Q another measure such that for every continuous P-integrable g with finite
support f g dP = f g dQ, then for every Y-measurable P-integrable f the set
{s: ff(T.(w) dQ $- ff(T,(w)) dP} has Lebesgue measure 0.
PROOF. If ff dP = ffdQ for every continluousf with finiite support, theni this

relation holds also for every continuous integrable funictioln. In fact, approximate
f by f, with

(CO) - e for f (w) > e,

(36) fE(CO) = t0 for If(-)I <

if(w) + E for f(w) < -e.
The funiction f, is cointiniuous, has finiite support {w: If(W)I > e}, and If - f! is
dominated by ifI and tends monotonely to 0 as E tends to zero. Thus,

(37) ff dl' fff dlf = ff dQ-,ffdQ.
If g is ani arbitrary SR-measurable P-integrable funietion, theii gp defilled by

(38) ()= f g(7'.(-))p(s) ds

is continuous for every conitinluous iintegrable p. Sinice P is inivarianlt with respect
to all Ts,

(39) f g, dP = f p(s) ds f g dP.

From our assumption follows

(40) f gp dQ = f p(s) ds f g dW,

anid therefore,

(41) f (f g(T.(.)) dQ - f g(-) dP)) p(s) ds = 0

for every integrable continuous p. Thus

(42) f g(T.(.)) dQ = f g(w) dP
for L-almost all s.
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LEMMA 2. Let (Q, ¶, P) and (Q', M', P') be a-finite measure spaces where Q'
is assumed to be a topological space and f' the a-algebra generated by the continuous
functions. Let p and 5°n n = 1, 2, * be measurable mappings from Q into Q' and
(P)so = P'. We assume that

(43) SOn(W) - o(w) for P-almost all .

For every positive continuous bounded f', for which (P)V K f' < oo and
(P)SPn K f < oo for all sufficiently large n, one has

(44) (P),On f' (P),P f-
PROOF. The functions n*(f') --> *(f ') P-almost everywhere, and

(45) sup In*(f')| < sup If'.
If x is the indicator function of a set in 3 with finite -Il-ieasure, then we have
by the dominated convergence theorem

(46) P*x O n*°(f') - Px Oso (fI)
(47) P >x O p*(f) < lim inf P x O p*n(f)

n --

= lim sup P. X O sp*(f') < J) K p*(f )
n-o

If P K pn*(f') < o, then xo can be chosen such that for every indicator func-
tion x, x > xo, the integral P x K o*n(f') differs from P K vn*(f') arbitrarily
little. Therefore, the relations

(48) lim sup P 0K>*(f') < I O V*(f'),
n-

(49) P)x K v,*(f') < lim inf P K s*(f')
n-o

hold for all indicator funietions x with P 0 x < oo. Since P is a-finite, we have

(50) lim (P>pnOn f' = (P)y K> f'.

LEMMA 3. Let {T., u E R} be as above, A an open set, and B C 51 such that
for P-almost every w, {u: Tu(w) e B n A} has Lebesgue measure 0. Then P K
(B n A) = 0.
PROOF. Let A5 = {w: T,(w) e A for all s with Isl < 6}. We determinie the

measure of

(51) J(u, w): u c (-b, +i), TZu(w) EF B,,w EF Alf
in the measure space (R X Q, B X i, L X P). Here B denotes the a-algebra of
all Lebesgue-measurable subsets of R, and L the Lebesgue measure.
By Fubini's theorem we obtain, on the one hand,

(52) f- ((P)Tu K (B n A5)) du = 26-P K (B n A8).

On the other hand,
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(53) (L X P) > {(u, w): u e (-5, +5), Tu(w) c B, W E Aa}

< A (L O {w: u E (-6, +5), Tu(w) E B}) dP = 0.
Therefore, P K (B n A ) = 0 for all 5, and since A is open, P K (B n A) = 0.
REMARKS. For an W-measurable f the following properties are equivalent:
(a) f = 0, P-almost everywhere,
(b) for P-almost every w, L {u: f(Tu(w)) = 0} = 0,
(c) T*(f) = 0, L X P-almost everywhere.
EXAMPLE. Lemma 3 applies to the situation in our theorem as follows. The

set of all co where lp(w) is discontinuous has P-measure zero. First, the mapping
T of R X Q2 into Q sending (u, w) into Tu(w) is continuous, if we have on R X Q
the product of the topology on Q and the usual one on R, and if the topol-
ogy on Q2 is as described above. The mapping r from Q into R X Q sending
co into (t(W), W) is discontinuous in B = {w: t(T,(w)) is discontinuous for s = 0}.
We have assumed that {s: t(T,(w)) is discontinuous} is denumerable for P-
almost every co. The lemma tells us that P(B) = 0. We shall now show that
so maps null sets into null sets. Even more is true: if fB Iv(W)l dP = 0 and
B' = {w': Eo'(W')e B}, then P K (B') = 0.
LEMMA 4. With the notation and the assumptions of the theorem the following

holds: P is absolutely continuous with respect to (PIvI)'p* that is, f f(<o(W)) Iv(w) dP
= 0 for an iW-measurable positive f implies f f(w) dP = 0.
PROOF. Consider the mappings ,6 and T from R X Q into Q:

T: (u, W) T-(c),
(,): (u, w) (u + t(Tuw), w).

We have T* o so*(f) = A* o T*(f) for every f, and for an f as described above,
L X P-almost everywhere,
(55) 0 = T*(vlvJp*(f)) = IT*(v)IT* ° s*(f) = IT*(v)jP* o T*(f).
Therefore, 46* T*(f) = 0 holds (L X P)jT*(v)I-almost everywhere.

Since ((L X P)IT*(v)I)4. = L X P, as will be shown later on, we have
T*(f) = 0, (L X P)-almost everywhere, orf = 0, P-almost everywhere; q.e.d.
REMARK. Let

(56) D. = {iw': t(Tu(<p-1(,w')) has a discontinuity for some lul < f}.

Using lemmas 3 and 4, we conclude that if (PIvj)*p* restricted to Q\Dt coincides
with (P) restricted to Q\De for every e, then (PIvI)so* = P on U.
PROOF. The support of the charge distribution (Plvl)p* - P is contained

in the closed set nf>0 D' = {w: t(Tu(o-'(cw)) is discontinuous in u = 0}-
{w: -'(w) eB}.
We proved already that P K (B) = 0, and from lemma 4 it follows that

P o (fl>O D.) = 0. Therefore,

(57) (n-.vI)(p* K n De = 0 = (P) o q D'-
e>o e>O
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4. Further approximations

We proceed now to more complicated special cases of the theorem. We add
an assumption which is one less restrictive than that in section 3, namely, v(w) =
1, P-almost everywhere. In this case we cani approximate sp by mappings Stl of
the type considered in section 3. The S,, are now not, quite invertible:

(58) s = Tt.(.)(c)
where 21tf(co) is the largest integer less thani or e(qual to 2'1t(cW). The functioni tI
takes only denumerably many values. Therefore, (P)Sn = I-.hn where hn(W')
is the number of X with p,,(w) = co'. We show, that hn(w') = 1 if t(Tl(s1(w)))
is continuous for Jul < 2-n. Therefore the signed measure (P)Sn- P has sup-
port contained in the set {X: t(T,(so-'(w)) is discontinuous for some Jul < 2-1}.
On the other hand, (P)en-* (P)ep in the wveak sense on Q\n Dn. In fact,
p-n(,;)--(o() and (P)n, 0 (Q\Dn) n B <x if B is a finite open set. The
convergence relations (P) <- (P)s,, = 1'. h,, n 1 weakly on Q\n D' imply
(P),p 0 T8(g) = P 0 g for every P-initegrable g and for L-almost all s, as
proved in lemma 1.
The proof for hn(co') = 1 for c' E Q\D' is as follows. If sp(w) = co' and if t(Tu(w))

has no jump for a u G (0, 2-), then there exists an s, 0 < s < 2-n such that
<.(T.(co)) = w'. If ePn(CW*) = ci,' and t(u, w*) has no jump for a u E (-2-n, 0),
then there exists an s e (-2-s, 0) such that (T,(c*)) = co'.

In any case, to every co' j D' there exists a unique co with s,.(c) = co'. Thus,
h (Cw') = 1.
The argument actually gives somewhat more. If Q* is an open part of Q

such that v(co*) = 1 for co* G Q*, then the restriction of (P))p to the 5P-image
of Q* equials the restriction of P to this set.

5. The use of local cross-sections

To the assumptions in the formulation of the theorem, we now add one
which contradicts the one in section 4 and certainly is very unnatural for the
problem. It guarantees, however, in a very nice way the existence of local cross-
sections through the orbits {T,(w); s e R' everywhere anid allows the applica-
tion of the argument of section 2 through the use of Fubini's theorem. We
assume that

(59) d t I|(s, co) = jv(T?(c)) -1 > p-' for all co, s,

where p is an arbitrary but fixed number. For convenience, we assume that
p > 1. The set Q\D,'(p+l) can be covered by the (p-images of denumerably maniy
sets of the form

(60) A to = {c: It(@o) - toj < e} n fco: t(Twco) is continuous for IHu < (p + 1)4
( {CO: w = T,0(coo) for an co0 with t(coo) = to arid uI < (p-I ) .

We study P on sets of the form
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(61) Bt,, = { t: (w) - tol < e} n {w: t(T',,w) = to foi somne jul < p 4E
n {w: t(T,w) is continiuous for Jul < p e} .

For an w in B there exists exactly one wo and exactly one s, Isl < e p, such that
c = T,(wo) and t(wo) = to. We write co = p(co), s = q(oo).
The pair (p, q) maps B in a one-to-one fashion into the Cartesian product

C X R, where C is the "cross-section" C = {w: t(w) = to}. If w, w' c B and
' = T,(w) for a sE(-Ep, +ep), then p(w) = p(w') and q(w') = q(w) + s.
Furthermore, B is open, so that for every w E B the set {s: T,(w) E B) is an

open interval, whose length is by the way smaller than 2ep. Put

(62) B' = {(wo, s): T8(wo) e B},
A' = {(wo, s): T,(wo) E A}.

The mapping i = (p, q) establishes ani isomorphism of B anid B', which is con-
tinuous, if the topology on B' is the product of the discrete topology on C
with the usual one on R.

ILet Ba be the set of all (w,, s) stuch that (w,,, s + it) e B' for all Jul < 6. For a
function g with support in Ba the funictioins g, defined by g,,(wo, s) = g(wo, s + u)
has support in B'. We look at the i-image of P aiid find (P.XB)i g,, =

(P.XB)i O g, since i*(g,,) = 7*o i*(g). With the abbreviation (P)i = P, this
can be written as

(63) JR g(wo, S) (11 = fJ, y(w, S + 1a) (If, for all itu < 6.

FXrom this equation, which lholds for e-ery 6 and every g satisfying the corre-
sponding conditions oni the support, we are goillg to derive that the restriction
of P to B' is the restrictioin of a product measture, whose second factor is a
Lebesgue measure, and whose first factor Q is a certaini measure oni the cross-
section C = -co: t(w) = tfo,

(64) (P XB)i = (Q X L) XBw.

In fact, if f defined on Clhas support contaiined in the set of wo's such that
(wo, a) e BW and (wo, b) c Ba for a certaini pair a < b, then F defined on B' by
F(wo, s) = f(wo) * h7(s) has support in B' if we assume h to be a Lebesgue-integrable
function with support in (a - 6, b + 6). Fix f and consider the linear functional

(65) L((h) = f F (41 = f f(coo) .h(s) (IP (wo, s).

If the support of h is contained in (a, b), theni the support of hu, h1(s) = h(u + s)
is containied in (a - 6, b + 6) for all ijul < 6. We conielude from the relation
above that L(h,) = L(h) for Jul < 6, since Lebesgue measure is the only trans-
lation invariant measure on an interval

(66) f F P= f f(wo)h(s) dP = f h7(s) (is 1 f(wo) dQ

witlh a certaiin measurc Q.
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The set B' is open and the conclusion holds for every 6 > 0. Thus, the iieas-
ures P* XB' and (Q X L)XB' coincide on the a-algebra generated by the functions
of the form F(wo, s) = f(oo) -h(s), which have the property that i*(F) is Slz-meas-
urable. This a-algebra includes the one generated by the continuous functions.

After this study of P near the cross-section C with the help of the isomorphism
i = (p, q), we look closer at its (p-image, on the one hand, and its T1o-image on
the other. We put

i-1(wo, s) = X c B,

V(Wo, s) = r(W) = 1v(TYwo),

(67) O(w,, s) = f v(wo, u) du = s + t(T'8wo) - t(oo),

4& (co, S) = (coi-o(, S),
x(wo, s) = p o i-'(Wo, s),

an)d have

(68) x('o, s) = 4U,o)('g(wO)) = 4(0o,g(0, s)).
In fact,

r()dt r((6)) t(w) - to = f d (Tuoo) du = -q(cw) + f v(wo, u) dt,

(70) '(c) = '()(w) = T( to° 7'to(w)
= ()to T() oTt(p())

= 7'(wo,s) Tto(P(w)).
For every fixed Wo, g(wo, s) is an absolutely colntiinuous moniotone fuinetion on

the interval of all s for which (wo, s) E B'. We proved in section 2

(71) f h(g(wo, s))Iv(.o, s)I ds = f h(u) du

if g maps in a one-to-one fashion onto an interval containing the support of h.
Remark now that if h is a function on Q such that 'p*(h) has support in A C B,

then T*(h) has support in B. In fact, the 'p-image w' of an co, w e A, has the form
= Tt,+8(w) with a certain s, Isl < e; since X = T,(coo) withl Jul < (p -1)e

we have w' = T10+8,+u(wo) and Is + ul < p-e; thus c' = Tt,(w") with a w"e B.
This proves {c": h(Tow") # 0} C B, if {V': h('p(w')) # 0' C A.

Since denumerably many sets of the type A are sufficient to cover Q up to a
null set, in order to prove (Plvl)'p = P, it suffices to show that

(72) (P * |v|) O so*(h) = P O T.*(h)
for all functions h of the type just described.
We have
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(73) (P. vi) O = lB h(so(.)[v(w))j dP

= IB' h(x(wo, s)) *Iv(wo, s) |dQ(wo) ds

kICI h(V,(wo,(g(wo, S)))M (Io , s)I ds dQ(coo)

fJdIR h(#6(CO, u)) du dQ

fIBh(#(.o', s)) dP(wo, s)
= (P)i O>*(h)
PP 0 T*(h).

Thus (Plvl)sc and P coincide on the o-algebra generated by the continuous
functions.
The argument given in this section shows that in the most general case for

which the theorem was formulated, the restriction of I'Ivl to the part of Q
where v # 1 is mapped by p onto a restriction of P. After havinlg studied case III,
cue would perhaps not expect that the part of Q where v = 1 should make neces-
sary all of the somewhat indirect reasoning to be given now. However, I was
uinable to combine the arguments in sections 4 and 5 properly.

6. The general theorem

In the general case we approxiimlate, as we did in sectioni 4, the mapping c
by mappings p,,; i,, = Ttn(,)(U) and t,,(w) is a measurable function attaining only
denumerably many values. According to section 3, to such a mapping P,, there
corresponds a real function h,. on Q, hn(w') = Ej (&.)l where the sum is extended
over all w with psn(w) = w', for which the equality (IP *vj). n = PI hn holds.
The proof that (PIiv')Vn tends to (P. Ivl)sy in the weak sense, will be an easy

consequence of lemma 2. The convergence P-h,n-J*P will be established in-
directly. It will be shown that it is equivalent to the convergence (L X P)Hn
L X P where the function Hn on R X Q is T*(h,,). On the other hand, this
convergence will be shown to be equivalent to ((L X P)T*(jvj))4, --* (L X P),
where 4/>n is the mapping sending (u, w) into (?i + t1,(Twu), w); this i',, clearly
satisfies T(#rL/(u, w)) = ( cn(TuC) aind (L X P)T*( -)' >n ((L X p)7J*( vl)4 fol-
lows again easily from lemma 2. Also ((L X P)- 7'*(IvI))4, = L X P will be
derived from the result in section 2. It is convenient to arrange the conclusions
in a different order.

(a) Let 4' be a one-to-one mapping of the real axis satisfying the continuity
properties listed in section 2. We proved there that for every Lebesgue-integrable
function g, f g(46(u))j4,"(u)f du = f g(s) ds. On the other hand, with t(u) =
#(u) - u and #,6(u) = u + t (u) we have (P.- I4")fn = I' H,, wiith H,,(u) =
E 14,'(s)l where the sum is extended over all s with 45,,(s) = u.
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The measures (PI4/")~,6 converge to (PjL'j)4' in the weak sense. In fact, the
conditions of lemma 2 are satisfied: 4IK(u) -+ V/(u) for every u, and for an arbitrary
interval the (P l5&'I)t'7 measure differs from the (P. 1j6'1)4 measure, that is, the
Lebesgue measure by at most 2-n. We have, therefore, for every continuouis
function g with compact support

(74) f g (,6,((u)) - d(u) tdu-f g(4'(u))) "('ul)I dit = f (s) dIs,

or equivalently,
(75) P-HI-I 0 q = (P. 1"D'l)n 9- (P - 141') 0 9 = P 0 9.

(b) Let so be a mapping satisfying the conditions of the theorem, and let t,
tn, S°n be defined as above. We define the mappings 4,, 4,, of R X Q into itself as

(76) st(u, w) = (u + t(T,,w), w),
(76)p(U, Ce) (u + t.(T,,.), c").

For P-almost every w the mapping u -- u + t(T,,w) satisfies the conditions
discussed in section 2. In fact, it is one-to-onie and onto. Further, u + t(T7,,) =
v + t(T,w) implies
(77) sr(Tuw) = p(T,a), Tt,(w) = Tv(w), t(Tuw) = t(T,w),
and finally i - v = -t(Tuc) + t(T,.cw) = 0. For a given s, we find u sucl
that s = i + t(TY,,c). If cp'(Tsc) = T.(w) then

(78) 7v+t(T.@)(w) =T(w),
and for u = v - (v + t(T,w) - s) wc have

(79) T.(co) = T.7-(v+t(T.@))+s() = (),
and therefore, t(T,,w) = t(T,,w). Obviously,
(80) s = v + t(T,w) - (v + t(TL.) - s) = t(TT,.) + u = it + t(T,,W)
The continuity assumption on so stated in the premises of the theorem implies,

according to (a), that for P-almost every c,

(81) ((L X 6@)-IvI) = L X &.
Here L X 6,& denotes the product of the Lebesgue measuire and the Unlit measure
concentrated in co E :

(82) I(u, c) = d (u + t(T,,o)) = v(T.w).

Let g be a B X AZ-measuirable function such that g(s, w) = 0 if either Isl > L
or w i A; here L is an arbitrary constant and A an ni-measurable subset of Q
with finite P-measure. We can then apply Fubini's theorem

(83) (LX P) 0 =fdP (L X 6.) O g

= f d13 ((L X k,,)IvL)P K g = ((L X P)ji)'I)' 0 g.
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Thus we have proved
(84) ((L X P)IvJ)P= L X P on B X SZ.

(c) By the argument in (a), with the definition of Hn(s, co) as given there,
we have for P-almost every w,
(85) (L X 6.)H. = ((L X &0)lvl)4v!> - L X & ( eweakly.
By Fubini's theorem and the dominated convergence theorem we obtain the
following: if g is a B X Mt-measurable bounded function, which is partially
continuous in the first argument and has finite support in the sense described
in (b), then
(86) (L X P)Hn 0 g (L X P) 0 9
In fact, in

(87) f dP ((L X 3.)H 0 9g)
the integrand converges almost everywhere, vanishes outside a fixed set A of
finite measure, and is bounded by an integrable function. If 0 < g < C, then
(88) 0 < (L X 6Q)H. O g = ((L X 6&)jvJ)4P. 0 g < (L + 2--)C.

(d) From the property of (L X P)-Hn just proved, a property of P-h. will
be derived. Namely, Hn depends on Tu(w) rather than on the pair (u, w), that
is, H = T*(h.). In fact,

(89) hn(Tucr) = L Jv(T,co)j summed over all s with pO(T8w) = Tu(w),
Hn(u, .) = E jv(s, w)l summed over all s with #,6f(s, co) = (u, w).

Since T(4n(s, w)) = (pn(T,(), we have to show that the number of different T,w
with (p.(T.c) = Tuw is equal to the number of different s with the property that
#6(s, co) = (u, w).

(a) Let T.i(w) be pairwise unequal and all V.(T.,4) be equal, i = 1, 2, ** X k.
We construct pairwise different s3 such that T.:(cc) = T.,(w) and all ss + tn(T8zW)
are equal. For simplicity of notation we write t(u, co) for t(Tucc). Put
(90) St = Si + (SI - Si + t(S1, Cw) - t.(si c)).
Then we have Tst(w) = T./(w), since
(91) T8, ;+tn(s,w)-t(ai,c)(w) = Cc.

Therefore,
(92) t^(sf, co) = t^(si, co) and ss = si + tn(s1, c) - t.(si,cw).

(i3) Let the si + t.(si, co) all be equal and let the si pairwise unequal i =
1, 2, - * , ik. We show that the Ti,(co) are pairwise unequal. In fact Ti,(c) = T'k(Ca)
implies tn(si, CO) = tn(sk, co), and 0 = tn(si, c) - tn(sk, c) = Sk-Si; therefore
i = k. However, the Son-images of the Tis(cc) coincide.

Statement (a) shows that hn(Tuw) < Hn(u, co) and (d) shows that hn(Tucc) >
Hn(u,f °).
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(e) Consider a function on R X Q of the form F-G where F(u, c) =f(Tuw)
with a bounded continuous functionf on Q with finite support, and G(u, w) = g(u)
with a continuous function g on R with compact support. The function F.G
satisfies the conditions wvhich guiarantee, according to (c), the convergence
(9)3) (Li X P)HII,, 0 F -G (Li X /)) E -G.

O(n one hanld,

(94) (L X P) 0 F -G = du g(?I) * .f(7 ,W) (IP = d/i(gi() f *f (1i;
on the other hand,

(95) (L X P) I,, F G = d'u q(ug) *f h,,(7T,,w) .f(T,w) dIP

= f d1? g(u) f. .h,, (IP.

Therefore, I). h, Of.f P Of for every colitnuous fulnetiol *f w\itlh finite suip-
port. For such ftunctions we have

(96) P.h,, 0 f = (P1vj),n O f (I'.vP )0 f.
I emma 1 yields the following conclusion: for an arbitrary P-integrable

function g, the equality

(97) (P 1 O 7`*(g) = P 0 g
holds foI,L-almost every s. The theoremii is thltis completely plroved.

7. Applications

We IIow show how the theorem applies to the situations sketched in the begin-
niing. Let (Q, O, P, x,, F, B) be a strongly stationary nmeasturable process with
values in E; the shifts are called T,. We assume h to be a real-valued B-measuir-
able function on E such that

(1) h(x(t, w)) is a continuous fuinctionl of t for P'-almost every w,
(2) h(x(t, w)) - t = 9(t, w) vanishes for exactly one value t(w), /'-almost

surely.
It will he seen that (1) and (2) imply that h(x(t, w))- t is moniotonie. We
assumie, fiirthermore, tlhat

(3) g(t, w) maps I-ebesgue measuire inlto a measure absolutely eolntinulolus
with respect to Lebesguie measure L I' L.y(t, w).

Theni "the shift by h," Sh,, defined by the property that XjSh(w)) G B if and only
if x.+±,(,,(w) E B, satisfies the assuimptions requiired, anid (IP V ))Sh = IP for
'(') = y(0, c).
PROOF. The soluitioni t(w) of the equiiation h (x(t, w)) - t = 0 is clearly meas-

Uriable, since the family 'x,' is measturable. 'T'lie operat ion S,, is invertible:
x 1(S-I(w')) e B if and( only if xs.,h(x(o,'))(W') e B. Conditionis (l) alnd (2) imply
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that t(7',Jw) is contiinuous as a functioii of s for P)-almost every w. Further,
0 = t(T8,c,) - h(x(s + t(T7w), c)) identically in s. We do niot indicate the de-
pendence of w for the sake of briefness. Writinig

(!38) cr(s) = s + t(T8a,)

g(t) = h(x(t, w)) - t,

wve have g(a-(s)) = s idenltically in s.
Since Sh is invertible, a' is a one-to-one mappinig of the real axis; this is shown

in section 6 (b). rrhe inverse g of a is thus monotone. Coondition (3) is obviously
equivalent to the condition that a- is absolutely continuous. The theorem there-
fore applies.
To calculate o-'(O) = v we notice that (L.v)a- = L as showni in section 2, anid

(L)g = (L- v)a - g = L t. Therefore, v is the value of the Radon-Nikodym
density of the image measurc by the mapping g. Roughly, (P'I(0, c)|)Sh = P;
precisely, (P/Y(0, W)I)Sh O 7*(f) = P O f holds for almost all s if f is an
arbitrary P-integrable functioni. Moreover-, if g(t, w) is absolutely colntinuous,
then y(t, w) = (0(t, w))-'. If the process is real-valued, and if in addition the
trajectories x(t, c,) arc absolutely continuous, then

(99) -y(t, w) = (h'(x(t, w)) xJ-(t, w)-).
We discuss how the theorem applies to the second exaample. Here (52, Iz, P,

x,, E, B) is again a stationary process, and V is a real-valued function on E,
such that for P-almost every w, -s: V(x,(w)) < 0, is a Lebesgue null set. For
every fixed s then r(s, wo) is IP-almost everywhere determinied by

(100) s = fr (s) V(x(u1, W)) du.

We showv that the "shift by T(S, W)," ,p, satisfies the assumptionis of the theorem.
The functioni so, is dcfinied by the followinlg relations: for every real u aiid every
B e B,

(101) x((o()) e B if and oInly if XU+T(8,O)Go) C B.

Clearly, yc. = (p,+,; in particular, so,` = sp_ We now fix s and study the
behavior of r(s, T,lc,) (or t(ut, w) for short) as a function of U. We have identically
in u the following relation:

(102)) If(Ow) V'(X(S, co)) (IS =fo V(x(s, )) Is = (x(s, w)) s.

WXe suppress the argumenit c and write

f(u) = U V(x(s, W)) (Is,
(103)o

a(u() = ut -+ I(ul, co).

Both f amid a- are monotone functionls of u. The functioni f is absolutely contirnu-
ous and has the property that it miaps a set of Lebesgue measure 0 into a Le-
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besgue null set. This follows from the assumption that V(x(s, co)) vanishes oIn a

null set only. The inverse function of f, f' = h, is theiefore absolutely con-
tinuous.
We have identically in u,

f(o(u)) -f(ut) =s,
(4(u) = h(s + f(u)).

Since h and f are absolutely continuous and s is a constanit, a- is absolutely
continuous. The theorem is applicable, and

(105) f'(a(u)) -a'(u) -f'(u) = 0,
(106) v(@) V(X(t(O, W), c)) = v(Cw) V(XWp(c))) = V(X(0, W))A

(107) (P . V(x(O,'))) =P,

(108) (P.V(x(0, W)))M = P (X(O, c)).
This completes the argument.
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