RANDOM SHIFTS OF
STATIONARY PROCESSES

HERMANN DINGES
MATHEMATISCHES INsTITUT DER TECHNISCHEN HocHSCHULE, MUNCHEN

1. Introduction

A variety of results concerning strongly stationary processes with smooth
trajectories turns out to be derivable from a theorem, which extends the formula
for changing the variable in the differential on the real axis to the case of measure
spaces with a one-parameter group of measure preserving transformations.

The paper starts with the statement of three results, which will be shown
in the end to be special cases of the main theorem. The middle part consists of
the formulation and proof of this main theorem.

ExampLE 1. Let z,, t € R be an E-valued measurable stationary process,
that is, a Lebesgue-measurable family of mappings from a measure space
(2, M, P) into a measure space (£, B). The o-algebra 9 is generated by the z,
and P is a o-finite measure such that the shift transformations S,, v € R, leave
P unchanged; that is,

(1) PSH(’TIJ € Bl: ey, € Bﬂ) = 1)(xtl+“ € Bl: oy Ttatu € Bﬂ)

= P(.Tll GB], ,xtnEBn),
and therefore,

@) PS.(4) = P(4), forall A € 9.

Assume now that E is the real axis and that for almost all o, w € Q, (¢, w) =
z(w) is a differentiable function of ¢ with derivative (¢, w). Let ¢ = h(z) be a
differentiable function such that for almost all w the graphin R X R of { — (¢, w)
has exactly one point in common with the graph of  — A(z). This common point
will be called (t(w), z(t{w), w)); h(z(t(w), w)) = {(w). The most trivial example
is h = t* = const. If (¢, w) is bounded from above for all paths of a process,
then every h with sufficiently small positive derivative would do.

Now let & be fixed. We write (z(w), #(w)) which is short for (z({(w), w),
2(l(w), w)). We consider the “shift by A" S, defined as follows: Si(w) belongs to
the set {z, € B} if and only if 2({(w) + u, @) € B. The result that interests us
here is

3) (P)Sh = P(1 = (0, w)h'(x(0, »)))
or
(4) (P — &(w)h'(@(@))) )8, = P.
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To clarify the notation, let us spell out the result. The image of P by S, is
absolutely continuous with respeet to P, and the Radon-Nikodym density is the
above function of [x(0), #(0)]. This implies the following:
(a) if the joint distribution of (x(0, w), #(0, w)), or equivalently, that of
(z(t, w), 2(t, w)) is dulx, &), then the joint distribution of x(t(w), w),
&(t(w), w) is

») (1 — &1 (2)) dulz, 2);
(b) if we associale a function F(¢, x, £) with every P-integrable f on 2 by the
relation
(ﬁ) E(.”I(t) ""’); :i'(ly w)) = F(tr x([: w)’ j'(t; w))r
then
(7 E(flx(w), #(@)) = F(t(w), v(w), #(w)).

Notice that F(t, x, &) is determined by du(x, #), almost everywhere for every
fixed t. Thus, for a fixed h, F (t(w), x(v), x(w)) is usually nowhere on Q determined
by f.

However, if f,(w) = f(Tw)), then we can choose the associated functions ¥,
so that

(8) Ft,v,a) = F(t + s, 2, 2).

The result started above is an oversimplification of the relation that will actually
be derived below; namely, the set of all triples s, x, £ with

9) E(fija(w), #(w)) # F(s + (), 2(w), #(w))

is a null set with respect to the product of Lebesgue measure and du.

ExampLE 1. Let z, again be an E-valued measurable stationary process on
(2, M, P). Assume that V is a strietly positive function on K such that for
almost all w,

(10) s(a, w) = /(-)a Vix{t,w))dt isfiniteand s(a,w)— £* as a— +T.w.
The function s(a, w) thus has a uniquely determined inverse 7(s, w),

T(8w) |, .
(1) s= [T V@ W) d

Tor cvery s we eonsider the “shift by 7(s, w)” T defined as follows: T (w)
belongs to {x, € B} if and only if 2(7(s, w) + w, w) € B. Clearly, Ty T'sr = Ty .
In this case our result on the images of I’ by the T, is:

(12) y(s, w) = 2(7(s, w), s € R is a stationary process on
(Q, W, P-V(a(0, w)). The shifts of the y-process are the 7',.

As one may notice, this implies that the stationary distribution of the y-process
is V(x)-du(x), if that of the z-process was du(x). The transformation described,
when applied to the y-process with ¥V’ = 1/V, gives back the z-process.

Exampie 111. R. A. Dudley has studied families of probability measures
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DL &= (X, T, Ta, 3), v = (11, 12, 3), 9|2 < 1, on the set @ of all world lines
with right-hand side continuous tangents everywhere in relativistic space-time
with the following properties.

(1) If w is the orbit of a mapping from (—«, 4« ) into R*,

(13) t— (CL'() + t’ xl(t; w): .’L’g(t, w): 3‘3(t) w)) = ('l'U + 1; .?'(t, w));

then P! is defined on the g-algebra 9= = 1= generated by the sets {z(, w) € B},
where B is a Borel set in B3 and ¢ > 0.
(i1) For Pi-almost all w, one has

(14) (20,20, @) = & and a‘iz(o, ©) =1
“Pr-almost all world lines pass through z with velocity ».”

(iii) For every ¢t > 0 and every A in the s-algebra generated by the xu, u >,
the Markov property is satisfied; that is,

(15) P (Ag;t, Hﬁiz,) = Py % (A)
where y(w) = (20 + ¢, 2(t, w)), w(w) = (d/dO)x(t, »).

(iv) If the action of the orthochronous inhomogeneous Lorentz group on the
space © of world lines is defined in the obvious pointwise fashion, then the
induced mappings on the measures on Q act on the family {P;}. “The Lorentz
group transforms the P; into each other.”

Dudley’s result is, roughly speaking, that there is a one-to-one correspondence
between such families {P;} and the infinitely divisible (radial) probability
measures on the Lobatchevski space.

It is another application of the main theorem of this paper to show the
existence of a ¢-finite measure P on Q to every family {/’7}, which is invariant
under all Lorentz transformations and such that the I’; are the conditional
processes. It turns out that P restricted to the g-algebra 9M® can be defined by
an integral: for A € o=,

(16) P = [[ Plaz(d) du@ (1 = k) dv(2)

where du denotes the 3-dimensional Lebesgue measure and dv the Haar measure
on the Lobatchevski space. We will not give a full proof of the Lorentz invariance
of P in this paper. However it may be of interest to see a link to the examples
I and II. I'rom (iii) and (iv) and the strong Markov property, for every P7 it
follows that the process v with

(7) o, ) = 3 (U, @), 0)

is a process with independent inerements on the Lobatchevski space for every
P, if i(r, w) is determined as
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(18) ;= ﬁ e (1 - (Ji (s, w)>2>1/2 ds

(r measures the proper time on a world line, a quantity, which does not refer to
any specific coordinate frame). Sinee the Haar mecasure dv(r) is a stationary
distribution for the v-process, according to example 11,

(19) (1 — o)~ dw(r)

is a stationary distribution for the process (d/dt) z(t, w).

This is roughly the argument for the invariance of I’ under time shifts; the
result of the first example can be used to establish the invariance under homo-
geneous Lorentz transformations; space shifts act in a trivial way on . A de-
tailed study of the Lorentz-invariant Markov random functions P> will be given
in a forthcoming paper. Dudley’s work will appear in Arkiv for Matematik.

These results can be obtained by application of the following theorem.

THEOREM. Let (2, M, P) be a o-finite measure space, and T, t € R a one-
parameler group of P-preserving transformations of @, acting measurably on Q.
Furthermore, let ¢ be a measurably invertible transformation of Q such that there
exists a real-valued function t(w) with the property that o(w) belongs to a set A € M
if and only if T (w) belongs to A for t = t(w).

The following regularity assumption on ¢(w) is made. For almost all , {(s, w) =
{(Tw) as a function of s, s € R, has only finitely many jumps on a bounded
interval, and between two jumps {(s, ») is absolutely continuous. The assertion
is that if »(w) = 1 4+ (d/ds)i(0, w), then ¢ maps the measure P onto I’ in the
somewhat weakened sense that for every integrable ¢,

(20) [gar = [ oo o) ar

for Lebesgue-almost all s.

In sections 2, 3, 4, and 5 we shall study a couple of special cases of the theorem
before we establish the proof for the general case in section 6. The considerations
in sections 2 and 3 will be needed there. The arguments in sections 4 and 5 taken
together are very close to giving a proof of the theorem. The gap lies in the
irregularity of the decomposition of © into parts, where sections 4 and 5, respec-
tively would apply, if the decomposition were nice. The argument in section 6
seems less direct. Besides, it requires a lot of preparation of topological nature.
Since some of those topological concepts are also needed in sections 4 and 5, this
preparation is presented after section 3.

In more complicated formulas we shall usc a more convenient notation.
For a P-integrable function f and for a measurable set A we shall write,
[fdP =P fand [, dP = P O (4).

If f' is a measurable function on (€, ') and ¢ a measurable mapping from
(@, M) into (¥, M’), then ¢*(f’) denotes the N-measurable function f defined
by f(w) = f'(¢(w)). Let (P°)g,, or shortly, (P)e, denote the image of P on (&', o1").
We have by definition of this image
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(21) Pl O f =P O *(f)
for every f’ for which ¢*(f’) is P-integrable.

If g is a nonnegative 9M-measurable function; then P-g denotes the measure
defined by

(22) Pg O (A) = [, gdp.

The assertion of the theorem is, roughly speaking,

(23) (P-lDey = P;

the exact statement is, for every P-integrable g and for L-almost every s,
(24) (P, O Tg) = PO T¥Hg) =P O g.

Throughout the paper L denotes the Lebesgue measure on the real line.

2. Transformations of the Lebesgue measure

The real axis with Lebesgue measure L is the measure space Q. The translations
form the group of L-preserving transformations 7,(w) = w + ¢, and ¢ is a piece-
wise monotone function and is absolutely continuous on every piece; it attains
every real value exactly once. Clearly, #(v) = ¢(w) — w then satisfies the
regularity conditions stated in the formulation of the theorem. Thus, in this
special case, the assertion is

- d d
(25) (2] + g5 )ow = (£{3)e = -

This is just the formula for changing the variable in the mecasure element dx,
usually written as
ld(e@)] = l¢|-dz,

[ 1@ e @l dz = [ 1@)dy.

This formula is usually proven in elementary texts for continuous ¢ with con-
tinuous derivative. In our case ¢’ is measurable; therefore, by Egorov’s theorem,
we can find a countable union of intervals with a total length smaller than e,
such that ¢’ is continuous on its complement A.. We can assume, that A,
contains none of the points of discontinuity of ¢. There is a continuous function
¢. which coincides with ¢’ on A, has constant sign in every interval of monoto-
nicity for ¢, and satisfies for every pair w, o’ € 4.,

@7) [F gido = [ of do = o) = o(@).

We will now fix an arbitrary o* € A, and consider the function ¢., which
does not depend on the choice of w*,

(28) pdw) = o(@®) + [ ot de.

The function ¢. coincides with ¢ on A,, has continuous derivative ¢!, and

(26)
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defines a one-to-one mapping of the real axis onto itself. The classical formula
yields, therefore,

(29) (Ligd)pe = L
and
(30) (L-[Ad-le' e = (L[4 lo)pe = L-[Al]

if [A.] denotes the indicator function of A, and [A¢] that of the ¢-image of ..

Since ¢ is absolutely continuous, the complement of A, is mapped into a set
of measure less than &(¢), where 8(¢) — 0 as e — 0. Therefore, L-[AZ] increases
to L as e decreases to 0. This shows that

(31) (Lie')e = L.

This result has a local counterpart. If ¢ is a strictly monotone absolutely eon-
tinuous mapping of an interval 7 onto an interval I’, then for every function h
which vanishes outside 7/,

(32) [ hdl, = / h(e(@))-'¢ (@) dL.

A second speeial case is well known in fluctuation theory.

3. Measure preserving transformations on denumerable decompositions

The measure space Q is arbitrary; {7 is an arbitrary group of measurc-
preserving {ransformations; ¢ is an invertible mapping of Q@ onto ©; and there
exists a decomposition of Q into denumerably many B, such that ¢ is given by
a certain T, on B;. We shall prove that ¢ is measure preserving.

The ¢-images of the B;, called Bi, form a decomposition of 2. We show for a
set A’ contained in one of the Bj, that (?)e & (4’) = P { (A”). This suffices,
since any set is a countable union of such sets.

Set A = {w: o(w) € A'}; by definition of the ¢-image of I,

(33) P O (A4) =1 O (4).

Tor w € A, p(w) € A’ C B; we have Ti(0) = o(w) € A’, and since T is in-
vertible, only the w in A satisfy 7' (w) € A’. The transformation Ty, is measure
preserving; thus

(34) (P) O () =P O )= )T O () =P O (4

There is alco a local counterpart of this result. Assume that ¢ is a mapping
into Q defined on a mecasurable subset B C @, and for w € B, p(w) = T (w),
where t(w) attains on B only denumerably many distinet values in the group.
Let g be a positive function which vanishes outside B. Let h(w') = 2_ g(w) where
the sum is extended over all w with ¢(w) = «’. Assume that h(w’) is finite for
P-almost all «’. By the argument above we get in this case

(35) (P-g)¢ = P-h.

If ¢ is the indicator function of a set B, then we shall speak of P-g as the re-
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striction of P to the set B. Some preparations are necessary for the study of more
complicated situations. :

Let {T,, u € R} be a one-parameter family of transformations of the measure
space (2, 9, P) which leave P unchanged. An 9M-measurable function f is called
continuous, if f(7.(w)) is a continuous function of u for every w. A subset 4 of
Q is called open, if there exists a function a(w) which is strictly positive on 4 and
N-measurable, and such that 7'(w) € 4 for |{| < a(w). An open set A is called
finite if P(4) < «; a continuous function is said to have finite support if
{w: f # 0} is finite. We call the Borel field generated by the finite open sets
M. The mapping 7':(u, ) — T',(w) is continuous if Q carries the topology
described and R X  the obvious product topology.

Lemma 1. If P 4s a measure on (Q, M), tnvariant under all Ty, w € R, and
Q another measure such that for every continuous P-integrable g with finite
support [ gdP = [ gdQ, then for every OM-measurable P-integrable f the set
{s: [f(T«(w)dQ = [ f(Ts(w)) dP} has Lebesgue measure 0.

Proor. If [fdP = [ fdQ for every continuous f with finite support, then this
relation holds also for every continuous integrable function. In fact, approximate
f by fe with

fw) — e for f(w) > e
(36) Je(w) =40 for [f)] <
flw) + € for f(w) < —e

The function f. is continuous, has finite support {w: |f(w)|] > €}, and |f — f.| is
dominated by |f| and tends monotonely to 0 as e tends to zero. Thus,

(37) ffdzu—/ﬁ P = fffdQ—>/fdQ.

If ¢ is an arbitrary MM-measurable P-integrable function, then g, defined by
te o

(38) 0,@) = [ g(Tu@)als) ds

is continuous for every continuous integrable p. Since P is invariant with respect
to all T's,

(39) / g, dP = f o(s) ds-[ gdP.

IFrom our assumption follows

(40) [g,, dQ = fp(s) ds-f gdp,

and therefore,

(1) J ([ 91w d@ = [ g@) ar) o) ds = 0
for every integrable continuous p. Thus

(42) [ o)) aQ = [ g(w) aP

for L-almost all s.
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Lemma 2. Let (2, M, P) and (@, M, P’) be o-finite measure spaces where &'
18 assumed to be a topological space and M the o-algebra generated by the conlinuous

functions. Let ¢ and ¢,, n = 1,2, - - - be measurable mappings from Q into @' and
(P)e = P'. We assume that
(43) on(w) = o(w) for P-almost all w.

For every positive continuous bounded f', for which (P)e O ' < » and
(P)e. O f < o for all sufficiently large n, one has

(44) Pea O f' = Pl O f".
Proor. The functions ¢¥(f') — ¢*(f’) P-almost everywhere, and
(45) sup |x(f")| < sup [f].

If x is the indicator funection of a set in 9 with finite />-measure, then we have
by the dominated convergence theorem

(46) P-x O ex(f) — Px & ¢*(f"),
(47) Px O e*(f) < linlinf P-x O ok(f)
= lim_iup P-x O o(f) < PO M.

If PO ¢f(f’) < =, then xo can be chosen such that for every indicator func-
tion x, x > xo, the integral P-x O ¢%(f’) differs from P ¢ (f’) arbitrarily
little. Therefore, the relations

(48) lim sup P G ¢i(f) < P O o*(f),
(49) Pox & ¢*(f") < liminf I & 0i(f)

hold for all indicator functions x with I> { x < «. Since P is o-finite, we have
(50) lim (P)en O f' = (P)e O f'.

Lemma 3. Let {T,,u € R} be as above, A an open set, and B C Q such that
for P-almost every w, {u: Tu(w) € B A} has Lebesgue measure 0. Then P
(BN A4)=0.

Proor. Let A; = {w: T,(w) € A for all s with [s] < §}. We determine the
measure of

(51) {(u, @): u € (=5, +8), Tu(w) € B, w € A}

in the measure space (B X Q, B X 9, L X P). Here B denotes the s-algebra of
all Lebesgue-measurable subsets of R, and L the Lebesgue measure.
By Fubini’s theorem we obtain, on the one hand,

(52) [3 (T 0 (BN 4))du=25-P O (BN 4y).
On the other hand,
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(53) (LXP)O {(u,w): ue (—6, +48), Tu(w) € B,w € 43}
< fA (L O {o: ue (=8, +3), Tu(w) € B}) dP = 0.

Therefore, P { (B N A;) = 0 for all §, and since 4 isopen, P { (BN 4) = 0.
ReEMARks. TFor an IM-measurable f the following properties are equivalent:
(a) f = 0, P-almost everywhere,

(b) for P-almost every w, L {u: f(T.(w)) = 0} = 0,

(¢) T*(f) = 0, L X P-almost everywhere.

ExampLE. Lemma 3 applies to the situation in our theorem as follows. The
set of all w where ¢(w) is discontinuous has P-measure zero. First, the mapping
T of R X Q into @ sending (u, ) into T,(w) is continuous, if we have on B X @
the product of the topology on @ and the usual one on R, and if the topol-
ogy on © is as described above. The mapping = from € into R X @ sending
w into ({(w), w) is discontinuous in B = {w: #(T,(w)) is discontinuous for s = 0}.
We have assumed that {s: {(T.(w)) is discontinuous} is denumerable for P-
almost every . The lemma tells us that P(B) = 0. We shall now show that
¢ maps null sets into null sets. Even more is true: if [ |v(w)| dP = 0 and
B = {o': ¢1(«’) € B}, then P  (B') = 0.

LemMMa 4. With the notation and the assumptions of the theorem the following
holds: P is absolutely continuous with respect to (P|v|)es, that is, [ f(o(w))|v(w)| dP
= 0 for an M-measurable positive f implies [ f(w) dP = 0.

Proor. Consider the mappings ¢ and T from R X  into Q:

T: (4, w) = Tu(w),
¥ (u, 0) = (u + HTw), ©).
We have T* o o*(f) = ¢* « T*(f) for every f, and for an f as described above,
I, X P-almost everywhere,
(55) 0 = T*([v|le*(f)) = [T*®)|T* - &*(f) = |T*@)¥* - T*(f).
Therefore, y* - T*(f) = 0 holds (L X P)|T*(v)|-almost everywhere.
Since ((L X P)|T*()|)¢ = L X P, as will be shown later on, we have

T*(f) = 0, (L X P)-almost everywhere, or f = 0, P-almost everywhere; q.e.d.
REMaRrk. Let

(56) D: = {': t(T.(¢7'(«’)) has a discontinuity for some |u| < €}.

(54)

Using lemmas 3 and 4, we conclude that if (P|v])¢s restricted to 2\D: coincides
with (P) restricted to Q\D! for every ¢, then (PJv|)osx = P on Q.

Proor. The support of the charge distribution (P|v|)¢x — P is contained
in the closed set N.soD. = {w: #(T.(¢ ! (w)) is discontinuous in » = 0} =
{w: ¢ Yw) € B}.

We proved already that P { (B) = 0, and from lemma 4 it follows that
P O (Neso DL) = 0. Therefore,

(57) (P-[o))ex O N De=0=(P) N D
«>0 «>0
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4, Further approximations

We proceed now to more complicated special cases of the theorem. We add
an assumption which is one less restrictive than that in section 3, namely, v(w) =
1, P-almost everywhere. In this case we can approximate ¢ by mappings ¢, of
the type considered in section 3. The ¢, are now not quite invertible:

(58) on(@) = Thw(w),

where 274,(w) is the largest integer less than or equal to 2"#(w). The funection ¢,
takes only denumerably many values. Therefore, (I’)¢, = I’-h, where h,(w’)
is the number of & with ¢.(w) = «’. We show, that h,(0') = 1 if H{T. (¢ (w)))
is continuous for |u| < 2—. Therefore the signed measure (P)p, — P has sup-
port contained in the set {w: ¢(Tu(¢™'(w)) is discontinuous for some |u| < 27},
On the other hand, (P)¢, — (P)¢ in the weak sense on Q\N D,. In fact,
en(w) = ¢(w) and (P)g, & (Q\Dx) N B < = if B is a finite open set. The
convergence reclations ()¢ « (P)¢, = PP-h, — P weakly on Q\N D, imply
(PYe O T.(g) = P { g for every P-integrable ¢ and for L-almost all s, as
proved in lemma 1.

The proof for h,(w’) = 1forw’ € Q\D;, is as follows. If ¢(w) = o’ and if {(T,(w))
has no jump for a u € (0, 27), then there exists an s, 0 < s < 27" such that
en(Te(w)) = o', If on(0*) = ' and t(u, w*) has no jump for a u € (—277,0),
then there exists an s € (—2-7, 0) such that ¢(7T,(v*)) = o',

In any case, to every ' ¢ D, there exists a unique w with ¢,(w) = «’. Thus,
ha(w) = 1.

The argument actually gives somewhat more. If ©* is an open part of Q
such that v(w*) = 1 for w* € Q*, then the restriction of ()¢ to the ¢-image
of @* equals the restriction of P to this set.

6. The use of local cross-sections

To the assumptions in the formulation of the theorem, we now add one
which contradicts the one in section 4 and certainly is very unnatural for the
problem, It guarantees, however, in a very nice way the existence of local cross-
sections through the orbits {T,(w);s € R} everywhere and allows the applica-
tion of the argument of section 2 through the use of Fubini’s theorem. We
assume that

(59) fi(lst [(s, @)| = [p(Ti(w)) — 1| > p! for all w, s,

where p is an arbitrary but fixed number. For convenience, we assume that
p > 1. The set Q\D/,+1, can be covered by the ¢-images of denumerably many
sets of the form

(60) A= {w: [tw) — | < €& N {w: t(T.w) is continuous for |u| < (p + 1)¢}
N {w: w = T,(wo) for an wo with t(wy) = toand |u| < (p — 1)e).
We study P on sets of the form
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(61) By, = {w: [tw) — t] < €& N {w: t(Tw) = toforsome |u| < p-€
N {w: (7T w) is continuous for |u| < p-¢}.
For an w in B there exists exactly one wy and exactly one s, |s| < e-p, such that
w = T.(wo) and t(wy) = tp. We write wy = p(w), s = ¢q(wo).

The pair (p, ¢) maps B in a one-to-one fashion into the Cartesian product
C X R, where C is the “cross-section” C = {w: t(w) = t,}. If w, o’ € B and
o' = T (w) for a se(—ep, +e¢p), then p(w) = p(w’) and ¢(w’) = ¢(w) + s.

Furthermore, B is open, so that for every w € B the set {s: T,(w) € B} is an
open interval, whose length is by the way smaller than 2¢p. Put

B’ = {(wy, 8): Ts(wo) € B},

A’ {(wo, -S‘)I Ts(wo) S A}
The mapping ¢ = (p, ¢) cstablishes an isomorphism of B and B’, which is con-
tinuous, if the topology on B’ is the product of the discrete topology on C
with the usual one on R.

Let B; be the set of all (w,, s) such that (w, s + 1) € B’ for all [u| < 4. For a
funetion g with support in Bj the functions g, defined by g.(wo, ) = g(wo, s + u)
has support in B’. We look at the s-image of P and find (P-xg)i { ¢gu =
(P-xp)i O g, since *(g.) = T¥ o i*(g). With the abbreviation (P)i = P, this
can be written as

(63) /B glwy, ) dP = [B 9wy, s + w) dP for all |u| < .

(62)

From this equation, which holds for every & and cvery ¢ satisfying the corre-
sponding conditions on the support, we are going to derive that the restriction
of P to B’ is the restriction of a product measure, whose second factor is a
Lebesgue measure, and whose first factor @ is a certain measure on the cross-
section €' = {w: t{w) = b},

(64) (P-xp)i = (Q X L) xp"

In fact, if f defined on (' has support contained in the set of wy's such that
(wo, @) € B} and (wo, b) € Bj for a certain pair a < b, then F defined on B’ by
F(wo, s) = f(wo)-h(s) has support in B if we assume h to be a Lebesgue-integrable
function with support in (a — 8, b + §). Fix f and consider the linear functional

(65) (k) = [ Fap = [ T(ewo) -h(s) dP (@, 9).

If the support of k is contained in (a, b), then the support of hy, hu(s) = h(u + s)
is contained in (a — 8, b + &) for all |u| < 8. We conclude from the relation
above that L(k,) = L(h) for |u| < §, since Lebesgue measure is the only trans-
lation invariant measure on an interval

(66) f FdP = f flwo)h(s) dP = f h(s) ds- f T(wo) dQ

with a certain measure Q.
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The set B’ is open and the conclusion holds for every § > 0. Thus, the meas-
ures P-xz and (@ X L)xa coincide on the o-algebra generated by the functions
of the form F(wo, 8) = f(wo)-h(s), which bave the property that ¢*(F) is 9-meas-
urable. This o-algebra includes the one generated by the continuous functions.

After this study of P near the cross-section C with the help of the isomorphism
1 = (p, ¢), we look closer at its ¢-image, on the one hand, and its T,-image on
the other. We put

i wo, 8) = w € B,
Viw, 8) = v(w) = v(Lww),
(67) glwo, 8) = ﬁ; v(wo, u) du = s + U(Tswo) — t(wy),
Ywo, 8) = Ty o 17 (e, 8),

X(wa S) =@ i_l(‘*’o; S),

and have

(68) X(wol S) = Tﬂ(a‘oys)(‘P(wU)) = ‘P(""U) g(wO) ‘5))

In fact,
q(w) dt q(w)

(69) tw) —th = / T (Tuwo) du = —qw) + / v{wo, u) du,
] u 0

(70) ¢(w) = 7'I(w)(‘-") = Tt(w)—ln ° 7110(“’)

= Tl(w)—to ° Tq(w) ° Tla(p(w))
= 7'a(;.:o,a) ° Tto(p(w))'

For every fixed wy, g(wo, 8) is an absolutely continuous monotone function on
the interval of all s for which (wy, s) € B’. We proved in section 2

(71) f h(g(wo, 8))|v(wn, $)| ds = f hw) du

if g maps in a one-to-one fashion onto an interval containing the support of A.

Remark now that if & is a function on Q such that ¢*(k) has supportin A C B,
then T#(h) has support in B. In fact, the ¢-image ' of an w, w € 4, has the form
w' = Tyuts(w) with a certain s, |s| < ¢; since w = T(wy) with |u| < (p — 1)-¢
we have o' = Tihtstu(wo) and [s + u| < p-¢; thus o' = TW(w'’) with a '€ B.
This proves {&'’: h(Tw") # 0} C B, if {o': h(e()) = 0} C A.

Since denumerably many sets of the type A are sufficient to cover @ up to a
null set, in order to prove (P|v|)¢ = P, it suffices to show that

(72) P-foh) & ¢*(k) = P & Ti(h)

for all functions k of the type just described.
We have
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@) (@) O e*h) = [ he@lo(w)] dP
= [, hx(@o, 8))- o, 9)]dQ(ewn) ds
= [, [ h¥a, g, 5))) - [o(en, 9] s AQ(wr)
= [, [ 1, ) du dQ

= |, h(@(wn, 5)) dP(w, s)

= (P)i O ¢*(h)
= P O THM).

Thus (Pjv|)¢ and P coincide on the s-algebra generated by the continuous
functions.

The argument given in this section shows that in the most general case for
which the theorem was formulated, the restriction of Plv| to the part of @
where v # 1 is mapped by ¢ onto a restriction of P, After having studied case III,
cne would perhaps not expect that the part of @ where v = 1 should make neces-
sary all of the somewhat indireet reasoning to be given now. However, I was
unable to combine the arguments in sections 4 and 5 properly.

6. The general theorem

In the general case we approximate, as we did in scction 4, the mapping ¢
by mappings ¢.; ¢» = Tt (@) and t,(w) is a measurable function attaining only
denumerably many values. According to section 3, to such a mapping ¢, there
corresponds a real function h, on Q, h,(w’) = 3 |v(w)| where the sum is extended
over all w with ¢,(w) = ', for which the equality (I’ |v|)¢. = P-h, holds.

The proof that (P-|v])¢, tends to (P-|v])¢ in the weak sense, will be an easy
consequence of lemma 2. The convergence P-h, — I’ will be established in-
directly. It will be shown that it is equivalent to the convergence (I. X P)H, —
L X P where the function H, on R X @ is T*(h,). On the other hand, this
convergence will be shown to be equivalent to ((I. X P)T*(|v|))¢n — (I. X P),
where ¢, is the mapping sending (u, w) Into (u + t,(7.w), w); this ¢, clearly
catisfies T(¥n (1, w)) = @u(Tww), and (L X P)T*([|)¢. — (I, X P)T*(Je))y fol-
lows again ecasily from lemma 2. Also ((L X P)-T*(jp)))¢ = L X I’ will be
derived from the result in section 2. It is convenient to arrange the conclusions
in a different order.

(a) Let ¢ be a one-to-one mapping of the real axis satisfying the continuity
properties listed in section 2. We proved there that for every Lebesgue-integrable
function ¢, [ g (u))|y¥' (u)| du = [ g(s) ds. On the other hand, with t(u) =
Y(u) — u and ¥o(u) = u + t.(u) we have (P-|¢/|W» = PP-H, with H,(u) =
> [¥/(s)| where the sum is extended over all s with ¥,(s) = w.
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The measures (P|Y’|)¢n» converge to (P|y/|)¢ in the weak sense. In fact, the
conditions of lemma 2 are satisfied : ¥, (u) — Y(u) for every u, and for an arbitrary
interval the (P-|¢'|)¢» measure differs from the (P-|¢’|)¢¥ measure, that is, the
Lebesgue measure by at most 2—». We have, therefore, for every continuous
function g with compact support

(74) /g(¢,,(z¢))~hl/'(u)| du—)/ g((w))- | (w)| du = fg(s) ds,
or equivalently,

(75 PH,Og= LW Og>@PWWOg=LOyg
(b) Let ¢ be a mapping satisfying the conditions of the theorem, and let ¢,
ln, ¢» be defined as above. We define the mappings ¢, ¢, of R X @ into itself as

Y, w) = (u+ (Tw), ©),
¥y @) = (u + t(Tww), @).

For P-almost every w the mapping u — u + t(7.w) satisfies the conditions
discussed in section 2. In fact, it is one-to-one and onto. Further, v + t(7T\w) =
v + t(T,w») implies

() ¢(Tw) = ¢(Tw), T (w) = Thyw), H(Tw) = t(Tw),

and finally u — v = —¢(Tww) + {(Tw) = 0. For a given s, we find u such
that s = v + {(Tw). If ¢ Y(Tw) = T.(w), then

(76)

78) Tv+t(Trw)(w) = Tx(w)r
and for u = » — (v + ¢{(Tww) — s) we have
(79) Tu(w) = Too T pturwntsw) = Tilw),

and therefore, t(T,w) = t(Tw). Obviously,
(80) s=v+ t(Tw) — @+ t(Tw) — s) = t(Tw) + u=u+ (T w).

The continuity assumption on ¢ stated in the premises of the theorem implies,
according to (a), that for I>-almost every w,

(81) (L X 8,)-|ohy = L X b,

Here L X 5., denotes the product of the Lebesgue measure and the unit measure
concentrated in w € Q:

(82) V(u, w) = diu (u + T w)) = v(Tw).

Let g be a B X 9-measurable function such that g(s, w) = 0 if either [s| > L
or w & A; here L is an arbitrary constant and A an 9-measurable subset of Q
with finite P-measure. We can then apply Fubini’s theorem

(83) (LXP)Og=[(lP(LX6w)<>g

= [ar (L X 8l O g = (L X P)y O .
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Thus we have proved

(84) (LXP))y =LXP on B X m.
(¢) By the argument in (a), with the definition of H.(s, w) as given there,

we have for P-almost every o,

(85) (L X 8,)H, = (L X 8.,)|o))¢n— L X 8, weakly.

By Fubini’s theorem and the dominated convergence theorem we obtain the
following: if g is a B X 9M-measurable bounded function, which is partially

continuous in the first argument and has finite support in the sense described
in (b), then

(86) (LXP)H, O g—(LXP)Oyg.
In fact, in
(87) [ 4P (L X 8)H, O g)

the integrand converges almost everywhere, vanishes outside a fixed set A of
finite measure, and is bounded by an integrable function. If 0 < ¢ < C, then

(88) 0 (LXH.Og= (LX) O g < (L+2C.

(d) From the property of (L X P)-H, just proved, a property of P-h, will
be derived. Namely, H, depends on 7T,(w) rather than on the pair (u, w), that
is, H, = T*(h,). In fact,

ha(Tyw) = 3 [0(Tyw)| summed over all s with ¢,(T.w) = Ty (w),
H,(u,w) = 2 |v(s, »)| summed over all s with ¥.(s, w) = (u, w).

Since T(Yn(s, ) = ¢n(T.w), we have to show that the number of different 7w
with ¢,(Tsw) = T,w is equal to the number of different s with the property that
¥als, @) = (u, w).

(a) Let Ty(w) be pairwise unequal and all ¢,(T,w) be equal, 2 =1,2, ---, k.
We construct pairwise different s; such that Ts!(w) = T,(w) and all 5§ + £,(Tew)
are equal. For simplicity of notation we write ¢(u, w) for {(T,w). Put

(89)

(90) st = 8i+ (51 — 8i + ta(s1, @) — ta(s85, 0)).

Then we have Ts)(w) = T,.(w), since

(91) To—sittalo)—talss) (@) = w.

Therefore,

(92) ta(sh, @) = tu(si, @) and st = s + t,(s1, w) — ba(sh, w).

(8) Let the s; + t.(s;, w) all be equal and let the s; pairwise unequal i =
1,2, - -+, k. Weshow that the T',(w) are pairwise unequal. In fact Ty, (w) = Ty(w)
implies £,(si, ) = t4(sk, @), and 0 = t,(s;, w) — £a(sk, w) = 8 — 8;; therefore
1 = k. However, the ¢,-images of the T,,(w) coincide.

Statement () shows that h,(T.w) < H,(u, w) and (8) shows that h,(Tw) >
H,(u, w).
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(e) Consider a function on R X @ of the form F-G where F(u, w) = f(T.)
with a bounded continuous function f on @ with finite support, and G(u, ) = g(u)
with a continuous function ¢ on R with compact support. The function F-G
satisfies the conditions which guarantee, aceording to (¢), the convergence
(93) (LX PYH, O F-G— (LX) O F-G.

On onc hand,

O (LXP)OPG= fR du glu) - /;f(T,,w) ar = fk du g(n) - [},m/);
on the other hand,

95) (L X PYH, O F-G = [ dugho) - [ h(T.w) f(T.w) dP

= fk du g(uw) /;fh,, ar.

Therefore, I’-h, & f— I O f for every continuous funetion f with finite sup-
port. IFor such functions we have

(96) P-h, <> f= (])II")(Pn <> f— (P'!l"|)¢ O I
Temma 1 yields the following conclusion: for an arbitrary P’-integrable
function g, the equality

(97) (Pl O T¥g) =P O g

holds for L-almost every s. The theorem iz thus completely proved.

7. Applications

We now show how the theorem applies to the situations sketched in the begin-
ning. Let (Q, 9, P, z,, F, B) be a strongly stationary measurable process with
values in E; the shifts are called T',. We assume h to be a real-valued B-measur-
able function on ¥ such that

(1) h{z(t, w)) is a continuous function of ¢ for />-almost every w,

(2) h(z(t, w)) — t = g(t, w) vanishes for exactly one value Hw), IP-almost

surely.
It will be seen that (1) and (2) imply that h(x(t, w)) — t is monotone. We
assume, furthermore, that

(3) g(t, ) maps Ichesgue measure into a measure absolutely continuous

with respect to Lebesgue measure L — L-y(t, w).
Then “the shift by h,”’ S, defined by the property that z.(S,(w»)) € B if and only
if Ziprwl(w) € B, satisfies the assumptions required, and (’-|¢])S, = > for
[0(w)| = ¥(0, w).

Proor. The solution {(w) of the equation h(x(f, w)) — ¢ = 0 is clearly meas-
urable, since the family {z, is measurable. The operation S, is invertible:
2,(Sy (w") € B if and only if Xe_1n(r0,0) (@) € B. Conditions (1) and (2) imply
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that #(7.w) is continuous as a function of s for I’-almost every w. Further,
0 = i{Tw) — hiz(s + (T w), w)) identically in s. We do not indicate the de-
pendence of w for the sake of briefness. Writing

a(s) = s + t(Tw)
g(t) = hz(t, w)) — ¢

we have g(a(s)) = s identically in s.

Since S, is invertible, ¢ is a one-to-one mapping of the real axis; this is shown
in section 6 (b). The inverse g of ¢ is thus monotone. Condition (3) is obviously
equivalent to the condition that ¢ is absolutely continuous. The theorem there-
fore applies.

To calculate ¢'(0) = v we notice that (L-v)e = L as shown in section 2, and
(L)g = (L-v)o o g = L-v. Therefore, v is the value of the Radon-Nikodym
density of the image measure by the mapping g. Roughly, (P|y(0, w)|)Sy = P;
precisely, (Py(0,w)))Sy O T%(f) = P & f holds for almost all s if f is an
arbitrary I’-integrable function. Moreover, if g(f, ») is absolutely continuous,
then y(1, w) = (§({, w))~'. If the process is real-valued, and if in addition the
trajectories x(t, w) arc absolutely continuous, then

(99) v, w) = (W(x(t, ) &, w) — 1)~

We discuss how the theorem applies to the second example. Here (@, 9, P,
x, E, B) is again a stalionary process, and V is a real-valued function on K,
such that for P-almost every w, {s: V(z,(w)) < 0} is a Lebesgue null set. For
every fixed s then 7(s, w) is P-almost everywhere determined by

Il

(98)

(100) s = /;)T(s'w) V(x(u, w)) du.

We show that the “shift by 7(s, w),” ¢, satisfies the assumptions of the theorem.
The function ¢, is defined by the following relations: for every real u and every
B e &,

(101) 2. (es(w)) € B if and only if 2y 4,0 (w) € B.

Clearly, ¢, ° ¢, = ¢upe; in particular, ¢! = ¢_,. We now fix s and study the
behavior of 7(s, T.w) (or {(u, w) for short) as a function of u. We have identically
in u the following relation:

102) [ Vs, @) ds = [ V(s Tw) ds = ST Gt @) ds.
We suppress the argument o and write

Jw = [ Vals, @) ds,

o(u) = u + t(u, w).

Both f and ¢ are monotone functions of u. The function f is absolutely continu-
ous and has the property that it maps a sct of Lebesgue measure 0 into a Le-

(103)
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besgue null set. This follows from the assumption that V" (x(s, w)) vanishes on a
null set only. The inverse function of f, f~! = h, is therefore absolutely con-
tinuous.

We have identically in «,
(104) fla(w)) — f(w) =5
o(u) = h(s + f(u)).

Since h and f are absolutely continuous and s is a constant, ¢ is absolutely
continuous. The theorem is applicable, and

(105) J'e()-o'(w) — f'(w) = 0,

(106) v(w) - V(z(U(0, ©), ) = v(w)- V(z(e:)())) = V(2(0, »)),
V(2(0, ) -

(o) (7 Vo, wam) = 7

(108) (P-V((0, @))es = P-V(2(0, ).

This completes the argument.
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