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1. Introduction

This paper deals with extensions of the following game. Although there are
other interpretations of this game, we use the traditional one of a ship trying
to evade a bomber. This problem is sometimes called the bomber-battleship
problem.
A ship is constrained to travel on the integer lattice of the real line. In one

time unit, he may move one unit distance to the right or one unit distance to
the left. He must move each time; he is not allowed to stay still. A bomber with
exactly one bomb flies overhead and wants to drop the bomb on the ship. He
may drop the bomb on any point he desires, but it takes two time units for the
bomb to fall. He knows that at the end of two units time the ship can only be
at one of three places: exactly where it is when he lets go of the bomb, two steps
to the right, or two steps to the left. There is no use in dropping the bomb at
any but these three points. The ship starts at the origin, and he does not know
when or where the bomb is dropped until it hits. The bomber may observe the
movements of the ship for as long as he likes before dropping the bomb. He wins
one unit from the ship if the bomb hits the ship; otherwise, there is no payoff.

This game-theoretic problem, suggested by Rufus Isaacs, was first solved by
Dubins in 1953 and published in [2]. It was solved independently by Isaacs
and Karlin [4] using a different method. Further results were obtained by
Isaacs [3] and by Karlin [5]. A general theory of games with information lag
was studied by Scarf and Shapley [7].

In papers [2] and [4], it is shown that this game has a value v1 = (3 - r5-)/2 =
.382 . . . , that the ship has an optimal strategy which is explicitly described, and
that the bomber does not have an optimal strategy (merely e-optimal ones). In
other words, there is a strategy for the ship such that no matter what strategy
the bomber uses, the ship will not be hit with probability greater than vi, and,
for every e > 0, there is a strategy for the bomber such that no matter what
strategy the ship uses, the ship will be hit with probability at least v -fE
A strategy for the ship is a rule telling him at each step with what probability

he should go to the right as a function of all his past moves. Such a strategy is
said to be Markov if this probability depends on the past moves only through
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the preceding step. If this probability is also independent of time, the strategy
is said to be stationary Markov. If the ship uses a (stationary) Markov strategy,
the sequence of choices of left or right forms a (stationary) Markov chain. In
the above problem, the ship has an optimal strategy which is stationary Markov
and invariant under interchange of left and right. This strategy is as follows.
At time zero, go right or left, each with probability 2. At all future times, go in
the same direction as the last move with probability (V"5 - 1)/2 = .618. ....
and go in the opposite direction with probability (3 - V5)/2 = .382 ....

This strategy insures that the ship will not be hit with probability greater
than v1 = (3 - V5)/2, as is easily checked. To show that v1 is in fact the value
of the game is a more difficult problem. Dubins solved it by showing that the
game has a value and that v1 is the upper value of the game. Isaacs and Karlin
solved it by dealing with the fundamental functional equation of this game. A
third method is presented below in which an e-optimal strategy for the bomber
is explicitly exhibited.
The main objective of this paper is to give an extension of this result, where

the ship is allowed to travel on a more general graph. Except for some related
problems treated by Blackwell [1] and Matula [6], I know of no other extensions
of this problem which have been solved. In section 5, some unsolved problems,
possibly more direct generalizations of the main problem, are stated.

2. Graphs
By a graph, we mean a pair (V, E) where V is a set of points or vertices, and

E is a set of unordered pairs of points of V. The elements of E are called paths
or edges. In the following two sections, we treat the extension of the problem
mentioned in the first section to the situation where the ship is constrained to
travel on such a graph from one vertex to another vertex along one of the avail-
able edges in one time unit. It is immaterial whether or not there is more than
one edge joining two vertices; for simplicity, we assume that to any pair of
vertices there is at most one edge joining them. However, it is important that
there does not exist an edge which joins one point to itself. One may take it
that the definition of a graph excludes such a possibility. We prefer to list this
restriction explicitly with two other restrictions which we place on graphs.
We define a restricted n-graph to be a graph which satisfies the following three

conditions.
(i) There does not exist an edge which joins a vertex to itself.
(ii) There are no four-sided figures. In other words, there do not exist four

distinct points A, B, C, and D such that {A, B}, {B, C}, {C, D}, and (A, D}
are edges.

(iii) There are exactly n + 1 distinct vertices joined to each vertex by an edge.
It is assumed that n is a positive integer.

It should be noted that three-sided figures are allowed, but that (ii) requires
that no two distinct three-sided figures have a common edge.
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The lattice of integers on the real line is a restricted 1-graph. Other examples
when n = 1 may easily be constructed for any finite number k of vertices in V,
provided k > 3 and k #4 4.
The hexagonal lattice in the plane provides an example of a restricted 2-graph

(figure 1). Another example of a restricted 2-graph is provided by the vertices
and edges of a dodecahedron, the regular polyhedron with twelve faces made of
regular pentagons, with twenty vertices and with thirty edges.

FIGURE 1

For arbitrary n, analogues of the hexagonal lattice in the plane can be described
in n-dimensional space to provide examples of restricted n-graphs. Finally, fig-
ure 2 provides an example of a regular graph in the plane which is a restricted
3-graph.

3. An optimal strategy for the ship

In this section, we define a class of symmetric stationary Markov strategies
for a ship traveling on a restricted n-graph. The minimax strategy within this
class is then derived. That this strategy is in fact optimal within the class of all
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FIGURE 2

strategies is shown in the following section by exhibiting an eoptimaL strategy
for the bomber.

Consider the following class of stationary Markov strategies for the ship. The
first step is chosen at random among the n + 1 points one step away, each point
having probability 1/(n + 1). From then on, the probabilities depend only on
the point just vacated, the probability of a return to that point being 1 -np
where 0 < p . 1/n, and the probability of a trip to any of the other n available
points being p. We shall find that value of p which minimizes the maximum
probability of being at any point two steps ahead among this class of strategies.
At the very start, there is probability p/(n + 1) of being at each of the

n2 + n points two steps away from the starting point (exclusive of the starting
point). The restriction (ii) on the graphs is used here to imply that these n2 + n
points are distinct. The probability of returning to the starting point in two
steps is 1 -np.
At any time later, the probability of advancing to any of the n2 points two

steps away not passing through the point just vacated is p2 for each point. The
probability of retreating to any of the n points two steps away passing through
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the point just vacated is p(l - np) for each point. The probability of returning
to the point occupied after two steps is 1 - np.
To find the minimum of the maximum of these three functions, p2, p(l - np),

and (1 - np), we note first that p(l - np) < (1 - np) for all p. Then, since
p2 is increasing in p and 1 - np is decreasing in p, the minimax strategy is
found as that value of p for which p2 = 1-np. This equation has two roots
p = (-niz n+ /4)2, of which one

(1) p = (Vn-2+ n)/2
is positive. The minimax value, denoted by vn is easily found to be

(2) Vn= p2 1-np = (n2+ 2 -nVn2+4)/2.
We must check that the probabilities of being at the various points after the

very first steps does not exceed vn. That is, we must show p/(n + 1) < Vn and
1 - np < Vn, where p and vn satisfy (1) and (2). The inequality 1 - np < v.
is obviously satisfied with equality from (2). The inequality p/(n + 1) < v,, is
equivalent to (n + l)p > 1 or to (n + 1)Vn24 > n2 + n + 2, which is
easily checked by squaring both sides.
When n = 1, we find that p = (V's - 1)/2 and v, = (3 - V5')/2, the solu-

tion given by Dubins. When n = 2, we find p = - 1 = .414 ... and
V2 = 3 - 2V/2 = .172.... Thus, on the hexagonal lattice of figure 1, the
optimal policy of the ship is to return to the point just vacated with prob-
ability .172. .. and to move to one of the other two points with probability
.414 ... each.

4. An e-optimal strategy for the bomber

Let w < v. = (n2 + 2 - nV)+ 4)/2. We will describe a strategy for the
bomber which guarantees him that he will hit the ship with probability at
least w.

Let the initial position of the ship be called point A. At time zero, drop the
bomb on point A with some small probability po, the exact value of which will
be determined later. The first step of the ship carries him to some point which
we shall call B. At time one, drop the bomb on point B and each of the n2 points
two steps away from B not passing through A with equal probabilities pi each.
(The pi are unconditional probabilities, not conditional probabilities, given that
the bomb has not been dropped.)

If the next step of the ship is to a point other than A, he is bound on step
three to go to a vertex hit with probability pi. Hence, the conditional prob-
ability that he will be hit, given that the bomb is dropped at times zero or one,
is pi/(po + (n2 + l)pl). We require of po and pi that

(3) w = pi/(po + (n2 + l)pi).
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n points n points

FIGURE 3

Thus, if the ship does not return to point A at step two, he will be hit with
conditional probability w, given that the bomb was dropped at times zero or
one. If, in this case, the bomb was not dropped, we may start over. Eventually
(with probability one), the bomb will be dropped, and we will have probability w
of hitting the ship.
Suppose now that the ship returns to A after two steps. He immediately gets

hit with probability po, or with conditional probability po/(po + (n2 + l)pi),
given that the bomb was dropped at times zero or one. If this conditional
probability is at least w, we are finished. Ordinarily, however, it will be impossible
to choose po and pi satisfying (3) and po/(po + (n2 + l)pi) > w. In such a case,
we bomb A and the n2 points two steps away from A not passing through B with
equal probabilities P2 each. If the ship goes to a point other than B at step three,
he is bound at step four to go to a vertex hit with probability P2. The overall
conditional probability that he will be hit is (po + p2)/(pO + (n2 + 1) (pi + p2)).
We require

(4) W = (PO + P2)/(pO + (n2 + l)(pl + P2)).
Thus, if the ship does not return to B at step three, he will be hit with condi-
tional probability w, given the bomb has been dropped.

If he does return to B at step three, he gets hit with probability pi, so that if
(pO + pi)/(po + (n2 + 1) (pl + P2)) > w, we are finished. But again, it is likely
that equalities (3) and (4) imply (po + Pi)/(Po + (n2 + 1) (pl + P2)) < W, SO
that in order to obtain probability w of hitting the ship, we again bomb A and
the n2 points two steps distant not going through B with equal probabilities p3
each. We continue in this manner hoping that after some k steps we will have
not only

(5)___Pi __PO+P2

(5) po + (n2 + l)pl PO + (n2 + l)(pl + P2)

Po+ pl + * * * +Pk-2 +Pk _
pO+ (n2+ l)(pl+ *-- +pk)P X
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but also
Po+ pl +**± +Pk-2 +Pk-1 W.
pO + (n2+ l)(pl+ ...+pk)

Inequality (6) together with the last equality of (5) imply that Pk-, > pk. If
w were not less than v., then equalities (5) would imply, as we shall see, that
the pi are strictly increasing, so that there would not exist a k such that (6) is
satisfied. But all we need to show is that if w < vn, then (5) and (6) may be
satisfied.

In the equations

(7) w = ip-) /(po + (n2 +1 i(7)~~~~~

= (}E - pj)/(PO + (n2 + pi

the ratio of the difference of the numerators to the difference of the denominators
is also w:

(8) w = (pj+l-pj + pj-1)/((n2 +1 )pj+1) for j = 1, * *,k-1.

In another form,

(9) pj+i a(pj-Pj-1) for j = 1, **,k-1
where
(10) a = (1 -(n2 + )w)-l.

The difference equation (9) is to be solved subject to the boundary condition (3),
rewritten as

(11) pi = (a -1)po/(n2 + 1).
Since the equations (5) and (6) involve only ratios of the pi, we may arbitrarily
set po = 1 for the purposes of the computation, and later norm the pi so that
po + (n2 + l)(p, + * + pk) = 1. Thus we add the boundary condition,

(12) Po = 1.

The general solution of (9) is

(13) pj ( 2 )4a) + C(a-a -24a)

where Cl and C2 are arbitrary constants. Boundary condition (12) implies that
Cl + C2 = 1. Boundary condition (11) implies

(14)
(a -l)po/(n2 + 1) = CQ((a + V\2 - 4a)/2) + (1 - C)((a - Va2 - 4a)/2),
or equivalently,

(15) 2C1=1-_ (n2-1)a + 2
(n2 + 1) )a2- 4a
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We want to show that all quantities involved are real, provided that w < v.
and w is sufficiently close to v.. This amounts to showing that a > 4. But
a > 4 if and only if ' < (n2 + 1)w < 1. In other words, we must show
4 < (n2 + 1)v. < 1. But it is easily checked that (n2 + 1)vn is an increasing
function ofn> 1, that (n2+ 1)vn --1 asn ,and that (n2+ 1)vnforn = 1
is 3 - V', which is between 3 and 1.
The question remaining is whether or not (6) can be satisfied for some k. As

noticed, this is equivalent to asking if for some k, Pk < Pk-1. Since a > 4, this
question is answered affirmatively provided Cl < 0, as can be seen from equa-
tions (9) and (13). But from equation (15), Ci < 0 if and only if (when a > 4)

(16) n2a22-n2(n2 + 3)a-1 < 0

or, equivalently, if and only if

(17) w2-(n2 + 2)w + 1 > 0

using (10). This is satisfied if w < v. as is easily seen.
In summary, for a given w satisfying 3 < (n2 + 1)w and w < v,, compute a

from (10) and Cl from (15). You will find that a > 4 and Cl < 0. Let C2 = 1 - Cl
and compute pj from (13). Let k be the first integer for which Pk < Pk-1. Nor-
malize these numbers by dividing by a constant so that po + (n2 + 1) l p, = 1.
With probability (n2 + l)pj, the bomb is dropped at time j, provided the ship
has alternated between the points A and B up to that time, and then the target
is chosen at random among the point where the ship is and the n2 points two
steps away from that point not reversing direction, each of the n2 + 1 points
being equally likely. If, at any time, the ship goes to a point other than A or B,
and the bomb has not been dropped, the whole procedure is repeated starting
at the new point. Eventually with probability one, the bomb will be dropped
giving probability at least w of hitting the ship.

5. Unsolved problems

There are (at least) three natural extensions of the problem mentioned in the
first section which the present methods do not treat and which are still unsolved
problems.

Problem 1. Give the ship the option of staying still. Thus at the end of two
moves, he may be at one of five positions: where he is now, one or two steps to
the left, or one or two steps to the right. The restricted n-graph could be modi-
fied to contain this problem by removing condition (i).

Problem 2. Consider the original problem on the square lattice on the plane.
Such a graph does not satisfy condition (ii) of the restricted 3-graph.

Problem 3. Assume that the bomb takes three moves to fall. This is known
as the three-move lag problem.
For each of these problems, it is known that the game has a value, that the

ship has an optimal strategy, and that the bomber does not have an optimal



DISCRETE EVASION GAMES 461

strategy. The reason that these three problems seem more difficult than those
treated in this paper is that those treated in this paper have optimal stationary
Markov strategies for the ship, whereas for the above three problems it is
conjectured that no stationary Markov strategy is optimal.
The outstanding unsolved problem in my opinion is number three, the three-

move lag problem on the integer lattice on the real line. In this problem it is
known that the optimal strategy of the ship is not Markov. But since the bomb
takes three moves to fall, one would expect the ship to use 2-dependent strate-
gies, those strategies which depend on the past only through the two previous
positions. The general stationary 2-dependent strategies invariant under inter-
change of right and left may be described by two probabilities qo and ql, where
qO represents the probability of continuing in the same direction as the last
move, given that the last two moves were in the same direction, and where qi
represents the probability of continuing in the same direction as the last move,
given that the last two moves were in opposite directions. For stationary Markov
strategies qo = ql. The best that can be done with these stationary Markov
strategies is to choose qo = qi = I, and this ensures that the ship will not be
hit with probability greater than (2) = 8- .296. . .. I claim that the best
that can be done with these stationary 2-dependent strategies is to choose
q = (3- V'3)/2 -.634. .. and qi = 3-1-.732.. ., and this ensures
that the ship will not be hit with probability greater than

(18) 3(3V'i - 5)/2 - .294 ....

It is unknown whether or not this last strategy is optimal. In fact, it has been
conjectured that no strategy with finite memory (that is, a strategy which
depends only on the last m moves for some finite integer m) is optimal for the
three-move lag problem.

Blackwell [1] treats a class of problems on the prediction of sequences, very
similar to those treated in this paper. Matula [6], in extending some of these
results, gives an example of a problem with a four-move lag in which he finds
an optimal strategy without finite memory for the sequence chooser (the ship),
and gives convincing arguments that no optimal strategy for the sequence
chooser has finite memory. Such a state of affairs could hold for the three-move
lag problem above. A lower bound on the value, v, of the three-move lag prob-
lem has been obtained by investigating strategies of the bomber similar to the
E-optimal strategies found in the previous section for the two-move lag case.
Using methods found there and analyses twice as complicated, it may be shown
that v> = .284.... Combined with the upper bound of (18), we have
.284... < v < .294....
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