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1. Introduction

Like probability theory, modern time series analysis has the feature that many
of its most elementary theorems are based on rather deep mathematics, while
many of its most advanced theorems are known and understood by research
workers who do not have the mathematical background to understand the proofs.
It is natural to think of the theory of time series analysis as composed of two
parts, foundations (a probabilistic part involving deep mathematics and based
on the unrealistic assumption that one knows the probability law of the time
series) and empirical (in which one considers statistical and computational pro-
cedures). While the probabilistic theory of time series can be pursued for the sake
of its great beauty, it would be a mistake if the statistical theory were to be
developed only for its elegance. The ultimate aim of the statistical theory of time
series analysis must be to provide data-handling procedures for achieving the aim
of time series analysis, synthesis of stochastic models which can be used to describe
and perhaps to control the mechanisms generating each time series and relating
various time series. For this reason, one may define a field which may be called
"empirical time series analysis" with aims such as the following:

(1) to develop the statistical theory in such a way that it provides a philosophy
for judging and interpreting the statistical data reduction which can be provided
by computers;

(2) to develop efficient computer programs for the statistical analysis of
empirical time series;

(3) to obtain experience in the small sample applicability and robustness of
statistical procedures derived from asymptotic theory;

(4) to focus attention on theoretical questions requiring further investigation.
One of my concerns in recent years has been to develop a computer program

for empirical time series analysis. There were several reasons motivating this
concern:

(1) I discovered that when a researcher came to me for advice on time series
analysis, I could do him the most good by (in addition to telling him which
formulas to use) making available to him a computer program for carrying out
the analysis.
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(2) I was curious to see if there were any truth to the proposition that a
statistician interested in data analysis need not be interested in theorems, since
experience with computer output would provide all the insights he needs; my
experience leads me to conclude that a knowledge of relevant theorems is
indispensable if one desires to be able to interpret as many features of the com-
puter output as possible.

(3) I desired to develop an approach to empirical time series analysis. Before
describing this approach, let me quote some recent remarks of John Tukey (who
in my view is "The Father of Empirical Time Series Analysis"). Tukey notes
([30], p. 1284) that, "It is a commonplace of science that where one can, one
learns faster by deliberately reaching in and changing something, by seeing what
happens when something is varied in a controlled way." Unfortunately, time
series often arise in the field sciences rather than in the laboratory sciences; and
it is nature rather than the observer who determines the conditions under which
the data will be observed. Nevertheless, quoting Tukey again, "How can at least
some of the advantages of reaching in be had when one can only sit and look?"
One important answer is given by Tukey, "The answer is simple and well known:
look in two [or more] places and try to assess the relationship of the things ob-
served." He sums up this point of view in the maxim, "Look here, look there,
compare, and interrelate." I believe there is another way in which to compare
and interrelate; this is by varying the way in which one analyzes the data. One
should consider a variety of models for the observed time series. For each model
one should estimate the parameters which represent the incompletely specified
characteristics of the probability law. Comparing the analyses often provides
rough tests of hypotheses concerning which model provides a better fit to the
data.
As in statistics, so in time series analysis, one may distinguish three main

problems:
(1) estimation of the parameters of a given model for the observed time series

(in particular, in any field where the properties of the phenomenon being studied
can be characterized in terms of its behavior in the frequency domain, one needs
to estimate spectral density functions and other spectral characteristics associ-
ated with stationary multiple time series);

(2) hypothesis testing and hypothesis suggesting (testing the fit of various
models and suggesting possible models to fit); and

(3) description (to provide measurements about a phenomenon, which to-
gether with other kinds of measurements, represent the observational regularities
which it is a purpose of any theory of the phenomenon to explain).
Some techniques for fitting models to single time series have been discussed

in previous papers (see Parzen [22], [24]). Fitting models to multiple time series
seems a much harder problem. While cross-spectral analysis is clearly one of the
main tools for fitting models to multiple time series, it is not yet clear what are
the sample cross-spectral functions which should be routinely computed. To an
observed sample of a multiple time series one can associate a bewildering array
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of cross-spectral density quantities involving such adjectives as "co-spectral,"
"quadrature-spectral," "partial cross-spectral," and such nouns as "amplitude,"
"phase," "coherence," and "gain."
The aim of this paper is to sketch a unified exposition of cross-spectral analysis.

The exposition is not entirely rigorous, but rather attempts to indicate the
theoretical questions which require further investigation. Among the results
believed to be new are those in the section on the asymptotic sampling theory of
partial cross-spectra. Rigorous proofs of all results stated are given in the
Stanford Ph.D. thesis of Grace Wahba, June 1966.

Applied statisticians, actually computing sample spectra, often complain that
papers written on spectral analysis are highly mathematical and offer no guide
on how to proceed in practice. I am willing to grant some merit to this complaint
in general. While this paper is not by itself a guide to how to proceed in practice,
I hope that it will be of value as a discussion of some of the main mathematical
considerations which need to be borne in mind in order to interpret sample
cross-spectra. Excellent introductions to general considerations in empirical time
series analysis are given by Jenkins [12] and Tukey [29].

2. Sample cross-spectra

Observed time series come in a variety of shapes. Economic and social time
series often have the typical shapes shown in figure 1. In analyzing observed time
series, I have found it valuable to distinguish two consecutive stages: (i) time
series transformation and detrending, and (ii) correlation and spectral compu-
tations. In forming sample correlations and covariances, one should not auto-
matically subtract out sample means (or fitted straight lines, and so on); any
such subtractions should be done in the time series transformation and detrend-
ing stage. Consequently, given finite samples of r real time series

(2.1) {Xi(t), t = 1, 2, * - *, T}, * * *, {Xr(t), t = 1, 2, T* *,
we make the following definitions.
The sample cross-covariance Rhj;T(V) of lag v between Xh(*) and X&(.) is

defined to be
1 T-v

Rhj;T(V) = 1 T- Xh(t)Xj(t + v) for v = 0,1, * *, T - 1,T t=1

1 T
(2.2) Rhj;T(V) = - Xh(t)Xj(t + v) for v = -1, -2, * , -(T- 1),Tt=-+

Rhj;T(V) = 0 otherwise.
Since

iT-v 1 T
(2.3) Rjh;T(V) = T E X3(t)Xh(t + v) = T E_ Xh(t)Xj(s- v) = Rhj;T(-V),
it suffices to compute all the cross-covariances for positive lags v to know them
for all v.
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The sample cross-spectral density function between Xh(*) and Xj(*) is defined
by (writing i for V'Tii)

1 T T
(2.4) fhj;T(W) = 2rT eiT Xh(S) Ee -iT Xj(0)7r e8=1 t=l

It may be verified that these quantities form a pair of Fourier transforms:

(2.5) Rhj;T(V) J| e&0fhj;T(w) dw,

(2.6) fhj;T(G) = E e ivwRhj;T(v).

The sample cross-correlation function phj;T(V) is defined by

(2.7) phj;T(V) = Rhj;T(V) + {Rhh;T(0)Rjj;T(0)}
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The normalized sample spectral density function fhj;T(W) is defined by

(2.8) fhj;T(W) = fhj;T(CW) + {Rhh;T(0)Rjj;T(O)}l"'
The sample cross-spectral density function is generally complex-valued. The

following notation and terminology, due to Tukey, is used to describe the real
and negative imaginary parts of fhj;T(W):
(2.9) Chj;T(w) = Refhj;T(W), sample co-spectral density,

qhj;T(W) = -Imfhj;T('w), sample quadrature spectral density.
In the foregoing definitions, we are guided by the idea that when the observed

time series are zero mean covariance stationary time series, the sample cross-
spectral quantities should provide sample versions of corresponding population
cross-spectra. However, these quantities can be defined for any sample, and their
statistical characteristics can be investigated for any model that one may want
to consider for an observed set of time series. Consequently, one can interpret
sample cross-spectra without necessarily making the assumption of zero mean
covariance stationarity.
One important class of models for time series for which one desires to under-

stand the properties of sample cross-spectra is the following: for j = 1, 2, *-* , r

(2.10) Xj(t) = mj(t) + Zj(t), t = 1, 2, *-
where mj(.) is the mean value function of Xi(-),
(2.11) mj(t) = E[Xi(t)],
and Z(.) = (Z1(.), * , Zr(-)) has zero means, is jointly normal, and is covari-
ance stationary with covariance functions
(2.12) Rh,(v) = E[Zh(t)Zj(t + v)]

(for h, j = 1, * , r; t = 1, 2, * . ;and v = 0, + 1, +t2, * -),and spectral density
matrix

(2.13) f(w)= [

Lfriw) ... frr()J
satisfying

(2.14) Rh3(v) = ". ei"&'fhj(w) dw.

The diagonal element fjj(w) is called the spectral density function of the series
X&(.); the (h, j)-th element fhj(w) of the spectral density matrix is called the
cross-spectral density of the series Xh(.) and X&(.). Following the terminology
introduced by Tukey, the real and negative imaginary parts of fhj(w) are called,
respectively, the co-spectral density, denoted Ch,(w), and quadrature spectral
density, denoted qhj(w).
We do not demand that time series submitted for spectral analysis have

vanishing mean value functions. Therefore, in studying the behavior of sample
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spectra, we must distinguish two general cases: the observed time series are
jointly covariance stationary with absolutely continuous spectrum and have:

(1) zero means,
(2) possibly nonzero means.

We call the second case the mixed spectrum case.
The problem of mixed spectra has been extensively discussed for univariate

time series (see Hext [10] for a history of the problem). The theory of mixed
cross-spectral analysis of multiple time series is not discussed in this paper (which
is already too long) but will be discussed in a separate paper. (In her Ph.D.
thesis, Grace Wahba gives a rigorous derivation of the small sample distribution
theory of sample cross-spectral estimates for jointly stationary normal multiple
time series with bounded nonzero mean value functions.)

In order to study the properties of the sample cross-spectral density function
in the mixed spectrum case, one would introduce the sample cross-spectral
density function of mh(.) and m&(.), defined by

1 T T

(2.15) fhj;m,T(W) = 2 E eic'mh(t) E e-iwtrnj(t).

The sample cross-spectral density function of the time series Z,h(.) is defined
similarly:

1 T T

(2.16) fhj;Z,T(CO) = 2§ E eiwtZh(t)Ej e- itZj(t).7rt=l t=l

One use of these expressions is in writing the mean of a sample cross-spectral
density:

(2.17) E[fhj;X,T(X)] = E[fhj;Z,T(X)] +fhj;m,T(X).
It is important to note that in order to study the properties of sample spectra

it is not necessary to assume that the sample cross-spectral density function of
the mean value functions, defined by (2.15), possesses a limit as T tends to oo.

3. Windowed sample cross-spectra

As is well known, if one is seeking to estimate the spectral density functions of
covariance stationary time series, one cannot use the sample spectral density
functions but must use windowed sample spectra.
Given a kernel k(v) and truncation point M, the windowed cross-spectral

density function, denoted fhj;T,M(W), is defined by

(3.1) fhj;T,M(W) =
I
E ei7k (M) Rhj;T(V).

Its real and negative imaginary parts, denoted Chj;T,M(W) and qhj;T,M(w), are called
respectively the windowed sample co-spectral density function and the windowed
sample quadrature spectral density function. The windowed normalized cross-
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spectral density function, denoted fhj;T,M(W), is defined similarly in terms of the
sample cross-correlation function:

(3.2) fhj;T,M(W) = 1
_ eik (MV) Phj;T(V).

For ease of comparing sample spectra arising from different time series, I believe
it is wisest to connpute and plot normalized versions of these functions. Indeed, I
believe that normalization is vital for interpretation and that it facilitates the
exchange of ideas among research workers concerned with time series arising in
quite different fields. It should be noted that the theory of normalized spectra
is more difficult than the unnormalized theory.

There is an extensive literature (in particular, see Technometrics [28] and
Jenkins [12]) concerning the choice of the function k(.), called the lag window,
and the integer M(< T), called the truncation point (since it represents the
number of sample correlations actually used in computing the spectrum). It
should be noted that most methods of computing sample spectra can be es-
sentially represented in the form (3.1) even if a formula of this kind is not
explicitly employed. An extensive comparison of the effects of different choices of
k(.) and M is beyond the scope of this paper (although an empirical comparison
of a few windows is given in the next section).
At this point, let us merely note the choices of k(.) and M we normally make.

In our work we use mainly the following lag window:

(3.3) k(u) = 1 - 6u2 + 6ulIl, Jul < 0.5,
= 2(1 - Iu)3 0.5 < Jul < 1.0,
= 0, Jul 2 1.

A kernel widely used in existing spectral analysis programs is one suggested by
Tukey (see Blackman and Tukey [5], p. 14):

(3.4) k(u) = '(1 + cos 7ru), lul < 1,
= 0, otherwise.

This lag window is not used in our work because the corresponding windowed
spectrum is not necessarily nonnegative (and the corresponding estimates of
coherence are not necessarily between 0 and 1).
Two other kernels which might be considered are one generally known as the

Bartlett kernel,
(3.5) k(u) = 1 - lul, Jul < 1,

= 0, otherwise,

and one which we call the Bohman kernel (after Bohman [6] who introduced it
in connection with the numerical inversion of characteristic functions to compute
distribution functions),
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(3.6) k(u) = (1-u) cos 7ru + sin7ru, 0 <u< 1,

-0, u> 1,

k (-u), u < 0.

The spectral window of a windowed sample spectrum of the form of (3.2) is
defined to be the function

(3.7) KM(w) evw1ie k (M);

the spectral window generator is defined to be the Fourier transform

(3.8) K((w) = 2-f e-i-k(u) du.

For the lag window (3.4), it may be shown that

(3.9) KM(w) = sis4w1
8irM3 3 rsin w44

(3.10) K(w) = 8 tin (/4)}.

It may be shown that a windowed sample spectral density fuICtion fhj;T,M(,W)
is the convolution of the sample cross-spectral density function fhj;T,(w), and
the spectral window KM(w),

(3.11) fhj;T,M(w') =f KM(W - X)fhj;T(X) dX.

Therefore, its mean is also a convolution,

(3.12) E[fhj;T,M(W)1 =f Km(w - X)E[fhj;T(X)] dX.

While it is more difficult to justify universal advice on the choice of the
truncation point, my experience leads me to believe that it is necessary and
sufficient to use three truncation points, MI, M2, M3, satisfying a condition of the
following kind:

(3.13) 5% < M <10%, 10% < M' < 25%, 25% < T < 75%.

I have several justifications for this advice: (1) in general, if one is in doubt as
to which of two ways to perform an analysis, one should do it both ways and
decide by a comparison of results which way was right; (2) the three truncation
points given in (3.13) span the range of possible truncation points, and not too
much additional information can be obtained by using additional truncation
points; and (3) the presence of peaks and the smoothness of spectra can be
determined by comparing spectra corresponding to different truncation points.
Given finite samples of r time series, for brevity we often denote by fhj(w) the

windowed normalized cross-spectral density function defined by (3.2). We let
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[Iii (w) *. 1tl @

(3.14) = j .

L?ri(') *. *jrr(@)_
denote the windowed sample cross-spectral density matrix. A variety of derived
spectral quantities may be computed which hopefully will provide insight into
the relations among the observed time series. For two series XA(Q) and Xj(-),
one can form the following derived sample spectral quantities: the sample
regression transfer function

(3.15 .()() =_ Chj(CW) _ i qhj(J) = 6i&;j(w) + i4h;j(W)(3.15) f3h;j(W) - ( j-() jo(W)
the sample residual spectral density function

(3.16) Ah;j(W) = fhh('W) {1 - TWhj(')}
where V,j (w), called the sample coherence between series h and series j, is defined
by

Ifhj(W)12 _ 2,(.~) ± 42(W)(3.17) = hih,() )- h(.(w)-

hh(-)fjj(-) fhh(-)Jjj(W)
The regression transfer function may be written as

(3.18) f3h;j(CA) = Gh;j(w)e-ifh;i()
where

(3.19) Oh;j(W) =

called the sample gain at frequency w of the predictor of Xh(.) given Xj(-), and

(3.20) (Ph;j(1) = tan-' 4h ), if 4,(w) > 0,

Ph;j((W) = {tan- (ch( ) + 7r sign [4hi(W)]} if Chi(W) < 0,

called the sample phase difference between the two series at frequency co. Inter-
pretations and generalizations of these quantities are given in section 7; their
sampling theory is discussed in section 8.

4. A comparison of spectral windows

In interpreting windowed sample cross-spectra of observed time series, it is
valuable to compare them with similarly computed windowed sample cross-
spectra of artificially generated time series. We present here examples of sample
cross-spectra for a few simple artificial time series. Our aim is first to gain some
idea of what sample cross-spectra look like, and second, to see some of the ways
in which the choice of lag window affects the results.



314 FIFTH BERKELEY SYMPOSIUM: PARZEN

A time series identically equal to 1,

(4.1) X(t) = 1 for all t,
has as its sample covariance function

1 T / V\(4.2) RT(V) =- - X(t)X(t + v) = -

The corresponding windowed sample spectral density is

(4.3) KM,T(W) = 12 _ e-ivT 1( IV) k ( v)*~ ~~~~7Mv < T T J VM

For many purposes it can be verified that approximately

(4.4) =

f44 riXE gA

WXgT~~~~~~~~~+1+ Tg WX T;A;ritt SST ~ 4'

W41t@ e@W1X W WSltAr{1X 4 jXi ij<t t-WI4-

aXX* ft$gg H -P -i' /fl- 1f 4

1i 2 g g4 2 i 4 XX1t_ 44

FIGUE 2 4

FIGURE 2
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Figures 2-5 plot (in the top half) the function KM,T(W) for T = 180, M = 90,
64, 36, and for the four lag windows we have mentioned. The bottom half of
each of these figures plots the windowed sample spectral density function of the
time series

(4.5) X(t) = cos 2r t.

The horizontal axis of these figures measures frequency on an axis from 0 to
0.5, representing v (cycles per unit time) rather than w (radians per unit time).
The function plotted is not the windowed sample spectral density f(w), but
rather

(4.6) 1000 loge,

AL FL ~

-4--

r4+ -T-~~~~1~~ ~0 X X X f t X >~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- + SXX;t,r- <WWgXT WXWI1r~~~~~~~~~~~~

it t02SFGUE

4~ ~ ~ ~~FGR
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By white noise we mean any time series of uncorrelated random variables with
zero means; it is covariance stationary with covariance function

(4.7) R(v) = 1 if v = 0,

R(v) = O if v w 0,

when normalized to have unit variance. The corresponding spectral density
function is

(4.8) f( 1

Now

(4.9) 1000 loge, = 5.07.

4~~~~~~~~~~~~~~~-

W X~~~4 -i W Xilllli.7i Itii ',ttt_

+"++~~~~~~~~~~~~~~

~~~~~-I i_iiWtWng--~

FIGURE 4
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Therefore, in figures 2-5 the normalized windowed sample spectral density func-
tions are plotted on a scale that goes from 1 to 10. A sample of white noise would
be expected to oscillate about the middle of the graph.
Various numerical measures for comparing properties of various spectral

windows have been introduced in previous papers [see Parzen [21], [23]). Here,
taking an empirical attitude, we study the computer output one obtains from an
empirical time series analysis of various series. Comparing in figures 2-5 the
window sample spectra of a pure sine wave, one sees that figure 3 (the Tukey
kernel) is more oscillatory than figure 4 (the Bohman kernel), which in turn is
slightly more oscillatory than figure 2 (the Parzen kernel). Figure 5 (the Bartlett
kernel) shows strong oscillations as well as a very unsatisfactory failure to damp
down. These differences in behavior hold more for small truncation points than
for large truncation points.

IU

egWX S tilftlMtSiS l .l Jkll+WS g WmXfflllllllllllEliillml lXXH
mW t WWWWX44 ! 11i111l111l!l1l Wlmtt XX H

ISgW I1 III III IW IIX

Mgg;gtgit~FIGUREE5tt
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Figures 6-9 present windowed sample spectra of time series N(t) + cos (27r/4)t
and N(t), where N(t) is a "sample of white noise" internally generated by the
computer. For these time series the differences between the various windows is
much less pronounced than in figures 2-5.

However, there seems to be much difference between the graphs of the sample
coherence, plotted in figures 10-13 for the various windows. Figure 10 (the
Parzen window) seems to have the smoothest behavior.
Although spectral distribution functions are not discussed in this paper, plots

of windowed sample distribution functions are given in figure 14.

5. Sampling theory of sample cross-spectra
In this section we outline the properties of the windowed sample cross-spectra

when the observed time series are jointly covariance stationary with absolutely
continuous spectrum and have zero means.

FIGURE 6
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We first consider the mean of a windowed sample cross-spectral density

(5.1) E[fhj(w)] = 2WrvIM k(v)(1 TR-Jh(v)

fr KM,T(W - X)fhj(X) dx,
_Ir

where KM,T(W) is defined by (4.3). Assuming that (4.4) holds, we obtain the
following approximation for the mean of a sample cross-spectral density

(5.2) E[fhj(.)] -f KM(W - X)fhj(X) dX.

To evaluate this integral it is often assumed that, in the neighborhood of w,
the real and imaginary parts fhj(X) are both varying slowly compared to
KM(W- X); then approximately

FIGURE 7
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(5.3) f| KM(,w - X)fhj(X) dX -fhj(w) f KM(w - X) dX = fhj(@)
It is thus implied that to a first-order approximation (as M -- o), the wiindowed
sample cross-spectral density is an unbiased estimate of the true cross-spectral
density (when the observed time series is zero mean covariance stationary).
While this is a correct statement from the asymptotic point of view, for finite
samples there is a bias in cross-spectral estimates not present in auto-spectral
estimates; this bias is discussed in section 9 since in order to discuss it, we need
to first introduce the notions of gain and phase. A comprehensive and rigorous
discussion of bias in cross-spectral estimates is given by Nigel Nettheim in his
1966 Stanford Ph.D. thesis.
Much of the mathematical literature on cross-spectral analysis has been con-

cerned with variability rather than bias. One can investigate the sampling theory

4 t~~~~~~~~~~~~~~

17- --77- W e X1- .

FIGURE 8
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of sample cross-spectra from an asymptotic point of view or from a small sample
point of view in the case that the observed time series are assumed to be zero
mean, normal, jointly covariance stationary, and possessing spectral density
functions.
The basic formula of the asymptotic point of view is (under suitable conditions

on the kernel k(u) and assuming that the same kernel and truncation are used in
every estimate)

(5.4) cov [fhj(W),Jk.()]- Cfhk(W)f.(cW), 0 < w < 7r,

writing z to denote the complex conjugate of a complex number z and defining

(5.5) C =1f 1 k2(u) du.

FIGURE 9i ,ll iLL 7

v E , n ] !111 !8 r# !i ^ I| '| II I'- 1l '! 11 < \-E 1+, > XIT-$
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To prove (5.4) let us first note, without proof, that (compare Rosenblatt [27])

(5.6) cov [Jl(W),J22(W)] Cjfi2(W)l2, 0 < w < r.

From (5.6) one derives (5.4) as follows: consider arbitrary linear combinations
of the observed time series Zj(t),

(5.7) Y1(t) = E ajZj(t), Y2(t) = bkZk(t)-
j ck

Their sample spectra can be written (using fJl(w) with two meanings, as the
window-ed sample spectral density of both Yj(t) and Zj(t); similarly for f22
and fi2)

(5.8) i. ahfhja;, f22== bkfknbn;h,j k,n

1.0 __x
COHERENCE (X), PHRE 7/2/65

10.0 9001 NVISE ONE Vs. N N Im 4

\/ ~~~~~~~~~~~~LENGTH180
.B0 ~~~~~~~~~~~~~~~~~~~~~~~~~TRC.FTS.64

.2

1.00

..3

0.10

0.01

.2

.001 0
0 .1 .2 Ff0EENCY IN COYa ES PE4 L?N1T TINE ..6

FIGURE 10
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consequently,

(5.9) cov [ful(W), .A2(2)1 = E hah COV [Jhj(W), fk.(W)]bkb.,
h,j,k,n

_ Cif.2(c,)12,
= C E ahfhk (W)bk 12,

h,kc

= C ahaJfhk(W)fjn('W)bkbn-
h,j,k,n

One may now infer (5.4).
The meaning of (5.4) is best understood by writing out the variance-covariance

matrix of the estimates .ll(W), f22(W), f12(W), 21(W).

1.01
COHERENCE (X), PHASE6U

10.0 0001 NOISE MlE Vs. NOI1SE AM4 PERIME 4 10.0

D,Ol4.2|-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

.0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

1.00 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1.00
-.2

0.01 0.01

.0l a .001
0 .1 .2 FCWENOY 1K CY0L ES FM UNIT TIlE .A.6

FIGURE 1 1



324 FIFTH BERKELEY SYMPOSIUM: PARZEN

Inf(w) 22(W) f12(W) f21(w)

1n,(W) Cf (W) 12 Clfl2(W) 12 CfII(W)f12(W) CfIl(W)f2l(co)

(5.10) f22(W) CIf22(W) 12 Cf22(W)f12(W) Cf22(W)f21(W)

112('W) Cf11(W)f22(W) C{fi2(W)} 2

121(W) Cful(W)f22(W)

From (5.10) one obtains the covariances of fll(cw), 122(w), 612(W) = Refi2(W),
and q12(W) = -Im1i2(Cw). In writing the following table we have omitted from
every entry the factor C defined by (5.5).

s.o ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~3
COHERENCE (X), P 7/2/65

00IN1IE If VE. IEAI L 10.0

,UI. FIB. Of

.3

.2

.3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.
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(5.11)

=____ S.,(w) 22(W) e12(w) q12(W)

.Al(w) Ifn(w) 12 C~12(W) + q12(W) fll(W)cl2(c0) -fll(w)ql2(ca)

122(W) If22(W) 1 2 f22(W)Cl2(w) -f22(W)q12(W)

8X2(°) 1fil( )ffl2(c0)- (W) C1l2(W)ql2(W)

+~~~~~~~~~1 {C2(i 2i2((

q12(w°) + ql22(1) -Cq22(W)}

1.0
C~~I1 Fl~ (0)
seol NtIsEe T te~V. 90PnX
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One approach to the "small sample" distribution theory of sample cross-
spectra is due to Goodman [9] who uses an analogy between windowed sample
cross-spectra and a sample covariance matrix

I n
(5.12) Rik = - Z Xj(t)Xk(t), j, k = 1, r,

n t=1

where for t = 1, 2, * * n {Xj(t), j = 1, ,- } are independent complex ran-
dom vectors identically distributed as the vector {Xi,j = 1,---, r} which is as-
sumed to (i) be normally distributed, (ii) have zero means, and (iii) satisfy the
conditions for any indices j and k,
(5.13) E[XjXk] = 0, E[XjXk] = Kjk.
One important case in which the first equation in (5.13) holds is when
(5.14) xj = Uj + iVj, Xk>= Uk + iVk,

nAldlikli* T*IDrsbk;HHl! 11 ll1114

E 1l 1;; ;, fi 1l;1;;lWii-

H 111111t1tX tITXllXW WWtJl |1lp~~~~~~-TlgttIiiiii!l11111W1Wmt-iiil

.~ ~~ ~ ~~~~~i~R1LiiiAii kllWtI!ii m 4lil'.!llilliIIIM
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where Uj, Vj, Uk, Vk are jointly normal random variables with zero means and
covariances

(5.15) U Vj Uk Vk
Uj [oJ 0 a,k 3ik]
VjO 2 -jk axjk
Uk a°k - jk ak 0
Vk _Lfjk aJk 0 Ojk

From (5.15) it follows that

(5.16) COV [XhXj, XkXm] = E[XhXjXkXm] - E[XhXj]E[XkXm],
= E [XhXk]E [XjXm] + E [XhXm]E [XjXk],
= KhkKjm.

We thus obtain a basic formula for the covariances of the sample covariance
function (true for every n, and not only asymptotically):

(5.17) COV [khJ. Kkr] = 1 KhkKjm.n

This formula is reminiscent of (5.4), identifying I/n with C.
To illustrate the application of this result, let us consider twvo time series of

length T = 180 whose windowed sample cross-spectra are computed for a
truncation point M = 64. Then

(5.18) n=1C = T M | k2(u) du

r5.21 for Parzen window,
t3.75 for Tukey window,

since

(5.19) A k2(u) du = {0.54 for Parzen window,
_0.75 for Tukey window.

From Goodman's small sample approximation to the sampling theory of win-
dowed sample cross-spectra, one can derive significance levels for the sample
coherence. For T/M approximately 3, the 95% significance levels to test the
hypothesis that true coherence at a given frequency is zero are, respectively,
0.464 (for Parzen window) and 0.632 (for the Tukey window); these values are
obtained from Amos and Koopmans [4]).

6. Prediction filters and partial cross-spectra

Increasingly, techniques of regression analysis, correlation analysis, and multi-
variate analysis are being applied by research workers in various disciplines as a
means of studying the relations between various variables. A lucid discussion of
the basic methodology is given by Kendall and Stuart [13]. The aim of this section
is to indicate how these ideas generalize to time series. Rigorous developmelnts
of some of these ideas have been given by Koopmans [14], [15].
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The notions introduced in multivariate analysis to describe the relations be-
tween a family of random variables may be generalized in two ways to time
series, depending on whether one uses two-sided or one-sided prediction filters.
The generalization using two-sided prediction filters (which for technical reasons
is the one most often considered) is discussed in detail. The generalization using
one-sided prediction filters is briefly mentioned.

Let X1(.), * - *, X,(.) be r time series. Let P be a subset of the set D =
{1, 2, *-- , r} of indices, and let j be any index in D. We define a new time series,
denoted
(6.1) Xj;p(t), t = 0, 41, *,
and called the minimum mean square error linear predictor of Xj(t), given
{Xk(8), s = 0, 41, *-- , k E P}, as follows: Xj,p(t) is a linear combination of
the predictor random variables, which we write

(6.2) Xj;P(t) = bik;p(t - S)Xk(S)
kEP J=--

whose mean square prediction error as an estimate of Xj(t) is a minimum (that
is, does not exceed the mean square prediction error of any other predictor of
Xj(t) which is a linear combination of {Xk(t), t = 0, 41, * * *, k G P}). It
should be noted that in general Xj;p(t) cannot be written as an infinite series;
this assumption is made only for ease of exposition. As shown by Koopmans [15],
the conclusions given may be shown to hold under somewhat more general
conditions using the Hilbert space theory of time series.
The coefficient bik;p(t - s) is a function only of the time difference t - s

because of the joint stationarity; similarly, the mean square prediction error is
independent of t. We call bjk;p(t - s) the partial regression coefficient of Xj(t)
on Xk(S) given {Xk(.), k E P}. These coefficients are determined by the con-
ditions
(6.3) E[Xj;p(t)Xh(U)] = E[Xj(t)Xh(u)], for u = 0, 4 1, , h E P,
which lead to the normal equations

(6.4) E bik;p(t - s)E[Xk(S)Xh(u)] = E[Xt)Xh(u)]
kEP J=--

which may be written in terms of covariance functions

(6.5) E bik;P(V)Rkh(U + V - t) = RJh(u - t),
kEP -x

and in terms of spectral density functions

(6.6) E E bjk;P(V) J eiwCu+vt)fkh(w) dw = j ei0Cut)fjh(W) dW.
kGP J=-x_

The Fourier transform of the partial regression coefficients is called the partial
regression transfer function and denoted
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(6.7) Bik;P('W) = E bjk;p(V)ei;
its interpretation is discussed in section 7. Writing (6.6) in the form

(6.8) | dcw eiw(- t jk;P(W)fkh(W) - fjh(W)} =°,

we obtain a system of normal equations for the regression transfer functions.
For each X in-7r < c < 7r and h in P,

(6.9) E 1jk;P(W)fkh(0) = fjh(w).
kEP

The partial covariance function between two time series Xh(*) and Xj(-), given
predictors {Xk(t), t = 0, 1, * , k E P}, is denoted by Khj;p(v) and is de-
fined by

(6.10) Khj;p(t2 - tl) = E[Eh;p(t)fEj;P(t2)]
where
(6.11) Eh;P(t) = Xh(t) - Xh;p(t)
is the residual series of Xh(*) given the predictors. We next show that the partial
covariance function depends on t1 and t2 only through the time difference t2 -tl
by a method which also obtains a spectral representation for the partial covariance
function E[eh;p(tl)Ej;p(t2)] = E[Eh;p(tl)Xj(t2)]. This is equal to

(6.12) E[Xh(tl)Xj(t2)] E[{ *= bhk;P()Xh(tl - s)}X(t2)]

Rhj(t2 - tl) - E bhk;P(s)Rki(t2 - t1 + s)
kEP 8=-o

= | dw eiw(h tl) Tfhj(w) - E E bhk;P(S)fki(w)ei'4
J-w 1, ~kEP a=--- j

= | dw eio(t2 tl) {fhj('O) - E Rhk;P(W)fkj(c)}
The partial spectral density function of two series Xh(-) and Xj(.) given

predictors {Xk(t), t = 0, _ 1, * * *, k E P}, denoted fhj;P(w), may be defined by
the condition that it provides a spectral representation for the partial covariance
function

(6.13) Khj;p(t2 - tl) = f ie(t2 tl)fhj;P(w) dwo.

From (6.12) we obtain the basic formula

(6.14) fhj;P(W) = fhj((W) - E Rhk;P(W)fkj(W).
kGP

To interpret the partial spectral density function, let us first consider the
properties of the residual series ej;p(t). Its spectral density function, called the
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residual spectral density function of the series Xj(.) given the predictors
{Xk(*), k e P}, is given by

(6.15) fji;P(W) = fjj(W) - E Rjk;P(WVkj(0),
kEP

= fjj(w) {1 - Wj;p(W)},
defining

(6.16) Wj;p(C) = 1 -f;p( ),
= E 7jk;P(V)fkj(W) * fjj(W)-

One calls Wj;p(w) the multiple coherence function of the series Xj(.) given the
predictors {Xk(t), t = 0, :1: 1, * * *, k e P}. It is analogous to the squared
multiple correlation coefficient and is a measure of the predictability of the
component of Xj(.) at frequency w from the components of {Xk(-), k E P} at
frequency w. The analogue of the square of the partial correlation coefficient is
called the partial coherence between series Xh(*) and Xj(.), given {Xk(*), k E P};
it is denoted, and given, by
(6.17) Whj;P((W) = Ifhj;P(-)1I2 * fhh;P(W)fjj;P(CW)

It is instructive to consider the case where only a single series {Xk(t), t =
0, -+1, * - *} is used as the predictor. The regression transfer function Bjk; kJ(W)
will be denoted Bj;k(W), the partial spectral density function fhj;fk)(w) will be
denoted fhj;k((), and the multiple spectral density function Wj;k)((w) will be
denoted Wj;k(W). We obtain the following formulas: 7j;k(W) fkk(w) = fjk(W), so
that the regression transfer function is given by (assumingfkk (w) never vanishes)

(6.18) Rj;k(f)= (W)

The partial cross-spectral density function is given by
(6.19) fhj;k(W) = fhj(-) - Th;k(V)fkj(W),

fhj (W) fhk(W)fkj(W)
fkk(W)

In particular, the residual spectral density function is given by

(6.20) f(k() = f ) Ifjk(k) = fjj()){I - Wj;k()}
where

(6.21) Wj;k( = lfjk(w)f33(cs.)fkk(co)
If one examines the formula for the multiple coherence function of Xj(-) given

Xk(-), one sees that the indices j and k play a symmetrical role. We therefore
define the symbol

(6.22) Wjk() =f

which is called the coherence between the series Xj(*) and Xk(*). It is denoted by
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the letter W in commemoration of Norbert Wiener who first introduced the
notion of coherence. The coherence is related to a frequency decomposition of
the residual series when one uses either of the series Xi(-) and Xk(*) to predict
the other. It remains an open question whether it is more informative to plot the
coherence Wjk(W) or the residual spectral density functions fjj;k(w) and fkk;j(co).

Inductive formulas. Partial spectral densities and regression transfer functions
are best computed by adding a variable at a time. Let P be an index set. By
P + m we mean the index set {j, j e P or j = m}; it is understood in this case
that m does not belong to P. By P - m we mean the index set {j, j e P and
j # m}; it is understood in this case that m belongs to P.
From innovation theory one obtains the basic formula

(6.23) Xj;p+m(t) = Xj;p(t) + E bjm;p+m(t - s) {Xm(S) - Xm;p(s)}.
8=-x

The regression coefficients bjm;p+m(t - s) are determined by the conditions (for
u = O, -i1, *- -)
(6.24) E[Xj(t){Xm(u) - Xm;p(u)}] = E[Xj;p+m(t){Xm(u) - Xm;P(u)}]
which lead to the formulas

(6.25) Kjm;p(u - t) = E bjm;p+m(t - s)Kmm;p(u - s),

f,m;P(w) = Bjm;p+m(W)fmm;p(O).
Thus

(6.26) ,m.;P+m(W) = frn;P(W)fmm;P(w)

Similarly, one derives other inductive formulas from (6.23):

Bjk;p+m(W) = Bjk;P(-) - Bjm;p+m(.)Bmk;p(O),
(6.27) fhm;P(Gw)fim;P(-W)

fhj;P+m('W) = fhj;P((o) - 4 { XOJfmm;P(w)

More generally, one can conveniently compute a matrix Ap defined as follows.
Fix a subset P of indices, and let Q denote the set of indices in D but not in P.
Define Ap by

\ k
j P Q

inverse matrix of Thki;P(W),
P {fjk(w), j, k e P}, conjugate of regression

(6.28) denoted {qjk;P(W)} transfer function at co

-Bjk;P(W), fjk;P(-),

Q negative of partial spectral density
regression transfer at X
function
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Given Ap, and an index m not in P, it can be shown that one forms Ap+m =
{ajk;P+m} by the formulas

(6.29) amm;P+m = 1 * amm;P,
amj;P+m = amj;P + amm;p for j F6 m,

ajm;p+m = -aj.m;P - amm;p for j #= m,

aik;P+m = ajk;P- ajm;P+mamk;P for j $ m and k F! m.

Similarly, given Ap and an index m in P, the same formulas yield a matrix whose
entries contain the regression transfer functions and partial cross-spectra for the
set of predictors {Xk, k e P, but k # m}.
To prove (6.29), one needs the following formulas for the inverse matrix

{ghj;P+m(w)} = {fhj(w), h, j E P + m}-' when one adds an index m to a pre-
dictor set P (the argument w is omitted for ease of writing):

(6.30) gmm;P+m = 1 + fmm;p,
gmh;P+m = ghm;P+m = -Bmh;P + fmm;P for h E P,

Rmh;pBm ;p
ghj;P+m = ghj;P + j

fmm;P
= ghj;P- 9hm;P+mBmj;P for h, j E P.

One-sided prediction filters. The predictors considered in the foregoing are
two-sided. One often desires to examine one-sided prediction filters.

Let X1(.), * * *, Xq(.) be q time series. Let P be a subset of the set D -
{1, 2, * * *, q} of indices, and let j be any index in D. We define a new time series,
denoted Xj;'P(t), t = 0, i-1, ..- and called the minimum mean square error
linear predictor of Xj(t) given {Xk(S), s = t - r, t - r - 1, * * *, k e P} as
follows: Xj;r)(t) is a linear combination of the predictor random variables up to
time t - r, which we write

(6.31) X(p(t) = E E bjk)p(t - S)Xk(S) = E bjk;p(v)Xk(t - v)
kEP 8=-x0 kEP v=r

whose mean square prediction error as an estimate of Xj(t), denoted
(6.32) Kjlj,?p = E[lXj(t) - Xj;p(t)j]
is minimized. The regression coefficients bjkQ;p(t - s) are now determined by the
conditions
(6.33) E[Xj(;P(t)Xh(u)] = E[Xj(t)Xh(u)] for u < t-r and h in P,
which lead to the normal equations

(6.34) bjLb(kQp(v)E[Xk(t - V)Xh(u)] = E[Xj(t)XA(u)]
k1EP v=r

for u < t-r,
bjk5p(V)Rkh(U - t - v) = Rjh(u - t) for u - t < -r,

kEP v=r

EE b5kp(v)Rhk(s + v) = RAj(s) for s > r.
kEP vr
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Solving this system of equations for bjQ;p(v) is the well-known Wiener-Hopf
problem. The regression transfer functions

(6.35) BJ;kr;(w) =FE bjk;p(v)e-i-
v=r

can be obtained by a method involving factorization of the spectral density
functions which is difficult to carry out (see Whittle [31]). If one is content with
a numerical solution on a computer, rather than an analytical solution, one can
find the regression coefficients bjk)(v) directly and then compute the regression
transfer function.

7. Gain and phase

Let X1, * , X, be jointly normal random variables. For any subset P of
D = {1, * * , r} and index j not in P, one can form (i) the regression coefficients
{bik;p, k E P}, (ii) the partial covariances Khj;p and partial correlation coef-
ficients, and (iii) multiple correlation coefficient.

Similarly, for jointly covariance stationary time series X1(.), * , X,(-) one
can form (i) the regression transfer functions {B,k;p(CO), k e P}, (ii) the partial
spectral density functions fhj;p(w) and partial coherence functions Whj;p(w), and
(iii) the multiple coherence function WJ;p(w).
The regression transfer function Bjik;p(W) is best interpreted by regarding it

as the frequency transfer function of a filter and introducing its gain and phase.
A discrete time invariant filter is described by its pulse response sequence

{b., s = 0, a-1, * } or its frequency transfer function

(7.1) B(w)= E e-is.

In terms of pulse response function, the output 2(t) of the filter corresponding to
an input X(t) is given by

(7.2) 2(t) = E b.X(t - s), s = 0, 1,-- .

For a sinusoidal input X(t) = eiwt, the output is k(t) = B(w)eiwt. Therefore,
for an input which is a superposition of harmonics,

(7.3) X(t) = ett dZ(w)
the output is

(7.4) e(t) = |' ei'B(w) dZ(w).
The frequency response function B(w) of a filter is a complex number which

we can write
(7.5) B(co) = a(w) + i13(w) =
where

(7.6) a(w) = ReB(w), j3(w) = ImB(w).
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The gain G(w) and phase <(w) of a filter are defined by

(7.7) G(w) = Va2(w) + 2(),
(7.8) sp(w) = arctan {-13(w)/a(w)} if a(w) > 0,

= arctan {-3(,w)/a(w)} + 1r sign {-#(w)} if a(w) < 0.
To interpret the gain and phase of a filter, consider an input signal

(7.9) X(t) = f(t)eiIt
whose frequency spectrum is nonvanishing only in a neighborhood of the fre-
quency coo. Further, assume that in this region the gain of the filter is essentially
constant and the phase is essentially a linear function of co. Then the output signal
will be a delayed but undistorted replica of the original (see Mason and Zim-
merman [16], p. 367):
(7.10) 2(t) = G(wo)f(t -t)eiW(t°
where

(7.11) to = carrier delay or phase delay;

(7.12) t, = p'(w) = envelope delay or group delay.

The terminology "carrier delay" and "envelope delay" is used in the com-
munication theory literature (for example, Mason and Zimmerman [16]). The
terminology "phase delay" and "group delay" is used by Robinson ([26], p. 31),
who extensively discusses these concepts.

In summary, one way to describe the relations between time series is by
describing the characteristics of various regression transfer functions. There are
a number of characteristics which need to be looked at: gain, logarithm of gain
(or attenuation), phase, phase delay, and group delay. One of the problems of
empirical multiple time series analysis is to determine which of these character-
istics is most wisely used in routine statistical data reduction of multiple time
series.

8. Sampling theory of sample partial and derived cross-spectra

Given a windowed sample spectral density matrix, one can form estimated
partial regression transfer functions

(8.1) hjk;P(W) = I&jk;P(-) + iAjk;P(-),
= Gjk;P(w) exp [-i0jk;P(1W)]-

This estimate is computed by the methods of section 6; by analogy with (6.25)
the estimates of Bjk;p(CO) can be explicitly written as

(8.2) fkic;P(W) = 1jk;P-k(W) * kk;P-k(W)-
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By analogy with results of the usual theory of partial correlation (see Kendall
and Stuart ([13], p. 333)), one might conjecture that for normal stationary time
series with zero means

(8.3) (Ojk;P(w) - Bik;p(W)) {fkk;P-k(O)}

is asymptotically complex normal with mean 0 and variance 1.
To establish the plausibility of (8.3), let us relate it to certain established

results for ordinary cross-spectral analysis (compare Jenkins [11]). In the case
that the prediction set P contains only the predictor k, we write

(8.4) f3j;k(W) = dj;k(W) + iIj;k(W)
for the sample regression transfer function. The estimates are formed by

e_k___ qk('w)
(8.5) dj;k(C) = fkk(W) Oi;k(W) - fkk(W)

The variance of & can be derived by the well-known delta method (compare
Kendall and Stuart ([13], vol. I, p. 231)); writing e and f, respectively, for the
numerator and denominator of &,

(8.6) var var [e] _ 2 cov [, ]E[e] + var [f]E2 [e]
E2[I] E3[f] + E[J]

one obtains the asymptotic covariances

(8.7) var [eij;k()] = var j;k (W)] = {(w) -Wjk

(8.8) cov [ej;k(W), j;k(W)] = 0-

Therefore,

var [Pj;k(w)] = fjj {1 - Wjk
(8.9) fkk('W)

= fjj;P(W)
fkk;P-k(I-)

which agrees with (8.3).
Under the assumptions var [a] = var [,B] and cov [c, ,B] = 0, the gain G

and phase C defined by
(8.10) e-iv = e& + i,

have asymptotic variances (by the delta method)

(8.11) var [G] = var [&], var [C] = - var [&]

where Ge-iv = a + ig3. In view of (8.3) and (8.7), we conjecture that
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var [=ejk;p((l)= var [jk;k-)]
= hfj;P(W)

fkk;P-k(W))

(8.12) cICfjk;P-k(w) f;P(W)fkk;P-k(W)
fJkk;P-k(W) Jfjk;P-kt1() 2

= 2GkP(),fjj;P(W) +f,,;P-k(w0)
iCjGjk;p(w)I Wjk;P-k(W)

= iCIGjk;P( )2 {Wjk;P-k((W)) }

From (8.11) and (8.12) one obtains expressions for the asymptotic variances of
the partial gain and phase. In particular,
(8.13) var [%ik;P(Cw)] = var [log. Gjk;P(W)],

= {Wik;P-k(C)) }

One may interpret (8.13) in words as follows: the variability of the estimated
partial attenuation (log gain) and phase is determined by the partial coherency
Wjk;p-k((W); in particular, the variance tends to 0 as the partial coherence tends
to 1. These results provide one interpretation of partial coherency.
To actually compute partial regression functions and their sampling error,

one should use the algorithm (6.21), since using (6.30) one can rewrite (8.3): for
any index k in P, asymptotic variance of f3jk;P(W) iS Cfjj;P((i) gkk;P(W)- Stopping
rules for selecting a significant set P of indices remain to be investigated.

9. Mean and bias of cross-spectral estimates

The behavior and interpretation of windowed sample cross-spectral density
functions cannot be understood on the basis of their variability theory alone.
Their means must be investigated.
To study the means of windowed sample spectra, one needs to consider two

possible assumptions for the observed time series: (i) they are jointly covariance
stationary with zero means, (ii) they are the sum of mean value functions and
jointly covariance stationary zero mean fluctuations. Only case (i) is discussed
in this paper.
We consider separately auto-spectra and cross-spectra. Asymptotic expressions

for the means of windowed sample auto-spectral density functions have been
studied by many writers, especially Parzen [18] and Hext [10]. We consider
only the case that the spectral window satisfies the assumptions KM,1(w) = 0
and KM,2(W) > 0, defining

(9.1) KM,,(w) = | (- )VKM(X - w) dX.
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Then the mean of a windowed sample auto-spectral density function may be
approximated

E[fjj(w)] f- KM(X - w)fj(X) d\,
(9.2) 1

-fj(w) - 1 k(O)f"(o),2M1
where

(9.3) k"(O) = - W2K(w) dw

is the value at 0 of the second derivative of the covariance kernel k(u) =
f eilO-K(w) dw. We digress for a moment to note that some authors (Daniels
[7], Akaike [1]) have suggested that the spectral window Km be chosen so that
KM,,(w) = 0 for as many values of v as possible. While this reduces the bias, it
necessarily leads to possibly negative estimates which may lead to difficulties of
interpretation of spectral estimates.

In evaluating the mean of a windowed sample cross-spectral density function,

(9.4) E[fjk(W)] f| KM(X - -)fjk(X) dX,

it is most convenient to express fjk(X) in terms of the true regression transfer
function

(9.5) ij;k(X) = fXk(X) = Gj;k(X) exp Ei_j;k(X)]
by ~~~~~~~~~fkk(X)

-G;()ep[~;()by
(9.6) f,k(X) = fkk(X)Gj;k(X) exp [i(pj;k(X)].
To understand the special sources of bias in cross-spectral estimation, let us first
find the leading term of the mean E[fjk(w)] by assuming that in the region
1w - XI < B where KM(w - X) is appreciably nonzero, both the auto-spectral
density fkk(.) and the gain are practically constant while the phase is linear;
then approximately

(9.7) fjk(X) = fkk(W)Gj;k(w) exp [i{jj;k(-) + (X - );k(-)}]
= fjk(w) exp [i(X -(O)j;

recall that the phase derivative ;k(W) may be interpreted as a group delay or
carrier delay. From (9.7) it follows that

E [fjk((W)] = fXk(W) f KM(X - w) exp [i(X - w) p;k(w)] dA,

(9.8)wfjk(on ) p-oi MK(Mi ) exp [iljaecd;k(g)]dA,

In words, if the truncation point M is not chosen large compared to the group
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delay, there will be an appreciable bias in estimating the cross-spectral density
function.
A possible method of avoiding this source of bias in cross-spectral density

estimation is to use shifted cross-spectral estimates, which we now define (this
method is due to Akaike [3]).

Let L be an integer (positive or negative). Define the shifted windowed sample
cross-spectral density function with shift L by

(9.9) fjk;T,M,L(CW) = ! eiEe k (-M) Rjk;T(V + L).

One may verify that its mean is approximately given by

E[fjk;T,L,M(W)] -J dXfjk(X)eiXLKm( - X),
(9.10)

- I dX KM(w - )ei1Lfkk(X)Gj;kWeiPi;AA) dX.

Using the same approximations as before, one may show that the mean is
approximately equal to

(9.11) fjik(W)eiwL JI dX KM(X -

Finally, one obtains the following approximation:

(9.12) E[jk;T,L,M(W)] = fji(w)eiLk (L + '(w) + terms in
1

If L is so chosen that
(9.13) L + PJk(W) << M,
then an approximately unbiased estimate of fik(C) is given by

(9.14) e WLfjk;T,M,L(w)-

The question of how to choose L remains; it may vary with w and may have to
be estimated from the sample phase. As a first guess, it could be taken to be the
lag at which the sample cross-covariance function Rjk;T(V) achieves its maximum
absolute value.
We do not discuss here the terms in the bias of cross-spectral estimates which

are of the order of 1/M2; they are analogous to the bias of auto-spectral esti-
mates. It should be noted that the foregoing derivations are very heuristic; a
complete and rigorous discussion is given by Nigel Nettheim in his Stanford
Ph.D. thesis.

If one investigates (using the delta method) how the bias in cross-spectral
density estimates propagates into the estimates of derived cross-spectral quanti-
ties, one finds that the bias is present in the estimated coherence but is absent
in the estimated phase. It would seem that corrections for bias could be intro-
duced using the estimated phase derivative. It remains to be investigated
whether it would not be wise to directly estimate the phase derivative (group
delay)
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d qik(w)
(w) - arctan(9.15) ~~~~~~do.C,kQ.o)

( Cjk(W)qjk(w) - qjk (X)Cjk(W)
CJ'k(CW) + qjk(W)

by directly estimating the derivatives of the co-spectral and quadrature-spectral
density functions.
The group delay (or phase derivative) should be routinely estimated in cross-

spectral analysis since it seems easier to interpret than the phase. Further, the
phase may be estimated without ambiguities modulo 27r by integrating (by
Simpson's rule) the phase derivative.
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