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1. Introduction

Let s = (Xl, x2, ... , ad inf) be a sequence of independent and identically dis-
tributed observations on a variable x with distribution depending on a parameter
0 taking values in a set 0. Let 0O be a subset of 0 and consider the null hypothesis
that 0 is in OO. For each n, let T,n = T (xi, * * X xn) be a real-valued statistic such
that, in testing the hypothesis, large values of Tn are significant. For any given
s, let Ln(s) be the level attained by Tn in the given case; that is, La(s) is the
maximum probability (consistent with 0 in Oo) of obtaining a value of T. as
large or larger than Tn(s). Then, in typical cases, Ln is asymptotically distributed
uniformly over (0, 1) in the null case, and Ln tends to zero in probability, or
perhaps even with probability one, in the nonnull case. The rate at which L.
tends to zero when a given nonnull 0 obtains is a measure of the asymptotic
efficiency of T. against that 0. It is shown in this paper (under very mild restric-
tions on the family of possible distributions of x) that Ln cannot tend to zero at
a rate faster than [p(0)]n when a nonnull 0 obtains; here p is a parametric function
defined in terms of the Kullback-Leibler information numbers such that, in
typical cases, 0 < p < 1 (theorem 1). It is also shown (under much more re-
strictive conditions on the distributions of x) that if n,, is (any strictly decreasing
function of) the likelihood ratio statistic of Neyman and Pearson [1], and L, is
the level attained by P., then L. tends to zero at the rate [p(o)]n in the nonnull
case (theorem 2). In short, the likelihood ratio statistic is an optimal sequence
in terms of exact stochastic comparison as described and exemplified in [2], [3],
and [4].

Theorems 1 and 2 are stated more precisely in section 2. Section 3 contains a
discussion of these theorems. Proofs are given in sections 4 and 5.

2. Theorems

Let X be a space of points x, 63 a a-field of sets of X, and for each point 0 in a
set 0, let Pe be a probability measure on (B. Let 0o be a given subset of 0.
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ASSUMPTION 1. There exists a a-finite measure X on 6B such that each Po admits
a probability density uith respect to X, say dP = f (x, 0) dX, 0 < f < oo.
For any 0 in 0 and oo in Oo let

(1) K(0, 0°) = - fx log [f (x, 0o)/f (x, 0)] dPo.

K is one of the information numbers introduced by Kullback and Leibler [5],
[6]. It is easily seen that K is well-defined by (1); 0 < K < oo; K = 0 if and
only if Pe = Poe on 63; and K < X implies that Po is absolutely continuous with
respect to Pso. Even if Pe and P0o are mutually absolutely continuous, K can be
infinite.
ASSUMPTION 2. For each 0 in 0 - Oo and 0o in Oo such that K(0, 0) < X, there

exists a t = t(0, 0o) > 0 such that fI [f (x, 0)/f (x, 00)]t dPe < o.
If K(0, 60) < to, then 0 < f (x, 0)/f (x, 0) < o with probability one when 0

obtains, so that the integral in the statement of assumption 2 is well defined for
every t.
Let

(2) J(0) = inf {K(0, 00) :0 cGo} , p(O) = exp [-J(0)].
As stated in the introduction, in typical cases 0 < p < 1 for 0 in 0 - Oo, but we
shall include the cases J = 0 and J = o in the discussion because theorem 1
[theorem 2] is not entirely vacuous in case J = 0 [J = X ].
Now let s = (xl, x2, *.. , ad inf) be a sequence of independent and identically

distributed observations on x. The probability distribution of s in its sample
space when 0 obtains is denoted by Pr), but we shall usually abbreviate P`
to Pe.

For each n = 1, 2, * * ,let Ta(s) be an extended real-valued measurable func-
tion of s such that Tn depends on s only through (xi, - * *, xJ). For each 0 let
F"(t, 0) denote the left-continuous probability distribution function of T. when
0 obtains; that is,
(3) Fn(t, 0) = Po(T.(s) < t),
and let
(4) G.(t) = inf {F"(t, 0):0 E o}, (-00 < t < cc).
Define
(5) La(s) = 1 - G.(T.(s)).
For any E with 0 < E < 1 let N(f, s) = the least positive integer m such that

Ln < E for all n > m, and let N(e, s) = +°° if no such m exists. As just defined,
N is then the sample size required in order that the sequence {Tn} of test
statistics becomes (and remains) significant at the level E.
The following theorem 1 is a generalization and extension of theorem 4.1 of

[4] in the following respects: the null hypothesis is not necessarily simple, and
no restrictions other than measurability are imposed on the sequence {Tn}.
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THEOREM 1. For each 0 in 0 - O

(6) lim inf - log L.(s) > -J(0),
n x n

and

(7) lim inf N(E, s) >
e-*O log (4) 0

with probability one when 0 obtains.
It follows from (6) that, for each nonnull 0,

(8) lim inf - log Eo(Ln) > -J(0)
nx+ n

and
(9) lim P(Ln > rn) = 1 if 0 < r < p(0).

nf-o

The conclusions (8) and (9) are more useful than (6) or (7) in case Ln does not
necessarily tend to 0 with probability one in the nonnull case.
For each n, let Xn, be the likelihood ratio statistic; that is,

(10) X~(sup{ I f (xi, 00) : o E OO}
(10) X\n(S) = i=l 1

sup{ .lf(Xi, 0) :0Ge 0}

In case the numerator and denominator in (10) are both 0, or both , let Xn = 1.
Then X,n is well-defined, with 0 < X. < 1. It is assumed that Xn is measurable for
each n.

Since small values of X-n are significant, we consider instead an equivalent sta-
tistic, Pn say, such that n,, is a strictly decreasing function of Xn for each n. The
particular choice of Pn is immaterial since only the exact levels attained are
being considered, and we choose
(11) Pn(s) = -n-1 log Xn(s)
mainly because this choice facilitates some of the writing. Let Pn, 0, and Ln
be defined by (3), (4), and (5) by taking T. to be Pn, and let N be determined
as above by the sequence {-½}.

Suppose now that, in addition to assumptions 1 and 2, assumptions 3-6 of
section 5 are also satisfied.
THEOREM 2. For each 0 in 0 - O

(12) lim n-log Lu(s) = -J(0),
n-. n

and

(13) lim (
wit logouaoi

with probability one when 0 obtains.



16 FIFTH BERKELEY SYMPOSIUM: BAHADUR

It follows from (7) and (13) that for any given sequence {Tn}, the resulting
sample size N required to attain the levele satisfies

(14) lim inf N(E, ) > 1*-* ji7(-,s
with probability one whenever a nonnull 0 with 0 < J(0) < oo obtains.

It follows from (12) that for each nonnull 0,

(15) lim - log Ee(Ln) = -J(0)
n n

and

(16) lim Po(rl < Ln< r)=1 if ri < p(0) < r2.
n-x

The likelihood ratio statistic is sometimes defined to be the right-hand side of
(10) but with 0 replaced with 0 - Oo in the denominator. This modified defi-
nition of X,n is usually, but not always, equivalent to the definition (10). It can
be seen from section 5 that under the same assumptions 1-6, theorem 2 holds
also for the modified TP.

3. Remarks

(a) Let us say that a sequence {Tn} is optimal when a given 0 E 0 - Oo
obtains if, with Ln the level attained by Tn, n-1 log Ln -* - J(0) with probability
one. According to theorems 1 and 2, this definition of optimality is plausible
and {T,,} is an optimal sequence for every nonnull 0. Optimality in the present
sense is, however, a rather weak property and is enjoyed, presumably, by a
fairly wide class of statistics. An example of an optimal sequence other than
{Pn} has already been mentioned at the end of section 2, and other examples are
described in the following remarks (b) and (c). Further comparison of two
optimal sequences requires, in general, an analysis very much deeper than is
available at present. A similar difficulty arises in a theory of estimation closely
related to the stochastic comparison of tests (cf. [4], section 6).

(b) The optimal exponential rate of convergence of levels, namely pn, depends
on the null set 0O and on the particular alternative 0 in 0 - GO under consider-
ation, but not on the entire set of alternatives 0 - Oo. It follows, in particular,
that if A is a subset of 0 - GO, and if T* = - n- log XA, where Xn is the likelihood
ratio statistic for testing 0O against A, then {Tn} and {Tn} are both optimal
sequences whenever a 0 in A obtains. To consider the matter from another view-
point, suppose that the initial nonnull set 0 - O is enlarged to a set 2 by
admitting certain additional nonnull distributions, and suppose that assump-
tions 1-6 are satisfied in the enlarged framework. Let T° = -n-I log 4, where xn
is the likelihood ratio statistic for testing 0O against 2. Then {T°} is an optimal se-
quence everywhere on 2 and hence also on 0 - GO. Presumably, however, closer
analysis will show that when a 0 in 0 - O obtains, T° is distinctly inferior to
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TI.n in the sense that L° > Ln with probability one for all sufficiently large n.
This last is the case, for example, if X is the real line, Pe denotes the normal
distribution with mean 0 and variance 1, 0 = [0, 0o), 0O = {0}, and 2 =
(-oo, oo) - {0}; in this example, = 2L. for all sufficiently large n when a
positive 0 obtains.

(c) Suppose that the maximum likelihoods in (10) are replaced by average
likelihoods over OO and 0 with respect to appropriate averaging distributions.
Then, under certain conditions, the resulting statistic remains optimal against
each e in 0 - 0O. This important remark was suggested by Dr. P. J. Bickel at
the reading of this paper at the Symposium. Dr. Bickel and the author hope to
present an adequate treatment of the remark elsewhere, but it may be worth-
while to state here the following. Suppose that assumptions 1-6 and some ad-
ditional assumptions are satisfied. Then 0 - 0O and 0O are metric spaces. Let
t be a fixed prior probability distribution such that each neighborhood of each
point in either space has positive probability. For each n let 7rn(s) be the posterior
probability of 0O given (x1, * * *, x,,), and let Ta(s) = n-' log [(1 -7rn)/7rn]. Then
the relevant asymptotic properties (cf. (19) and (20) below) of Tn are exactly
the same as those of Pn.

(d) For given n and s let L, (s) defined by (3), (4), and (5) be written tempo-
rarily as Ln(s, Tn) to indicate its dependence on Tn. Let Mn(s) = inf {Ln(s, Tn)},
the infimum being taken over the class of all measurable statistics Tn which
depend on s only through (xi, * - *, x,,). Although Mn is not the level attained
by any statistic (that is, there exists no Tn such that MW(S) = Ln(s, Tn) for all s),
it is of some theoretical interest to study the behavior of Mn. We consider two
special cases.

Suppose first that for each x in X the set {x} is 03-measurable and Po({x}) = 0
for all 0 in 0n. In this case Ms(s) = 0 for all s and all n.
Suppose next that X is a finite set and that 63 is the class of all subsets of X.

In this case M"(s) = sup {]InI f(xX, 0):0 eOo} where f(x, 0) = Pe({x}). It
follows hence by lemma 4 of section 5 that

(17) lim 1 log Mn = -J(0) - H(0)
n-a n

with probability one when 0 obtains, where

(18) H(0) =-E f(x, 0) logf(x, 0)

is the Shannon information number. It follows that with N'(e, s) the sample size
required to make Mn < e, we have N' < 1 and lim,0o {N'/N} = J(0)/[J(0)
+ H(0)] with probability one in the nonnull case. If X contains k points,
H(0) < log k, so that J/[J + H] < J/[J + log k] for all 0.
To consider a simple example, suppose that X consists of the two points 0 and

1,0 = (0, 1), Pe({1}) = 1 - Pe({0}) = 0, and eO = {f}. In this example,Jand
H are functions of 10 - 1, and the values of J/[J + H] for 10 -1 = .0(.1).5
are .00, .03, .12, .27, .53, and 1.00.
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(e) Assumptions 1 and 2 of theorem 1 are very weak and even these can be
dispensed with to a certain extent (cf. the last paragraph of section 4). Un-
fortunately, some of the additional assumptions 3-6 required by the present
proof of theorem 2 are quite restrictive, and what is perhaps worse, it is often
difficult to determine whether they hold in a given case. The troublesome as-
sumptions include versions of the compactifiability and integrability conditions
introduced by Wald [7] in his proof of the consistency of maximum likelihood
estimates. As is pointed out in [8], it is often difficult and sometimes impossible
to verify such conditions, even in certain apparently simple cases where the
estimates themselves are visibly consistent, and the likelihood function behaves
as it should. It may be added here that at least some of the conditions embodied
in assumptions 3-6 are indispensable to a general proof of theorem 2; this may
be seen from [9].

In many examples it is a relatively simple matter to show directly that (12)
and (13) are satisfied, as follows. First it is shown that

(19) P.n J(fJ)
with probability one when 6 obtains. Next it is shown that the distribution func-
tion Gn satisfies the following condition: for each positive t in some neighborhood
of J,

(20) -log [1- An(t)] - t as n- oo.
n

It is then immediate from (19) and (20) that (12) holds, and (12) implies (13).
Of course, (20) is not quite necessary for (12); in fact, there are simple examples
where even assumptions 1-6 hold but (20) as stated does not.
The proof of (19) is troublesome in the general case (cf. section 5) but quite

trivial in many examples. Proofs of (20), or of versions thereof, are always non-
trivial since (20) is an assertion about very small tail probabilities of the exact
null distribution of Tn.
The present regularity assumptions give little or no trouble in certain fairly

general circumstances. Assumptions 1-6 are satisfied in case X is a finite set
(that is, the multinomial case) no matter what 0 and Oo may be, provided that
01 002 implies Po, s Po, for 0l and 02 in 0. (This last proviso is harmless in the
present context.) Only assumption 2 requires verification in case 0 is a finite set,
no matter what X may be. Assumptions 2-6 are usually satisfied but require
verification in case 0 is an interval on the real line, assumption 1 holds, and
f (x, 0) is continuous in 0 over 0 for each x.

It is worthwhile to note that the regularity conditions under discussion do not
include conditions required by the asymptotic null distribution theory of maxi-
mum likelihood and likelihood ratios; consequently, the present conditions are
satisfied in many so-called irregular cases. For example, if X is the real line,
0 = (- o, +00), 0o = {0}, and Pe represents the uniform distribution over
(0 - 1, 0 + 2), then assumptions 1-6 hold with J(0) = Xo for each nonnull 0.
In this example there exists a random variable m = m(s) with 1 < m < Xo such
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that Pe(m < oo) = 1 for each nonnull 0, and such that Ln = 1 for n < m and
L. = 0 for n > m for every s; hence, 1V = m for every e and s.

(f) As pointed out in [2], [3], and [4], stochastic comparison has several
connections with power function considerations. In particular, theorems 1 and 2
can be shown to yield the following conclusions concerning the asymptotic prop-
erties of critical regions. Consider a particular nonnull 0. For each n, let Wn be
a critical region in the sample space of (xI, * **, xn) such that P8(Wn) -÷ p as
n -4oo, where 0 < p < 1. Let a1n = sup {P80(W14):0o E Oo} be the size of W1.
Then lim infn,. n-1 log an > - J(O). Next, let Wn be a critical region of the form
{s: Tn 2 fin}, with the constants kn chosen so that Pe(Wn) -p i where 0 < p < 1;
then n- log On - -J(O). In other words, if the power of the critical region
against a given alternative is held fixed, the rate of convergence to zero of the
resulting size is optimal for regions based on Tn. Related but much deeper
optimality conclusions concerning critical regions based on Tn have been ob-
tained previously by Hoeffding [10] in the case when X is a finite set.

4. Proof of theorem 1

The following lemma 1 is required in the proofs of theorems 1 and 2. Let z
be an extended real-valued random variable such that P(-oo < z < mo) = 1,
and let p(t) = E(etz) be the moment generating function (m.g.f.) of z, 0 < (o <<o.
LEMMA 1. Let n be a positive integer, and let z1, * * *, zn be mutually independent

replicates of z. Then P(zi +, * * *, + zn > 0) < [*o(t)]n for t > 0.
PROOF. The lemma (and much more) is well known (cf. [11], [12], [13]), but

for the sake of completeness we include here the proof given in [11]. Let
Zn = n=, zi. Then P(Z,, > 0) = P(exp (tZn) 2 1) < E(exp (tZn)) = [,,(t)]n.
Now choose and fix a 0 in 0 - 00, a 00 in 00, and an E > 0. Let ri =

exp [-K(0, 0o) - E], 0 < r1 < 1. Let Wn denote an event which depends on s
only through xi, - * *, xn. The following lemma is closely related to a theorem of
C. Stein (cf. [6], pp. 76-77).
LEMMA 2. There exists r2 = r2(0, 00, E), 0 < r2 < 1, such that for each n and

wn,

(21) P9o(Wn) 2 r! [Pe(Wn) - r2].
PROOF. Consider a fixed n. If K = oo, then ri = 0 and (21) holds trivially

with r2 = 2 (say). Suppose then that K < oo. Let

(22) An = (xi o) 2 rl ( 0)}
Then

(23) P8o(Wn) 2 P@o(A. n Wn)
> rWePe(An f Wn) by (22)
> ri[Pe(Wn) - [1 - P5(An)]].
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Now consider the random variable y = log [f (x, O)/f (x, Oo)] when 0 obtains;
y is well-defined and Po(-oo < y < o) = 1. The m.g.f. of y is <1 at t = -1,
and is finite for a positive t by assumption 2. Thus the m.g.f. of y is finite in a
neighborhood of t = 0. Let z = y - K - e. Then the m.g.f. of z, so(t) say, is
finite in a neighborhood of t = 0 and so'(O) = Ee(z) = -e < 0 by (1). Since
(p(O) = 1, there exists a t2 > 0 such that with r2 = p (t2) we have 0 < r2 < 1. It
follows from (22) that, in an obvious notation, 1 - Po(An) = Pe ( zjt=lZi > 0).
Hence

(24) 1 - Pe(A,) < r'2
by lemma 1. It is plain from (23) and (24) that (21) holds.

Let there be given a sequence of measurable statistics T. as in section 2. By
putting W. = {s: T, > t} in (21) it follows from (3) that
(25) 1 - F.(t, 0o) > rl[1 - F(t, 0) - r2]
for all t and all n.
LEMMA 3. With probability one when 0 obtains,

(26) 1 - Fn(Tn(s), 0) > n-2
for all sufficiently large n.

PROOF. It is easily verified that if T is an extended real-valued random
variable, and F(t) = P(T < t), then P(1 - F(T) < r) < r for all r in [0, 1]. It
follows hence that E1P_(1 - Fn(T", 0) < n-2) < _n'= n-2 < oo.
PROOF OF THEOREM 1. Choose and fix a 0 in 0 - 0O. Let B = B(0) be the

set of all s such that (26) holds for all sufficiently large n. Then B is a measurable
set with P'X'(B) = 1. We shall show that (6) and (7) hold for each s in B.
Choose-and fix an s in B, and let m = m(s) be an integer such that (26) holds for
all n > m.

Let 0o be a point in 0o and let e be a positive constant. For each n let t = Tn(s)
in (25). It then follows from (25) and (26) that 1 - Fn(T (s), Oo) > rI[n-2 -r2]
for n > m. Since La(s) defined by (3), (4), and (5) cannot be less than
1 - Fn(Tn(s), 0), it follows that Ln(s) > r'l[n-2- r2] for n > m. Hence

(27) lim inf 1 log Ln (s) > K(0, O0) - e
n- n

by the definition of ri. Since 0o and e in (27) are arbitrary, (6) holds.
Since (7) holds trivially if J = oo, suppose that 0 < J < oo. It then follows

from (6) that L. > 0 for all sufficiently large n. If lim supn-. Ln(s) > 0, then
N = oo for all sufficiently small e and (7) again holds trivially. Suppose then that
limn-. Ln = 0. In this case 1 <N < oo for all e; N -X oo through a subsequence
of the integers as e -O0; and LN< e for all e. It follows hence that

(28) fi{N-' log (1/e)} < him {-N-1 log LN} < ilim {-n- log L,} < J(0)
f B0 f b0 n - O

by (6), and this establishes (7). This completes the proof of theorem 1.
It is plain from the preceding proof that assumptions 1 and 2 can be weakened
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considerably. Indeed, there is a version of theorem 1 which holds without any
regularity assumptions whatsoever. To describe this version, for any 0 and 0o in
o let K(0, O0) = fx [log (dPe/dPeo)] dPe if Pe is absolutely continuous with re-
spect to Poo, and let K = oo otherwise. Let J be defined by (2). It then follows
by a slight modification of the preceding proof (using the law of large numbers
instead of lemma 1, and Ee[l- F(TL, 0)] > 2 instead of lemma 3) that (8)
holds for each nonnull 0. It follows from (8) that (6) and (7) are satisfied with
both inferior limits replaced by superior limits. It would be interesting to know
whether theorem 1 as stated holds (with the present definition of J) without any
assumptions whatsoever.

5. Proof of theorem 2

We shall first state the additional assumptions required of the given framework
X, (3, {Peo:0 E 0}, O, C 0, and f(x, 0) = dPe/dX. In order to avoid needless loss
of generality, most of these assumptions are stated below in more or less the forms
required by the proof itself. Certain stronger but more readily verifiable con-
ditions are also given.

Let e be a metric space of points 0, and let a denote the given metric on O.
We shall say that e is a suitable compactification of 0 if the following conditions
(i)-(iv) are satisfied: (i) e is compact; (ii) 0 C 0, and 0 is everywhere dense in
e; (iii) for each 0 E 0 there exists di = d1(0) > 0 such that, for each d in (0, di),
(29) g(x, 0, d) = sup {f(x, 0i):0i E 0, 3(0, 0i) < d}

is &-measurable, 0 < g < 00; and (iv) for each 0 E e,

(30) fx g(x, 0, 0) dX < 1,

where g(x, 0, 0) = limd ,o g(x, 0, d). In typical cases g(x, 0, 0) = f (x, 0) for
0 e 0, so that g is an extension of the given function f on X X 0 to a function
onX X O.
A slightly different formulation of the notion of suitable compactification, and

many nontrivial examples, are given in [8].
AsSUMPTION 3. There exists a suitable compactification of 0, say 0. With eO the

closure of 0O in 6, 0o is a suitable compactification of Oo.
The second part of this assumption is to the effect that, for each 0o E Go,

(31) go(x, Oo, d) = sup {f (x, 01) :0 e Oo, ( 0o) < d}
is 63-measurable for all sufficiently small d > 0. With go(x, Oo, 0) =
limd,o go(x, Oo, d), it is plain from (29) and (31) that go(x, 6o, 0) < g(x, 0o, 0) for
all x and Oo E G0o; consequently, in view of (30), the required condition

(32) fx go(x, 0,, 0) dX < 1

is automatically satisfied.
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For any 0 E 0 and 0o E eO, let K(0, 0o) be defined by (1) with f (x, 0o) replaced
by go(x, 00, 0). It follows from (32) that K is well-defined and 0 < K < oo. Since
go may be thought of as an extension of the function f (x, 0o) on X X Oo to
X X Go, K is to be thought of as an extension of K on 0 X 0O to 0 X 0o. An
alternative method of extending K is to use g instead of go, but the present ap-
proach is preferable in that the following assumptions 4 and 5 are weaker than
the corresponding assumptions in terms of g.
AssuMPTION 4. For each 0 in 0 - 00,

(33) J(0) = inf {K(0, 0o): o E Go}.
It is plain from (2) that (33) holds if K is indeed an extension of K and if,

for the given 0, K(0, 0o) is either continuous in 00 over G0, or = 00 for Oo in Go - Oo.
ASSUMPTION 5. For given 0 in 0 - Oo and 0o in Go, there exists d = d(0, 0) > 0

such that

(34) Ix log+ [go(x, 0o, d)/f (x, 0)] dPe <00.
Assumptions 4 and 5 are automatically satisfied if 0O is a finite set, and in par-

ticular, if the null hypothesis is simple.
It is convenient to restate assumption 5 here as follows. For given 0 e0 -O

and 0o E G0, let d be restricted to sufficiently small values so that go(x, Oo, d) is
measurable. Consider

(35) yo = yo(x, 0o, d:0) = log [go(x, 00, d)/f(x, 0)]

when 0 obtains. Then yo is well-defined and -X0 < yo < X with probability
one. The condition (34) is that Ee(yo) exists and -00 < Ee(yo) <0. Since
go(x, Oo, d) decreases to go(x, Oo, 0) as d decreases to zero, and since -K is by
definition the expected value of yo(x, Oo, 0:0) when 0 obtains, (34) implies (and
is implied by)

(36) lim Ee(yo(x, Oo, d:0)) = (0, Oo),
d- O

even if X = oo. (Cf. [8], section 2.)
AsSUMPTION 6. Given r, 0 < T < 1, e > 0, and 0 in G, there exists d =

d(TE, 0) > 0 such that

(37) fx [g(x, 0, d)/f (x, Oo)]r dPeo < 1 + e

for all Oo in eO.
In order to discuss this assumption, consider a particular o0 E Oo and suffi-

ciently small d > 0. Consider

(38) y = y(x, 0, d:0o) = log [g(x, 0, d)/f(x, Oo)I
when 00 obtains. Then y is well-defined and -oo < y <O0 with probability
one. Let the integral in (37) be denoted by 4'(TrI, d, Oo); 4' is the m.g.f. of y. It
follows from the convexity of m.g.f.'s that for 0 < r < 1, +1(T) cannot exceed
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max {Peo(y > -), fx g(x, 0, d) dX}. Hence #(r) < max {1, fx g(x, 0, d) dX};
this bound does not depend on 0 (or on T). We observe next that

f g(x, 0, d) dX fxg(x, 0,O) dX <1 as dO ,

provided that

(39) f g(x, 0, di) dX < oo for some di = d1(0) > O

It follows that (39) is a sufficient condition for the validity of assumption 6 at
the given 0 E e, no matter what the null set Oo may be. Condition (39) is satisfied
if, for example, X is a countable set, 6B is the class of all subsets of X, and there
exists h(x) such that Po({x}) < h(x) for all 0 and all x, and F, h(x) < 0o. It is
plain that condition (39) is satisfied whenever 0 is a finite set.

Condition (39) is, however, much stronger than is generally necessary. To
obtain weaker or different sufficient conditions, suppose that (T|0O, d, 0) < X
for some d > 0. It then follows that
(40) lim 4P(TlO, d, 0.) = V(,jo, 0, 0o).

d-O

The right-hand side in (40) is the m.g.f. of y(x, 0, 0:0o). Since this last m.g.f.
does not exceed one for 0 < r < 1, assumption 6 will hold at the given 0 if (40)
holds uniformly for oo in Oo. Uniformity is guaranteed by Dini's theorem if for
each d in some interval [0, di) with di > 0, P(Trj, d, 0o) is continuous in 0o over
Oo and has a continuous extension to Go, and (40) holds for the extended functions
for each 0o in 6o. This last condition is satisfied, in particular, if there exists a
(B-measurable h(x) such that f (x, Oo) < h(x) for all x and all Oo e Oo and such
that fx [g(x, 0, di)]T[h(X)] l-r dX < X, and if go(x, Oo, 0) is an extension of f (x, Oo)
and is continuous over Oo for each x.
We proceed to establish theorem 2. Assumptions 3, 4, and 5 are used to obtain

lemma 4 below, and assumptions 3 and 6 to obtain lemma 5. Theorem 2 is a
straightforward consequence of theorem 1 and lemmas 4 and 5.
For any set P C 6 such that r n 0 is nonempty and any 0 e 0, let

(41) R,I(r, 0) = R (s:F, 0)

sup {I f(xi, oi) :0 eE r n 0}
=n-l log W=

{Ilf(xi, 0)}
Rn is well-defined (with -oo < Rn < 00) with probability one when 0 obtains.
It is not required, however, that Rn be a measurable function of s.
LEMMA4. For eachO eO -- Oo,

(42) Rn(0o, 0) -J(0)
with probability one when 0 obtains.
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PROOF. Choose and fix 0 E 0 - O and suppose 0 obtains. Let a > 0, b > 0
be constants, and let H = max {-J(0) + a, -b}. Let 0o be a point in Go. Ac-
cording to (36), there exists d = d(0o) > 0 such that, with yo(x) defined by (35),
Eo(yo) < max {- K(0, O0) + a, -b}. Hence Eo(yo) < H, by assumption 4. Let
r be the open sphere in Go with center 0o and radius d, and let ro = r n eO. It
is then plain from (31), (35), and (41) that Rn(s:Fr, 0) < n-' _le yo(xi) for
every s and n. Hence lim supn.-, Rn(rF, 0) < H with probability one.

Since Go is compact, we can find a finite number of spheres rl, *- -, r such
that Ujrj = Go, and such that the conclusion of the preceding paragraph holds
for each rP = rfn 0o. Since Rn(0o, 0) = max {Rn(I'o, 0):j = 1, * * *, k}, it
follows that lim supn,x Rn(0o, 0) < H with probability one. Since a and b are
arbitrary, we conclude that lim supn, Rn(0o, 0) < - J with probability one.
With 0o a point in Oo, Rn(Oo, 0) 2 Rn({00}, 0) by (41); hence,

lim inf Rn(0o, 0) 2 - K(0, 0)
n-+

with probability one, by (1) and (41). Since 00 is arbitrary, we see from (2) that
lim infn,o Rn(0O, 0) 2 -J(0) with probability one.
LEMMA 5. Given E > 0 and r, 0 < r < 1, there exists a positive integer

k = k(E, T) such that

(43) 1 -on (t) < k - (1 + E)n * e-nrt
for all n and t.

PROOF. Let 0 be a point in e, and d = d(8) > 0 be such that, with g de-
fined by (29), (37) holds for all 0o in 0O. Let r denote the open sphere in e with
center 0 and radius d.

Consider a particular 6o E Oo and suppose that 0o obtains. Let y(x) be given by
(38), and let 4' be the m.g.f. of y. According to (37), 4+(T) < 1 + E. It is plain
from (29), (38), and (41) that Rn(r, oo) < n-1 f= I y(xi) = Sn, say. An appli-
cation of lemma 1 (with z = y - t, t = r, and <o(r) = 4+(T) exp (-tT)) shows that
P0o,(Sn 2 t) < (1 + E)n exp (-n-t) = bn(t), say, for all n and t.

Since e is compact, we can find a finite number of open spheres rF, rk,
such that Ujrj = e, and such that, for each Oo E 0O and j, there exists a random
variable Snj = Snj((oo) with Rn(rj, 0o) < S,j and P00(S3,j 2 t) < bn(t). Now, it is
clear from (10), (11), and (41) that, when a given Oo obtains,

(44) Tn < Rn(0, 0Q) = max {Rm(Fj, O0) :j 1, * *, k}
< max {Snj(0o):j = 1, * , k}.

Since 1n is measurable by assumption, it follows from (44) that

(45) Peo(Pn > t) < E P6O (Snj 2 t) < , bn(t) = k.bn(t).
Thus

(46) 1 -Fn(t, G0) < k- (1 + e)n exp (- nit).
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Since (46) holds for every finite t, it follows by letting t -*oo that
P,%(P. = oo) = 0, that is, (46) holds for t = oo also. Since 0o in (46) is arbitrary,
we see from (3) and (4) that (43) holds.
PROOF OF THEOREM 2. Suppose that a given 0 in 0 - 0o obtains. Since

P. > -R.(0o, 0) by (10), (11), and (41), it follows from (42) that

(47) lim inf TP, > J(0)
n-

with probability one. It will be shown later that in fact (19) holds.
Choose e and r as in lemma 5. Since - 1 - On( In), we see from (43) that

(48) n-l log.Lt < -TTn + n-1 log k + log (1 + f)

for every s and n. It follows from (47) and (48) that lim SUPn,O {n-1 log Ln} <
-TJ(0) + log (1 + e) with probability one. Since e and T are arbitrary,
lim sup {n-l1g Ln} < -J(f) with probability one. Theorem 1 applied to Tn
now shows that (12) holds with probability one.

If J = 0 for the given 0, theorem 1 applied to P. shows that (13) holds with
probability one. Suppose then that 0 < J < oo, and choose and fix an s such
that (12) is satisfied. Suppose first that Ln = 0 for all sufficiently large n. Then
19 is a bounded function of e, and J = oo by (12), so (13) holds. Suppose now
that L. > 0 for infinitely many n. It is plain from (12) and J > 0 that L. -* 0.
Consequently, 1 < lR(e, s) < oo for every e; 19 increases to 00 through a sub-
sequence of the integers as e decreases to zero; and

(49) Lj-_ > e > Lk
for all e such that S > 2. It follows easily from (49) by using (12) that
lim"'o {'-1 log (1/E)} = J. This completes the proof of theorem 2.

It may be worthwhile to note that the present assumptions imply that (19)
holds with probability one. Choose e and r as in lemma 5. It follows from (48)
by theorem 1 applied to Pn that

(50) liminf (-rhPn) + log (1 + E) > -J(0)

with probability one. Since e and T are arbitrary, (50) implies that lim sup T_ <
J(0) with probability one, and (19) now follows from (47).

In view of (42), (19) is equivalent to

(51) R.(0, 0) -O 0

in the case when J(0) < oo. Condition (51) is of the same formal structure as
(42), since J vanishes when 0O is replaced by 0 on the right-hand side of (2). It
follows that a direct proof of (51) (and thereby of (19)) can be given along the
lines of the proof of lemma 4. This direct proof requires, however, that the inte-
grability condition of assumption 5 hold for each 0 in 6 and with go replaced
by g.
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