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1. Introduction

The theory of semigroups of bounded linear operators deals with exponential
functions in infinite dimensional function spaces. It has been used, as an oper-
ator-theoretical substitute for the Laplace transform method, in the integration
problem of temporally homogeneous evolution equations, especially of diffusion
equations and wave equations (see Hille and Phillips [5] and Yosida [20], [21]).
The purpose of my paper is to call attention to a class of semigroups which is

characterized by either one of the three mutually equivalent conditions to be
explained below; one of them reads that the semigroup Tt satisfies

(1) limt d T,T < 00.

The semigroups arising from the integration in L2 of temporally homogeneous
diffusion equations belong to this class. And the unique continuation theorem
of diffusion equations, inaugurated by Yamabe and Ito [6] may be explained
by the time-like analyticity of the corresponding semigroups. The situation has
an intimate connection with the theory of analytical vectors published recently
by Nelson [14]. There is a procedure to obtain semigroups of our class. Let A
be the infinitesimal generator of a contraction semigroup. We can define, follow-
ing Bochner [3], Feller [4], Phillips [15], and Balakrishnan [1], the fractional
powers - (-A)a of A and the semigroups generated by them belong to our class.
Balakrishnan gave an interesting application of the operator - (-A)112 to Hille's
reduced Cauchy problem for equations d2u/dt2 + Au = 0.
Tanabe [19] has recently devised an ingenious method of integration of

temporally inhomogeneous evolution equations in Banach spaces: du/dt = A (t)u.
He assumes, for fixed t, that A (t) is the infinitesimal generator of a semigroup of
our class. He further assumes a certain regularity condition with respect to t of
A (t) which is the same as that introduced by Kato [8] for the integration of such
equations. Under these conditions, Tanabe proved that the solution may be
obtained by successive approximation starting with the first approximation
exp [(t - s)A(s)]. In this way, he has shown that Levi's classical construction
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of the fundamental solution U(t, s), with t > s, of a diffusion equation may be
adapted to the evolution equations in Banach spaces. Komatsu [10] gave an
important remark that, if A(t) is analytic in t, then the fundamental solution
U(t, s) of Tanabe is also analytic in t and s. In this way, Komatsu proved a
unique continuation theorem for temporally inhomogeneous diffusion equations,
which was proved in a direct way by Shirota [17].

2. A class of semigroups

Let X be a complex Banach space. A one-parameter family Y't, with t > 0, of
bounded linear operators in X is said to be a semigroup of type S(M,,) if it
satisfies the conditions

(2) T,T. = T,+, To = I (the identity),

(3) s-lim Ttx =Tgx, x E X; to _ .
t-+to

Such a semigroup satisfies, as was proved by Hille [5]

(4) JjT,jj Me"t, t._ ,

with positive constants M and ,B. It is well known that the infinitesimal generator
A of Tt defined by A -x = s -limt o t-1 (Tt- I)x generates Tt by various
equivalent procedures; one of them states that

(5) T'tx = s - lim I - A) x.

Hence we shall write Tt = exp (tA).
Let B be a positive constant < 7r/2, and Io be the sector larg zl < 0 in the

complex z-plane. If a semigroup Tt E S(M, () is analytically continuable into
Ie in such a way that Tt exp(i.) is, for all so with Jro < 0, of type S(M',,(') with a
fixed pair (M', 1'), then we. say that Tt is of type H(0, M', 3').
Our class of semigroups is characterized by any one of the three conditions

in the following
THEOREM 1. Let A be a closed linear operator with domain D(A) dense in X

and range in X. Then the following three conditions are mutually equivalent

(6) exp (tA) C H(0, M, 13) for some 0, M, and ,

(7) exp (tA) EE S(M', (3') for some M', (3', and exp (tA) is strongly

differentiable in t in such a way that hint o t|| dt exp (tA) || < oo,

(8) there exist positive constants M" and 13" such that

I|(J - A)-"ni _ M1(X - 03")-n for X > (3", n = 1, 2, *

ll-m .lI-[(o+ V1)IA]-'I <c, for (7>1".
Thc tt M

The constants Ml jB, M', ,B', M", and ,B" are dependent on each other. For the
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proof of the equivalence of (6) and (7) see Yosida [22], and for that of (6) and
(8) see Yosida [22] and Hille and Phillips [5]. We remark that the following
facts are used in these proofs. First, (7) implies

(7') dtn exp (tA) = An exp (tA) = exp t A)]n*
Secondly, the last condition in (8) implies that (XI - A)-' exists and is analytic
in X for large value of IT| = lIm (X)I outside a sector of the left half X-plane
defined by the boundary curve of the form X(s) = v(s) + iT(s) such that

(9) lim -(8) = tane = lim u(s), e> 0.
T(8) t - T(S) 7(8) ; -X T(5)

Moreover, LI(XI - A)-III is of the order ITrI- when iTI tends to - outside the
above sector and lying in the left half X-plane. Thirdly, the representation theo-
rem of Hille holds for the semigroup satisfying (8)

(10) exp (tA) = 2 eXt(XI - A)-1 dX, t > 0,
x(8)

the integral being taken in the uniform operator topology along the path of
integration X(s) = 2-la(s) + iT(s).

3. Unique continuation theorem of the diffusion equations

Consider a diffusion equation
(11) -t= Au, t > 0,at
where the differential operator
(12) A = aii(x) d + bi(x) a + c(x)

is strongly elliptic in a connected region G of an m-dimensional Euclidean space
Em. For the sake of simplicity of the exposition we assume that G = Em. We
assume that the real-valued coefficients a, b, and c are C- in Em and that

(13) aii(x) and its first and second partials, bi(x) and its first partials, and
c(x) are, in absolute values, all bounded on Em by a positive constant
,y and a such that

m m

(14) Y E t.1 _ aii(x%tj >_ j Et2. on Em
j=1 1

for every real vector (i, t2 * * m)-
Let H1 = Hl(Em) be the space of complex-valued Cx functions f(x) =

f(xl, x2, * xm) in Em for which

(15) II! II = (f If(x)I2dx + _ Ifi(x) 12 dx)/2<
Em E
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Then the completion of H1 by the norm

(16) IfIf (f If(X)12dx)h'
is the space L2(Em) L2.
LEMMA 1. Let us consider A as an operator defined on {f; f E H1, Af E H1} C

L2 into L2. Then the smallest closed extension A, in L2, of A is the infinitesimal
generator of a semigroup Tt = exp (tA) of type S(1, f).
For the proof, see Yosida [21] and [23]. See also Phillips [15]. The proof is

based upon the Milgram-Lax theorem [7].
LEMMA 2. A satisfies the condition (8).
PROOF. (Yosida [23]. Compare Phillips [16].) Let a > O be sufficiently large.

Then we obtain, by partial integration, and by making use of the inequality
IEKI . 2-1(1e12 + lK12),
(17) Re {[(ar + v-i T)I - A]w, w}

= llwl I' + IRe a|axi ax,dxdx+ x, dx, w dx

%-|bi wdx - cwwtdx
Em Em

' ( -a - ?O)0W11w12 + (8 - mnv)Iw2IR,
where (8 - mfv) > 0 and lo = miq(m;1 - v + r-1) > 0 for sufficiently small
v> 0. Similarly we have

(18) I'm {[(o + A/-1 r)I - A]w, w} J
> ITrI WI12 -m.{II{W|J + mIIwI12} = (|rl - no2n) Iw 211 -mqlwlI .

If we assume that there exists w E H1, with w 6 0, and sufficiently large Ir
such that m77w1I12 > 21(1 rl -m2n)1Iw112, then

(19) Re {[(o + v-1 ) - A]w, w} > (8 - mfnv) 2- w2.

Therefore, by virtue of the Schwarz inequality,

(20) 11[(o+ V-1 r) - A]WwI* |W|I | {[(¢ + VA-1 r)- A]w, w} I,
we see that A satisfies the latter condition in (8). The former condition in (8) is
clear since we have proved, in lemma 1, that A is the infinitesimal generator of
a semigroup of type S(1, ,).
LEMMA 3. ForanyfE L, u(t, x) = exp (tA)f(x) is C- in t > Oand in x E Em

and satisfies the Cauchy problem
-= Au, t > 0,

(21) at
L2 - lim u(t, x) = f(x).t,o
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PROOF. If we apply, in the sense of the distribution of Schwartz, the elliptic
differential operators (O2/at2 + A) any number of times to u(t, x), then the result
is locally square integrable in the product space (O < t < m) X Em. Thus, by
the Weyl-Schwartz theorem, u(t, x) is equivalent to a function which is Cx in
(O < t < oo) X Em. Hence the lemma is proved.
Now, by the time-like analyticity, as proved in lemma 2, of the semigroup

T, = exp (tU) E H(O, M, ,), it is easy to see that the above solution u(t, x)
satisfies the time-like unique continuation theorem, Yosida [23]: if, for a certain
to > 0, u(to, x) = 0 on an open domain G of Em, then u(t, x) = 0 for all t > 0
and all x E G. Hence, by applying the space-like unique continuation theorem of
Mizohata [13], we see that u(t, x) satisfies the unique continuation theorem, Ita
and Yamabe [6]: if, for a certain to > 0, u(to, x) = 0 on an open domain G of
Em, then u(t, x) = 0 for all t > 0 and all x C Em.
REMARK. By virtue of (7') and (7), we see that u(t, x) = exp (tA)f(x) is an

analytic vector in the sense of Nelson [14], that is, for any fixed t > 0,
.0

(22) E en(n!)-t11lAn exp (toA)f II < oon1I

for sufficiently small e > 0. Hence, if we assume that the coefficients of the
differential operator A are real analytic in x, then u(t, x) is real analytic in x.
Therefore, in this case, the unique continuation theorem for u(t, x) may be
proved without appealing to Mizohata's result. This observation is due to
Komatsu [10], [11].

4. Fundamental solutions of temporally inhomogeneous evolution
equations

Consider an equation of evolution

(23) du = A(tu(t), a _ t< b,

where u(t) E X and A (t) is a linear operator in X. Such an equation was in-
vestigated by Kato [8] under the assumption that A(t) E S(1, 0), and recently
by Tanabe [19] under the assumption that A (t) C H(O, M, P3). A family of
bounded linear operators U(t, s) in X is called a fundamental solution of (23) if
it satisfies the following conditions:
(24) U(t, x) is defined for t _ s and is strongly continuous there,
(25) U(t, t) = I,
(26) for every x C D[A(s)], U(t, s)x belongs to the domain D[A(t)] and

is strongly differentiable in t such that d U(t, s)x = A (t) U(t, s)x.
If a fundamental solution U(t, s) exists and if the uniqueness theorem for the

Cauchy problem of (23) holds, then every solution u(t) of (23) is expressed as
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u(t) = U(t, s)u(s). The uniqueness theorem was proved by Kato [8] under the
sole solution that A (t) e S(1, 0).
Tanabe proved that (23) has a fundamental solution under the following

conditions:

(27) exp [rA (t)] E S(G, M, ,B) for t E [a, b], T > 0, and that the constants
0, M, and i are independent of t,

(28) the domain D[A (t)] = D is independent of t,

(29) there exists a bounded linear operator Ao which maps X onto 1)
in a one-to-one manner and such that

(30) B(t) = A (t)A 0

is uniformly Lipschitz continuous in t in1 the uniform topology of
operators and is strongly continuously differentiable in t.

Tanabe's construction of the fun(damenital solution may be writteni as

U(t, s) = exp [(t - s)A (s)] + TV(t, s),

TYV(t, s) = exp [(t - r)A (r)]K(r, s) (I,

I?(t, s) R~Rf(t, s),(31) m=1

Rj(t, s) = [A (t) - A(s)] exp [(t - s)A(s)], t > s,
R1(ts)= j, t =

I?fl(t, s) = | R1(t, r)1?m.(r, S) dr', m 2, 3,

He proved that every operator appearing in the above formulas is strongly
continuous in t and s, with s < t, and that every integral and series converge.
The crucial points in his proof are revealed in the following lemmas.
LEMMA 4. exp [(t - s)A (s)] is strongly differentiable in s and t and

(a/at + a/as) exp [(t - s)A(s)] is uniformly bounded in a _ s < t < b.
LEMMA 5. 7'here exist positive constants K1, K2, and p, 0 < p < 1, such that,

when a _ S < r < t < b, we have

(32) IIR(t, s) - R(r, S)I K1(t - T)(t - s)-1 + K2(t - S)P(t -T)1-P.

Tanabe applied his result to the integration of the temporally inhomogeneous
diffusion equation

o9u a2u a
(33) U =ai (t, x) a3 + b (t, x) - + c(t, x)t + f(t, -)

in a bounded domain of Em anid for a _ t < b.
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5. Analyticity of the fundamental solution

Komatsu [10] gave an important remark to Tanabe's result. Let A be a convex
complex neighborhood of the real segment [a, b]. Suppose that A (t) is defined on
A and satisfies the conditions
(34) A (t) E S(O, M, 3) for t EE A, where 0, M, and ,B are independent of t,
(35) D[A(t)] = D is independent of t C A,
(36) there exists a bounded linear operator Ao which maps X onto D in a

one-to-one manner and such that B(t) =.A (t)Ao is analytic in t for
tc A.

Under these conditions, Komatsu [11] proved that the fundamental solution
U(t, s) of (25) constructed as in (33) is analytic in t and s if larg (t - s)l < 0.
His proof is based upon the following
LEMMA 6. We write t > es when larg (t - s)l < 0. Let P(t, s) and Q(t, s) be

bounded linear operators in X defined for t > es with t and s C A. If they are
uniformly bounded and analytic there, then

(37) f| P(t, r)Q(r, s) d7r

is uniformly bounded and analytic in t and s E A when t > es.
This result may be applied, as in the case of temporally homogeneous equa-

tions discussed in section 3, to the unique continuation theorem of diffusion
equations. This is Komatsu's proof of the extension of Shirota [17], [18] of the
unique continuation theorem of Ito and Yamabe [6].

6. Fractional powers of infinitesimal generators and the analyticity
of the semigroups generated by them

Let T = exp (tA), with t > 0, he a semigroiip of type S(M, 0). A fractional
power of A

(38) -(-jA)a, 0 < a <,
was defined by Bochner [3] and Phillips [15] as the infinitesimal generator of
the semigroup
(39) Ttx = tX = fo Txx d'yt,x (X),

where the measure dyt,a (X) > 0 is defined through the Laplace integral

(40) exp (-taa) = f0 exp (-Xa) deyt,a (X), t, a > 0; 0 < a < 1.

We (Kato [9], Yosida [24], and Balakrishnan [1]) can prove that the semi-
group T, is of type S(0, M, ,B). To this purpose, invert the Laplace integral (40).
Then we see that the measure d^yt,a (X) has the density ft,a(X) given by

(41) ft(X) = (27ri)-' exp (zX - zat) dz for aniy a > 0,
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so that we have

(39') Tgx = Tt,aX = JO ft(X) Txx dX.

Take any 0 with r/2 . 0 . ir. Then we obtain

(41') f 7,r(X)= r' f0 exp (Xr cos 0 - tra cos a@)

[sin (Xr sin 6 - tra sin aO + 6)] dr
by deforming the path of integration in (41) to the union of two paths

(42) rexp(-i), oo > r >O,
r exp (i), 0 < r < -o.

Taking 0 = a = ir/(1 + a) in (41') and differentiating (39') with respect to t,
we obtain

(43) d Tx = Txx dX (f exp [(Xr + tr) cos ea]

{sin [(Xr - tra) sin 0a]}r- dr)-

This formal differentiation is justified, since the right side reduces, upon changing
the variables of integration, to

(44) (tr)-1 f2 T,ti,ta dv (fo exp [(sv + s8) cos Ga] {sin [(sv- sa) sin 0a]}sa ds)

which is, by cos 0a <0 and II T4 1 M, uniformly convergent in t > to for any
fixed to > 0. We have incidentally proved that tt satisfies (7), and thus T!
belongs to the class S(0, M, #).
From (43) it is easy to deduce the following formulas which were proved

earlier by Balakrishnan [1] (see Krasnoselski and Sobolevski [12]),

(45) -(-A)ax = [-r(-a)]- fJO X-a-'(Ti - I)x dX, x E D(A),

= 7r-1 sin air (XI - A)-'Ax dX, x E D(A).

See Yosida [24] and Kato [8].

7. An application of the fractional power operators to the reduced
Cauchy problem

Let A be the infinitesimal generator of a semigroup Tt = exp (tA) E S(M, 0).
Then for each uo E D(A), we have that u(t) = Ttg,/2uo is a solution of

(46) d2u + Au = O, t _ O,d+ut2 >
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and satisfies the conditions
(47) s - limu(t) = uo, sup lIu(t)II < ,

t40 t
and

(48) s - limd u(t) = s -limdr Te,,/2uo = Buo,
t4o dt t o dt

where B =-(-A)112. According to Balakrishnan [2], the solution of (46) is
uniquely determined by condition (47). Hence, for a solution u(t) of (46) and
(47), the initial condition for the first partial derivative du(O)/dt is determined
by (48), and other values cannot be prescribed. In this sense, the Cauchy prob-
lem for (46) and (47) is reduced. For a general definition of the reduced Cauchy
problem introduced by Hille see [5].
We follow Balakrishnan's proof. Put T012 = T1/2(t). Let v(t) be a twice

strongly and continuously differentiable solution of (46) satisfying the con-
dition

(47') s - limv(t) = uD E D(A), sup Ilv(t)II < o.
40 t

Put w(t) = TI/2(1/n)v(t). If we can prove, for all positive integer n, that
dw(O)/dt = Bw(O), then we obtain dv(O)/dt = Bv(O) by letting n -* -.

To prove this fact we first observe that w(t) is a solution of (46), and by (47'),
Idw(t)/dtjI is of exponential growth at t X. Thus we see, by putting wo = w(O)
and w, = dw(O)/dt, that

(49) dw(t) + Bw(t) = T,12(t)Bwo + T,12(t)wI,dt

because both sides satisfy the Cauchy problem

(50) d= Bu, u(O) = Bwo + widt
and are of exponential growth at t -- o. Hence we have

(51) dt [T,12(t)w(t)] = Ti,2(2t)wl + Tl/2(2t)Bwo,
so that

(52) T112(t)w(t) = Ti,2(2t)wo + -2f T12(s)(wl- BWo) ds.

Hence

(53) Ti,2(t)Bw(t) = TI/2(2t)Bwo + 1 [TI/2(2t) - I] (w, - Bwo).

Since T112(t) satisfies (7), Bw(t) = BTI,/2(1/n)v(t) is bounded in t by the assump-
tion that v(t) is bounded in t. On the other hand, because of the time-like ana-
lyticity of Ti/2(t), zero does not belong to the point spectrum of T1/2(t) for any
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t > 0. We write T1/2( - t) for the inverse of T112(t). Hence we see, by applying
T1/2(-t) to (53),

(54) sup ||T,/2(-t) (w - Bwo)II < - .

From this we can prove that z = (w, - Bwo) = 0. To this purpose we put

(55) F(X) = eXtT,l2(-t)z dt, Re (X) < o.

Then XF(X) is bounded when Re (X) < 0, Ilm (X)t/lRe (X)l < c for any positive
constant c. On the other hand, it is easily verified that

(56) -F(X) = (XI -B)-1
for X with Re (X) < 0 and ini the resolvenit set of B. Hence - XF(X) is the alna-
lytical extension of X(XI - B)-1z inito the left half X-plane. Moreover, as was
indicated in section 2, X(XI - B)-' is bounided in a sector of the form
-7r/2- e _ arg X . 7r/2 + e for e > 0. Heince, by Liouville's theorem, -XF(X)
must reduce to a constanit vector. Thus, by s - limx oX(XI - B)-lz = z, we
obtain X(XI - B)-'z = z. Hen-ce Bz = 0 anid so T',12(t)z = z. Therefore, by (52),
(57) ',12(t)w(t) = T1/2(2t)wo + t(w, - Bwo),
and hence the bouiidedness of wln(t) implies tlhat wt = Bwe.
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