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1. Introduction
Early work in the mathematical theory of epidemics was mainly concerned with

the development of deterministic models for the spread of disease through a popu-
lation. An excellent review of the deterministic approach has been given by Serfling
[ 15]. In this approach a functional equation (differential or integral equation, etc.)
for n(t), the number of infected individuals in the population at time t, is derived
on the basis of certain assumptions concerning the mechanism by which the disease
is to be transmitted among members of the population. This equation, together
with some initial condition (the number of infected individuals at time zero), is
then solved to obtain n(t). In assuming a deterministic causal mechanism for the
spread of an epidemic the number of infected individuals at some time t > 0 will
always be the same if the initial conditions are identical. Because of the large num-
ber of random or chance factors which determine the manner in which an epidemic
develops it became clear to workers in epidemic theory that probabilistic or sto-
chastic models would have to be used to supplement or replace the existing deter-
ministic ones.
The development of the theory of stochastic processes has given the mathematical

epidemiologist the proper theoretical framework within which his mathematical
models can be constructed. Of particular interest are stochastic processes of the
branching or multiplicative type. These processes can be described as mathematical
models for the development of systems whose components can reproduce, be trans-
formed, and die; the development being governed by probability laws [9]. A dis-
cussion of some stochastic models in epidemic theory has been given by Taylor [ 16],
and a detailed discussion of stochastic epidemic theory will be given in a monograph
by the author [4]; hence, in this paper we will not give a review of previous work
in this area. The purpose of the present paper is to consider the possible application
of the Bellman-Harris theory of age-dependent branching processes [2] to epi-
demics, and to discuss some statistical problems associated with stochastic epi-
demics.

2. Age-dependent branching processes and epidemics
2.1. Introduction. In the Bellman-Harris theory the incubation period (defined as

the length of time an individual is infected before infecting someone else) is a ran-
dom variable, say T, with general distribution G(r), 0 < r < co. At the end of this
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period the infected individual can infect n(n = 0, 1, * * *) other individuals with
probabilities qn, where the qn sum to unity, and each newly infected individual has
the same distribution G(r) for the timne that will elapse before he infects someone
else. The Bellman-Harris process can be formulated as follows: let X(t) be an
integer-valued random variable representing the number of infected individuals in
the population at time t. Put p(x, t) = Pr{X(t) = x}, x > 0, and let

(2.1) 7r(s, t) = p(x, t)sz, Isl < 1

be the generating function for the probabilities p(x, t) when X(O) = 1. If X(O) =
n > 1 the generating function for the probabilities is given by 7rn(S, t). In treating
both cases it is necessary to assume that the infected individuals do not interact
with one another. The generating function (2.1) has been shown to satisfy the non-
linear Stieltjes functional equation

rt
(2.2) 7r(s, t) = s[l - G(t)] + J h[r(s, t - 7)] dG(T)

where

(2.3) h(s) = E qnsn
n=O

that is, h(s) is the generating function for the infection probabilities qn. The equa-
tion for the generating function can be derived as follows. By definition

rt
(2.4) p(x, t) = Pr{X(t) = x I = f Pr{X(t) = x[T} dG(r)

where Pr{X(t) = x r} is the probability of having x infected individuals at time t
from a single infected individual at time zero who is known to have infected others
at t = r. Now

(2.5) Pr{X(t) = XIT = qn II P(ik, t - T)}
n=

. i2.... i,,=x k=1

where the term in braces is the coefficient of sz in the expansion of
_ _ ~~~~~n

(2.6) p(x, t - r)S] = n(s, t - T)

(The reasoning employed here is the same as that used in the theory of compound
probability distributions.) Multiplying p(x, t) by sz, summing over x, and adding
the term for p(l, t) = 1 - G(t), we obtain (2.2). If G(t) has a density function of
bounded total variation, we can write (2.2) as

rt
(2.7) 7r(s, t) = s[1 - G(t)] + f h[r(s, t - 'r)]g(T)dT

Differentiation of (2.7) with respect to s yields the moments of X(t) as integral
equations of the renewal type, the properties of which are well known. For example,
the expected value of X(t) is
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(2.8) E[X(t)] = m(t) = 1 - G(t) + K f m(t - )g(r)d
(2.8) EX(t)] m(t) 1 -G() + K m(t - )g(T)d,

where K is the sum of nqn = (dh/ds).=..
2.2. Some models. In this section we will use the age-dependent approach to show

how several models for the spread of an epidemic can be constructed. Some of these
models are well known and therefore will not be discussed in detail. In all cases we
consider an infinite population of susceptible individuals; and the random variable
X(t) will represent the size of the infected population at time t. We also assume
X(O) = 1.

(i) A deterministic model (Galton-Watson process). Let h(s) = S2, and let G(r)
be the step-function

(2.9) G(To)=/
0, T < 1/X

where, as before, r is the length of the incubation period, and X is the infection rate.
With h(s) and G(r) thus defined, the equation for the generating function becomes

(2.10) 7!~~~~~ k + 1) = 7r(, k)(2.10) (r, D (r ' X)'

with initial condition 7r(0, s) = s. In this process the size of the infected population
doubles at intervals of time equal to 1/X.

(ii) The simple birth process (Yule-Furry process). To obtain this well-known
process we put h(s) = 52 and G(t) = 1 - exp (-Xt) with X > 0. The "state of the
system" at time t then depends only on the size of the infected population at that
time and is independent of its previous history; hence, the process is of the Markov
type. The infection rate X has the following interpretation: the probability that
X(t) will experience a positive unit jump in the interval (t, t + At) is x5t + o(6t).
The generating function in this case becomes

(2.11) 7r(s, t) = se-" + J '7r2(s t - r)Xe-X'dr

which can be written as the differential equation

(2.12) =rX=r(7r-1).

The solution to (2.12) and the associated probability distribution are given and dis-
cussed by Kendall [ 11 ]

(iii) The simple birth-and-death process (Feller, Kolmogorov, Arley, etc.) We have
now G(t) = 1 - exp[ -(X + ,i)t], where X is defined as in (ii), and 1A.t + o(bt) is
the probability that X(t) will experience a negative unit jump in the interval
(t, t + At). The generating function satisfies the equation

(2.13) 7(s, t) = se-(X+)t + [2(s, t - r) + I]e (x)dr ,

which can be written as the differential equation
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(2.14) = 2 - (X + A)7r + 1at

A detailed discussion of this process is also given in Kendall [ 11].
(iv) A modified birth-and-death process. This case, which we treat in some detail,

assumes G(t) = 1 - exp (- Xt) with X > 0 and h(s) = qo + qls + q2s2. This defini-
tion of h(s) states that an individual infected for a period of length T has probability
qo of dying and being removed from the infected population, probability qi of not
infecting anyone else and remaining infected himself, and probability q2 of infecting
one susceptible and remaining infected himself. The q2 can also be interpreted as the
probability that the infected individual will infect two susceptibles, and then be
removed from the population. In either case, the size of the infected population
increases by one.
The generating function in this case satisfies the equation

rt2
(2.15) r(s, t) = se-Xt + f E [qnr(s, t - T)]Xe-dr,f n=O

which, as in the previous cases, can be reduced to the differential equation

(2.16) 1 4a7r = q27r2 - (qo + q2)}r + qo .x a

The solution to (2.16) with initial condition 7r(0, s) = s is

(2.17) 7r(s, t) = qo -q2[(q2s- qo)/(q2S- q2)]e02
q2{1- [(q2s -qO)/(q2S -q2)le (q0-q2)t}

Expanding (2.17) as a power series in s, and using (2.1) we obtain

(2.18) p(x,t) = [ + ][] x > 1

where

A = q0q2eX(qo-q2)t- qoq2

B = qoq2 -q2e
C = qoq2e (ooQ2)t-q2

D = q2e (QoQ2)t-q2

Using (2.8), the integral equation for the expected value of X(t) is

(2.19) E[X(t)] = m(t) = eCt + (1 -qo + q2) f m(t - r)Xe-T'dT .

This reduces to the differential equation

(2.20) dm(t) = X(q2 - qo)m(t)dt

whose solution when X(0) = 1 is

(2.21) m(t) = eX(q2-qo)t
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As t approaches infinity we have

fO, qo > q2

(2.22) lim E[X(t)] = 1, qo = q2
t Bco

co qo < q2.
It is of interest to determine the probability p(O, t) that at time t all of the infected

individuals will be removed from the population. From (2.1) and (2.17) we see
that this probability is given by

(2.23) P(OA t) qoe'(QoQ2)'_ qo
C qoe(q0-q2)t- q2

The probability that all of the infected individuals will eventually be removed is
given by

1, qo > q2

(2.24) lim p(O, t)=
t bo qo/q2 qo < q2

Should the epidemic start with n > 1 infected individuals at t = 0, the expected
number of infected individuals in the population can be obtained by multiplying
(2.21) by n. An explicit expression for p(x, t) can be obtained by expanding 7rn(s, t)
as a power series in s and proceeding as before. We have

(2.25) er"(s, t) = (A + Bs)" E (fl)[ jsz

Hence

(2.26) p(x, t) = (f)[A]-[B]t()[ ]- x 2 n.

This distribution is of the negative binomial type. The asymptotic behavior of the
mean is the same as before, except that now E[ X(t) I = n when qo = q2. In addition,
we have

/A\ n

(2.27) p(O, t) =

and

f1, qo > q2
(2.28) lim p(0, t) =

J__~~ (qo/q2)n qo < q2-

2.3. Remarks on the use of age-dependent theory for more complex situations. In sec-

tion 2.2 we have given some models which can perhaps be used to discuss some very
simple epidemic situations. We should like, however, to treat more realistic situa-
tions which would be of greater interest to the epidemiologist. In comparing the
classical differential-difference equation approach to the age-dependent approach
in the study of stochastic branching processes, we find that the latter has several
features (variable incubation period Tr and infection probabilities qn) which make
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it especially suitable for many applications in epidemic theory. On the other hand,
we find that the difficulties encountered in solving the Bellman-Harris functional
equation (2.2) are very great in all but the relatively simple cases.
One approach to this problem which this author is now considering is based on

the relationship between branching processes, random walk on the real line, and
diffusion theory. This relationship has been considered by several workers in various
problems. The interpretation of an age-dependent branching process as a random
walk on the integers 0, 1, 2, * - - is as follows: at t = 0 the particle (the size of the
infected population) is in position k, 0 < k < co. At t = T the particle moves n
steps (n = 0, 1, 2, * * * ) with probability qn. The interval of time between future
moves, say r, is a random variable with probability distribution G(r). After each
move, the particle has the same probability qn of moving n steps from its present
position. In the terminology of Markov chains, the integer 0 is an absorbing state,
and the integers 1, 2, * * * are transient states; hence, the random walk will either
terminate at 0, or the particle will move out to infinity.

Associated with every discrete random walk problem is a continuous diffusion
problem, which involves the study of the Fokker-Planck equation (the forward
equation of diffusion theory). To obtain the Fokker-Planck equation it is necessary
to determine the infinitesimal mean displacement and the infinitesimal variance of
X(t). In our case these coefficients will obviously depend on the functions h(s) and
G(t). Having obtained the diffusion equation, we can then utilize the recent results
of Feller [7] to study its properties when various assumptions are made concerning
h(s) and G(t).

3. Statistical problems
3.1. Introduction. Following the formulation and study of stochastic models for

the spread of epidemics the next step is to consider the problems of statistical in-
ference associated with these models. Since most of the stochastic epidemic models
can be formulated as branching processes, the problem facing us is the development
of statistical methods for general branching processes and their subsequent applica-
tion to epidemic situations. It is only recently that research workers have considered
the problems of statistical inference arising in the theory of stochastic processes and
only a few studies have been devoted to problems associated with branching proc-
esses. Interesting results for certain branching processes have been obtained by
Anscombe [1], Immel [10], Kendall [11], [12], and Moran [13], [14].

Recently we have been considering the problems of testing hypotheses and esti-
mation for branching processes within the framework of the Wald theory of sequen-
tial decision functions [ 31]. This work can be considered as an extension of some of
the results of Dvoretzky, Kiefer, and Wolfowitz [5], [6] to nonstationary stochas-
tic processes. Applications of our results to stochastic epidemics will be given in [4];
however, we will illustrate some of these methods by considering a problem men-
tioned by Taylor [ 16] concerning the comparison of two stochastic epidemics.

3.2. Comparison of two stochastic epidemics. Let the random variables X3 (t) and
X2(t) represent the number of infected individuals at time t in two independent
populations. Assume the probability law pjj(xj, t) = Pr{Xxi(t) = xi}, i = 1, 2, is
known (or that we have a good model) except for the value of the parameter Xi, the
infection rate. Suppose now that the epidemiologist observes continuously the de-
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velopment of the two epidemics, and wishes, on the basis of the observed sample
functions xi(t) and x2(t), to test the hypothesis H1 that Xi < X2 against the alterna-
tive H2 that Xi > X2. This type of problem has been treated by Girshick [8] (see
also Wald [17]) for some discrete distributions. We now consider the application
of the Girshick method to two cases: (i) the spread of the epidemic can be described
by a simple birth process with unknown infection rate X; and (ii) the epidemic can
be described by a simple birth-and-death process with unknown infection rate X
and known parameter ,, which we shall interpret to be the rate at which members
of the population arrive at the hospital to report infection.

(i) Simple birth process. To test the hypothesis H1, select two positive values L
and M, where L < M. Denote by Hl the hypothesis that the joint distribution of xi
and x2 is given by PL(X1, t)pM(X2, t), and denote by H2 the hypothesis that the joint
distribution is given by pM(x1, t)pL(X2, t). We can now set up the Wald sequential
probability ratio test for testing the simple hypothesis H1 against the simple alter-
native H2. The original hypothesis H1 will be accepted or rejected depending on
whether the Wald test leads to the acceptance or rejection of H1.
The decision function (given by the probability ratio) is defined as

(3.1) d(t) = log PM(X1, t)pL(X2, t)
(3.1) ~~~~~~~PL(X1,t)PM(X2, t)

For the simple birth process

(3.2) pA(x, t) = e-'(1 -e-Xt)z-l, t _ 0, x > 1, X(O) = 1;

hence
1 _

-Lt

(3.3) d(t) = [x2(t) - x1(t)] log1 e
1 -e

We now select two constants A = log [(1 - a2)/al], and B = log [a2/(1 -l)
where a; is the probability of accepting Hi when it is false. The sequential test is
performed as follows: The two epidemics are observed continuously, and if at any
time t = T we observe d(T) < B we conclude that XI > X2. If d(T) > A we conclude
Xl < N2. If neither holds we continue to observe.

It has been shown by Girshick [8] that when the distribution being studied ad-
mits a sufficient statistic for the unknown parameter there exists a function 'y =
(X1, X2), say, such that the probability that the sequential probability ratio test will
terminate with the acceptance of H1 depends only on the value of 'Y. The function -y
satisfies the conditions (1) -Y(XI, N2) = 0 when Xi = N2, (2) Y(XI, X2) < 0 when
X2 > Xi, (3) Y(XI, X2) = --Y(X2, X1). By the Neyman-Fisher factorization theorem
x(t) is sufficient for X; and following Girshick we find that in this case

(3.4) Y(Xl, X2) = log 1 -1 -xe2 t

We can now define the decision boundaries as

(3.5) A*(t) = log
at

/ log1l eLt
a1 ~ ~ em



118 THIRD BERKELEY SYMPOSIUM: BHARUCHA-REID

(3.6) B*(t) = log l2 log e-.

The corresponding decision function is simply

(3.7) d*(t) = X2(t) - x1(t)
This sequential test can be carried out graphically in the usual manner.

(ii) Simple birth-and-death process. We now consider the case where the two epi-
demics can be described by the simple birth-and-death process, that is,

(3.8) Pk,,p(x, t) = 4,,,p(t)[lXpt)[1p()$l x >= 1

where

(3-9) h (0(t) =ye,-4 , (t) =e(X-t -
>(-p)g_ ;ie(\-P)f _ }ez

The infection rate X is the unknown parameter and ,u is the known parameter, which
we interpret as the rate at which individuals arrive at the hospital to report infec-
tions. We should like to decide on the basis of the observed sample functions whether
XI < X2 or X1 > X2.
The procedure is the same as before. For constants A, B, and known parameters

pi and L2 we compute, using, (3.7), the decision function

(3.10) d(t) = [x2(t) - xi(t)] log L

4bM(t)
and if for any t = T, d(T) < B we conclude X1 > X2. If d(T) 2 A we conclude
Xi<X2. If neither holds, we continue to observe. If we assume A,u = 2 the function

cIl(t)
(3.11) ly(XI, X2) = log10

satisfies the required conditions; and we obtain the new decision boundaries

(3.12) A*(t) = log 1 - a/ log 4 L(t)
ail ''m(t)

(3.13) B *(t) = log.1 2 / log 4DL(t)
together with the new decision function

(3.14) d*(t) = x2(t) - x1(t) .

We remark in closing that these methods go through for the death process,
P61ya process, and many other branching processes which are of interest in appli-
cations.
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